1
|
Krishnamoorthi A, Salom D, Wu A, Palczewski K, Rentzepis PM. Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2024; 121:e2414037121. [PMID: 39356673 PMCID: PMC11474067 DOI: 10.1073/pnas.2414037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA92697
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| |
Collapse
|
2
|
Chen C, Adler L, Milliken C, Rahman B, Kono M, Perry LP, Gonzalez-Fernandez F, Koutalos Y. The First Steps of the Visual Cycle in Human Rod and Cone Photoreceptors. Invest Ophthalmol Vis Sci 2024; 65:9. [PMID: 38958967 PMCID: PMC11223620 DOI: 10.1167/iovs.65.8.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose Light detection destroys the visual pigment. Its regeneration, necessary for the recovery of light sensitivity, is accomplished through the visual cycle. Release of all-trans retinal by the light-activated visual pigment and its reduction to all-trans retinol comprise the first steps of the visual cycle. In this study, we determined the kinetics of all-trans retinol formation in human rod and cone photoreceptors. Methods Single living rod and cone photoreceptors were isolated from the retinas of human cadaver eyes (ages 21 to 90 years). Formation of all-trans retinol was measured by imaging its outer segment fluorescence (excitation, 360 nm; emission, >420 nm). The extent of conversion of released all-trans retinal to all-trans retinol was determined by measuring the fluorescence excited by 340 and 380 nm. Measurements were repeated with photoreceptors isolated from Macaca fascicularis retinas. Experiments were carried out at 37°C. Results We found that ∼80% to 90% of all-trans retinal released by the light-activated pigment is converted to all-trans retinol, with a rate constant of 0.24 to 0.55 min-1 in human rods and ∼1.8 min-1 in human cones. In M. fascicularis rods and cones, the rate constants were 0.38 ± 0.08 min-1 and 4.0 ± 1.1 min-1, respectively. These kinetics are several times faster than those measured in other vertebrates. Interphotoreceptor retinoid-binding protein facilitated the removal of all-trans retinol from human rods. Conclusions The first steps of the visual cycle in human photoreceptors are several times faster than in other vertebrates and in line with the rapid recovery of light sensitivity exhibited by the human visual system.
Collapse
Affiliation(s)
- Chunhe Chen
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Leopold Adler
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Cole Milliken
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bushra Rahman
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Lynn Poole Perry
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Federico Gonzalez-Fernandez
- Departments of Ophthalmology and Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, United States
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Solano YJ, Everett MP, Dang KS, Abueg J, Kiser PD. Carotenoid cleavage enzymes evolved convergently to generate the visual chromophore. Nat Chem Biol 2024; 20:779-788. [PMID: 38355721 PMCID: PMC11142922 DOI: 10.1038/s41589-024-01554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The retinal light response in animals originates from the photoisomerization of an opsin-coupled 11-cis-retinaldehyde chromophore. This visual chromophore is enzymatically produced through the action of carotenoid cleavage dioxygenases. Vertebrates require two carotenoid cleavage dioxygenases, β-carotene oxygenase 1 and retinal pigment epithelium 65 (RPE65), to form 11-cis-retinaldehyde from carotenoid substrates, whereas invertebrates such as insects use a single enzyme known as Neither Inactivation Nor Afterpotential B (NinaB). RPE65 and NinaB couple trans-cis isomerization with hydrolysis and oxygenation, respectively, but the mechanistic relationship of their isomerase activities remains unknown. Here we report the structure of NinaB, revealing details of its active site architecture and mode of membrane binding. Structure-guided mutagenesis studies identify a residue cluster deep within the NinaB substrate-binding cleft that controls its isomerization activity. Our data demonstrate that isomerization activity is mediated by distinct active site regions in NinaB and RPE65-an evolutionary convergence that deepens our understanding of visual system diversity.
Collapse
Affiliation(s)
- Yasmeen J Solano
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Michael P Everett
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA
| | - Kelly S Dang
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Jude Abueg
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine School of Medicine, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California Irvine School of Pharmacy and Pharmaceutical Sciences, Irvine, CA, USA.
| |
Collapse
|
4
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
5
|
Hong JD, Salom D, Choi EH, Du SW, Tworak A, Smidak R, Gao F, Solano YJ, Zhang J, Kiser PD, Palczewski K. Retinylidene chromophore hydrolysis from mammalian visual and non-visual opsins. J Biol Chem 2024; 300:105678. [PMID: 38272218 PMCID: PMC10877631 DOI: 10.1016/j.jbc.2024.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Rhodopsin (Rho) and cone opsins are essential for detection of light. They respond via photoisomerization, converting their Schiff-base-adducted 11-cis-retinylidene chromophores to the all-trans configuration, eliciting conformational changes to activate opsin signaling. Subsequent Schiff-base hydrolysis releases all-trans-retinal, initiating two important cycles that maintain continuous vision-the Rho photocycle and visual cycle pathway. Schiff-base hydrolysis has been thoroughly studied with photoactivated Rho but not with cone opsins. Using established methodology, we directly measured the formation of Schiff-base between retinal chromophores with mammalian visual and nonvisual opsins of the eye. Next, we determined the rate of light-induced chromophore hydrolysis. We found that retinal hydrolysis from photoactivated cone opsins was markedly faster than from photoactivated Rho. Bovine retinal G protein-coupled receptor (bRGR) displayed rapid hydrolysis of its 11-cis-retinylidene photoproduct to quickly supply 11-cis-retinal and re-bind all-trans-retinal. Hydrolysis within bRGR in native retinal pigment epithelium microsomal membranes was >6-times faster than that of bRGR purified in detergent micelles. N-terminal-targeted antibodies significantly slowed bRGR hydrolysis, while C-terminal antibodies had no effect. Our study highlights the much faster photocycle of cone opsins relative to Rho and the crucial role of RGR in chromophore recycling in daylight. By contrast, in our experimental conditions, bovine peropsin did not form pigment in the presence of all-trans-retinal nor with any mono-cis retinal isomers, leaving uncertain the role of this opsin as a light sensor.
