1
|
Burns D, Venditti V, Potoyan DA. Illuminating Protein Allostery by Chemically Accurate Contact Response Analysis (ChACRA). J Chem Theory Comput 2024; 20:8711-8723. [PMID: 39038177 DOI: 10.1021/acs.jctc.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Decoding allostery at the atomic level is essential for understanding the relationship between a protein's sequence, structure, and dynamics. Recently, we have shown that decomposing temperature responses of inter-residue contacts can reveal allosteric couplings and provide useful insight into the functional dynamics of proteins. The details of this Chemically Accurate Contact Response Analysis (ChACRA) are presented here along with its application to two well-known allosteric proteins. The first protein, IGPS, is a model of ensemble allostery that lacks clear structural differences between the active and inactive states. We show that the application of ChACRA reveals the experimentally identified allosteric coupling between effector and active sites of IGPS. The second protein, ATCase, is a classic example of allostery with distinct active and inactive structural states. Using ChACRA, we directly identify the most significant residue level interactions underlying the enzyme's cooperative behavior. Both test cases demonstrate the utility of ChACRA's unsupervised machine learning approach for dissecting allostery at the residue level.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Jin R, Liu Y, Tang Y, Li J, Sun Y, Wang Y, Guo Q, Zhang S, Qu Y. Heterogeneous Oxidase-Type Catalysis for H 2 Generation at Low Temperatures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28333-28341. [PMID: 38781511 DOI: 10.1021/acsami.3c19602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The long-term objective in the field of heterogeneous catalysis is to develop an enzyme-like catalytic pathway that can achieve exceptional catalytic performance even at low temperatures. Herein, we have demonstrated a heterogeneous oxidase-type catalysis on the ZnO-supported Ru clusters (Ru/ZnO) for efficient H2 generation from an aqueous solution of formaldehyde (HCHO) at low temperatures. Due to its unique reaction pathway, the Ru/ZnO catalysts exhibited a temperature-insensitive activity for H2 generation at the temperature of 15 to 45 °C. Remarkably, even at a low temperature of 5 °C, the Ru/ZnO catalysts still enabled an H2 generation rate of 13.8 mmol gcat-1 h-1 with a turnover frequency (TOF) of 1678 h-1. Additionally, instead of producing a CO2/CO molecule, the HCHO molecule underwent a transformation into formic acid and/or formate as the byproduct. This finding presents a novel class of heterogeneous catalysts to expand the potential application scenarios of liquid hydrogen storage and transportation systems.
Collapse
Affiliation(s)
- Ruixin Jin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yunxia Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuwei Tang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jing Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yu Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - You Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Guo
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Sai Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Ohler A, Taylor PE, Bledsoe JA, Iavarone AT, Gilbert NC, Offenbacher AR. Identification of the Thermal Activation Network in Human 15-Lipoxygenase-2: Divergence from Plant Orthologs and Its Relationship to Hydrogen Tunneling Activation Barriers. ACS Catal 2024; 14:5444-5457. [PMID: 38601784 PMCID: PMC11003420 DOI: 10.1021/acscatal.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The oxidation of polyunsaturated fatty acids by lipoxygenases (LOXs) is initiated by a C-H cleavage step in which the hydrogen atom is transferred quantum mechanically (i.e., via tunneling). In these reactions, protein thermal motions facilitate the conversion of ground-state enzyme-substrate complexes to tunneling-ready configurations and are thus important for transferring energy from the solvent to the active site for the activation of catalysis. In this report, we employed temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX-MS) to identify catalytically linked, thermally activated peptides in a representative animal LOX, human epithelial 15-LOX-2. TDHDX-MS of wild-type 15-LOX-2 was compared to two active site mutations that retain structural stability but have increased activation energies (Ea) of catalysis. The Ea value of one variant, V427L, is implicated to arise from suboptimal substrate positioning by increased active-site side chain rotamer dynamics, as determined by X-ray crystallography and ensemble refinement. The resolved thermal network from the comparative Eas of TDHDX-MS between wild-type and V426A is localized along the front face of the 15-LOX-2 catalytic domain. The network contains a clustering of isoleucine, leucine, and valine side chains within the helical peptides. This thermal network of 15-LOX-2 is different in location, area, and backbone structure compared to a model plant lipoxygenase from soybean that exhibits a low Ea value of catalysis compared to the human ortholog. The presented data provide insights into the divergence of thermally activated protein motions in plant and animal LOXs and their relationships to the enthalpic barriers for facilitating hydrogen tunneling.
