1
|
Worthan SB, McCarthy RDP, Delaleau M, Stikeleather R, Bratton BP, Boudvillain M, Behringer MG. Evolution of pH-sensitive transcription termination in Escherichia coli during adaptation to repeated long-term starvation. Proc Natl Acad Sci U S A 2024; 121:e2405546121. [PMID: 39298488 PMCID: PMC11441560 DOI: 10.1073/pnas.2405546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in Escherichia coli populations experimentally evolved under repeated long-term starvation conditions, during which the accumulation of metabolic waste followed by transfer into fresh media results in drastic environmental pH fluctuations associated with feast and famine. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers plasticity via an alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species that regularly experience neutral to alkaline pH fluctuations in their environments. Our results suggest that Arg to His substitutions in Rho may serve to rapidly coordinate complex physiological responses through pH sensing and shed light on how cellular populations use environmental cues to coordinate rapid responses to complex, fluctuating environments.
Collapse
Affiliation(s)
- Sarah B. Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
| | | | - Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d’Orléans, Orléans Cedex 245071, France
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ85281
| | - Benjamin P. Bratton
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN37232
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d’Orléans, Orléans Cedex 245071, France
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN37232
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
2
|
Morita T, Gottesman S. Coming in out of the cold: Rho-dependent termination contributes to adaptation to cold shock. Mol Cell 2024; 84:3373-3374. [PMID: 39303677 DOI: 10.1016/j.molcel.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
During cold shock, bacteria shut down translation of all but a set of cold-shock proteins critical for recovery; in this issue of Molecular Cell, Delaleau et al.1 show that Rho-dependent transcription termination plays an important role in cold adaptation, via temperature-regulated termination of the cold-shock protein mRNAs.
Collapse
Affiliation(s)
- Teppei Morita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Delaleau M, Figueroa-Bossi N, Do TD, Kerboriou P, Eveno E, Bossi L, Boudvillain M. Rho-dependent transcriptional switches regulate the bacterial response to cold shock. Mol Cell 2024; 84:3482-3496.e7. [PMID: 39178862 DOI: 10.1016/j.molcel.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Binding of the bacterial Rho helicase to nascent transcripts triggers Rho-dependent transcription termination (RDTT) in response to cellular signals that modulate mRNA structure and accessibility of Rho utilization (Rut) sites. Despite the impact of temperature on RNA structure, RDTT was never linked to the bacterial response to temperature shifts. We show that Rho is a central player in the cold-shock response (CSR), challenging the current view that CSR is primarily a posttranscriptional program. We identify Rut sites in 5'-untranslated regions of key CSR genes/operons (cspA, cspB, cspG, and nsrR-rnr-yjfHI) that trigger premature RDTT at 37°C but not at 15°C. High concentrations of RNA chaperone CspA or nucleotide changes in the cspA mRNA leader reduce RDTT efficiency, revealing how RNA restructuring directs Rho to activate CSR genes during the cold shock and to silence them during cold acclimation. These findings establish a paradigm for how RNA thermosensors can modulate gene expression.
Collapse
Affiliation(s)
- Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, Affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Thuy Duong Do
- Centre de Biophysique Moléculaire, CNRS UPR4301, Affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France; ED 549, Sciences Biologiques & Chimie du Vivant, Université d'Orléans, Orléans, France
| | - Patricia Kerboriou
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Eric Eveno
- Centre de Biophysique Moléculaire, CNRS UPR4301, Affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, Affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans Cedex 2, France; ED 549, Sciences Biologiques & Chimie du Vivant, Université d'Orléans, Orléans, France.
| |
Collapse
|
4
|
Worthan SB, McCarthy RDP, Delaleau M, Stikeleather R, Bratton BP, Boudvillain M, Behringer MG. Evolution of pH-sensitive transcription termination during adaptation to repeated long-term starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582989. [PMID: 38464051 PMCID: PMC10925284 DOI: 10.1101/2024.03.01.582989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Fluctuating environments that consist of regular cycles of co-occurring stress are a common challenge faced by cellular populations. For a population to thrive in constantly changing conditions, an ability to coordinate a rapid cellular response is essential. Here, we identify a mutation conferring an arginine-to-histidine (Arg to His) substitution in the transcription terminator Rho. The rho R109H mutation frequently arose in E. coli populations experimentally evolved under repeated long-term starvation conditions, during which feast and famine result in drastic environmental pH fluctuations. Metagenomic sequencing revealed that populations containing the rho mutation also possess putative loss-of-function mutations in ydcI, which encodes a recently characterized transcription factor associated with pH homeostasis. Genetic reconstructions of these mutations show that the rho allele confers a plastic alkaline-induced reduction of Rho function that, when found in tandem with a ΔydcI allele, leads to intracellular alkalinization and genetic assimilation of Rho mutant function. We further identify Arg to His substitutions at analogous sites in rho alleles from species originating from fluctuating alkaline environments. Our results suggest that Arg to His substitutions in global regulators of gene expression can serve to rapidly coordinate complex responses through pH sensing and shed light on how cellular populations across the tree of life use environmental cues to coordinate rapid responses to complex, fluctuating environments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
| | | | - Mildred Delaleau
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| | - Benjamin P Bratton
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, affiliated with Université d'Orléans, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
| |
Collapse
|