Collapse
Affiliation(s)
- John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA; Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA.
| | - Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA
| | - Samuel W Du
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA
| | - Roman Smidak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA
| | - Yasmeen J Solano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA
| | - Jianye Zhang
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA; Department of Clinical Pharmacy Practice, University of California Irvine, Irvine, California, USA; Research Service, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA; Department of Chemistry, University of California Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
6
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
7
|
Hong JD, Palczewski K. A short story on how chromophore is hydrolyzed from rhodopsin for recycling. Bioessays 2023; 45:e2300068. [PMID: 37454357 PMCID: PMC10614701 DOI: 10.1002/bies.202300068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023]
Abstract
The photocycle of visual opsins is essential to maintain the light sensitivity of the retina. The early physical observations of the rhodopsin photocycle by Böll and Kühne in the 1870s inspired over a century's worth of investigations on rhodopsin biochemistry. A single photon isomerizes the Schiff-base linked 11-cis-retinylidene chromophore of rhodopsin, converting it to the all-trans agonist to elicit phototransduction through photoactivated rhodopsin (Rho*). Schiff base hydrolysis of the agonist is a key step in the photocycle, not only diminishing ongoing phototransduction but also allowing for entry and binding of fresh 11-cis chromophore to regenerate the rhodopsin pigment and maintain light sensitivity. Many challenges have been encountered in measuring the rate of this hydrolysis, but recent advancements have facilitated studies of the hydrolysis within the native membrane environment of rhodopsin. These techniques can now be applied to study hydrolysis of agonist in other opsin proteins that mediate phototransduction or chromophore turnover. In this review, we discuss the progress that has been made in characterizing the rhodopsin photocycle and the journey to characterize the hydrolysis of its all-trans-retinylidene agonist.
Collapse
Affiliation(s)
- John D. Hong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Tworak A, Kolesnikov AV, Hong JD, Choi EH, Luu JC, Palczewska G, Dong Z, Lewandowski D, Brooks MJ, Campello L, Swaroop A, Kiser PD, Kefalov VJ, Palczewski K. Rapid RGR-dependent visual pigment recycling is mediated by the RPE and specialized Müller glia. Cell Rep 2023; 42:112982. [PMID: 37585292 PMCID: PMC10530494 DOI: 10.1016/j.celrep.2023.112982] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023] Open
Abstract
In daylight, demand for visual chromophore (11-cis-retinal) exceeds supply by the classical visual cycle. This shortfall is compensated, in part, by the retinal G-protein-coupled receptor (RGR) photoisomerase, which is expressed in both the retinal pigment epithelium (RPE) and in Müller cells. The relative contributions of these two cellular pools of RGR to the maintenance of photoreceptor light responses are not known. Here, we use a cell-specific gene reactivation approach to elucidate the kinetics of RGR-mediated recovery of photoreceptor responses following light exposure. Electroretinographic measurements in mice with RGR expression limited to either cell type reveal that the RPE and a specialized subset of Müller glia contribute both to scotopic and photopic function. We demonstrate that 11-cis-retinal formed through photoisomerization is rapidly hydrolyzed, consistent with its role in a rapid visual pigment regeneration process. Our study shows that RGR provides a pan-retinal sink for all-trans-retinal released under sustained light conditions and supports rapid chromophore regeneration through the photic visual cycle.
Collapse
Affiliation(s)
- Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA.
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennings C Luu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Grazyna Palczewska
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Polgenix, Inc., Department of Medical Devices, Cleveland, OH 44106, USA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Dominik Lewandowski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
9
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
Xu T, Molday L, Molday R. Retinal-phospholipid Schiff-base conjugates and their interaction with ABCA4, the ABC transporter associated with Stargardt Disease. J Biol Chem 2023; 299:104614. [PMID: 36931393 PMCID: PMC10127136 DOI: 10.1016/j.jbc.2023.104614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40-60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine (N-Ret-PS) and N-retinylidene-taurine, respectively, but at significantly lower levels. N-Ret-PS is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or in some cases eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.
Collapse
Affiliation(s)
- Tongzhou Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - LaurieL Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - RobertS Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada.
| |
Collapse
|
11
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|