Collapse
Affiliation(s)
- Amanda Ohler
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Paris E. Taylor
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Jasmine A. Bledsoe
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Anthony T. Iavarone
- QB3/Chemistry
Mass Spectrometry Facility, University of
California, Berkeley, Berkeley, California 94720, United States
| | - Nathaniel C. Gilbert
- Department
of Biological Sciences, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Adam R. Offenbacher
- Department
of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
4
|
Faris A, Cacciatore I, Ibrahim IM, Al Mughram MH, Hadni H, Tabti K, Elhallaoui M. In silico computational drug discovery: a Monte Carlo approach for developing a novel JAK3 inhibitors. J Biomol Struct Dyn 2023:1-23. [PMID: 37861428 DOI: 10.1080/07391102.2023.2270709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Inhibition of Janus kinase 3 (JAK3), a member of the JAK family of tyrosine kinases, remains an essential area of research for developing treatments for autoimmune diseases, particularly cancer and rheumatoid arthritis. The recent discovery of a new JAK3 protein, PDB ID: 4Z16, offers exciting possibilities for developing inhibitors capable of forming a covalent bond with the Cys909 residue, thereby contributing to JAK3 inhibition. A powerful prediction model was constructed and validated using Monte Carlo methods, employing various internal and external techniques. This approach resulted in the prediction of eleven new molecules, which were subsequently filtered to identify six compounds exhibiting potent pIC50 values. These candidates were then subjected to ADMET analysis, molecular docking (including reversible-reversible docking with tofacitinib, an FDA-approved drug, and reversible-irreversible docking for the newly designed compounds), molecular dynamics (MD) analysis for 300 ns, and calculation of free binding energy. The results suggested that these compounds hold promise as JAK3 inhibitors. In summary, the new compounds have exhibited favorable outcomes compared to other compounds across various modeling approaches. The collective findings from these investigations provide valuable insights into the potential therapeutic applications of covalent JAK3 inhibitors, offering a promising direction for the development of novel treatments for autoimmune disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ivana Cacciatore
- Department of Pharmacy, University 'G. d'Annunzio' of Chieti-Pescara, Italy
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hanine Hadni
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Kamal Tabti
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
5
|
Knight AL, Widjaja V, Lisi GP. Temperature as a modulator of allosteric motions and crosstalk in mesophilic and thermophilic enzymes. Front Mol Biosci 2023; 10:1281062. [PMID: 37877120 PMCID: PMC10591084 DOI: 10.3389/fmolb.2023.1281062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Mesophilic and thermophilic enzyme counterparts are often studied to understand how proteins function under harsh conditions. To function well outside of standard temperature ranges, thermophiles often tightly regulate their structural ensemble through intra-protein communication (via allostery) and altered interactions with ligands. It has also become apparent in recent years that the enhancement or diminution of allosteric crosstalk can be temperature-dependent and distinguish thermophilic enzymes from their mesophilic paralogs. Since most studies of allostery utilize chemical modifications from pH, mutations, or ligands, the impact of temperature on allosteric function is comparatively understudied. Here, we discuss the biophysical methods, as well as critical case studies, that dissect temperature-dependent function of mesophilic-thermophilic enzyme pairs and their allosteric regulation across a range of temperatures.
Collapse
Affiliation(s)
| | | | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Burns D, Venditti V, Potoyan DA. Temperature sensitive contact modes allosterically gate TRPV3. PLoS Comput Biol 2023; 19:e1011545. [PMID: 37831724 PMCID: PMC10599574 DOI: 10.1371/journal.pcbi.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
TRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3. We find that groups of residues exhibiting similar temperature-dependent contact frequency profiles cluster at specific regions of the channel. The dominant mode clusters on the ankyrin repeat domain and displays a linear melting trend while others display non-linear trends. These modes describe the residue-level temperature response patterns that underlie the channel's functional dynamics. With network analysis, we find that the community structure of the channel changes with temperature. And that a network of high centrality contacts connects distant regions of the protomer to the gate, serving as a means for the temperature-sensitive contact modes to allosterically regulate channel gating. Using a random forest model, we show that the contact states of specific temperature-sensitive modes are indeed predictive of the channel gate's state. Supporting the physical validity of these modes and networks are several residues identified with our analyses that are reported in literature to be functionally critical. Our results offer high resolution insight into thermo-TRP channel function and demonstrate the utility of temperature-sensitive contact analysis.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Vincenzo Venditti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Davit A. Potoyan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
7
|
Burns D, Venditti V, Potoyan DA. Temperature-Sensitive Contact Modes Allosterically Gate TRPV3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522497. [PMID: 36711981 PMCID: PMC9881879 DOI: 10.1101/2023.01.02.522497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TRPV Ion channels are sophisticated molecular sensors designed to respond to distinct temperature thresholds. The recent surge in cryo-EM structures has provided numerous insights into the structural rearrangements accompanying their opening and closing; however, the molecular mechanisms by which TRPV channels establish precise and robust temperature sensing remain elusive. In this work we employ molecular simulations, multi-ensemble contact analysis, graph theory, and machine learning techniques to reveal the temperature-sensitive residue-residue interactions driving allostery in TRPV3. We find that groups of residues exhibiting similar temperature-dependent contact frequency profiles cluster at specific regions of the channel. The dominant mode clusters on the ankyrin repeat domain and displays a linear melting trend while others display non-linear trends. These modes describe the residue-level temperature response patterns that underlie the channel's functional dynamics. With network analysis, we find that the community structure of the channel changes with temperature. And that a network of high centrality contacts connects distant regions of the protomer to the gate, serving as a means for the temperature-sensitive contact modes to allosterically regulate channel gating. Using a random forest model, we show that the contact states of specific temperature-sensitive modes are indeed predictive of the channel gate's state. Supporting the physical validity of these modes and networks are several residues identified with our analyses that are reported in literature to be functionally critical. Our results offer high resolution insight into thermo-TRP channel function and demonstrate the utility of temperature-sensitive contact analysis.
Collapse
|