1
|
Beachum AN, Whitehead KM, McDonald SI, Phipps DN, Berghout HE, Ables ET. Orphan nuclear receptor ftz-f1 (NR5A3) promotes egg chamber survival in the Drosophila ovary. G3-GENES GENOMES GENETICS 2021; 11:6114459. [PMID: 33693603 PMCID: PMC8022936 DOI: 10.1093/g3journal/jkab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022]
Abstract
Gamete production in mammals and insects is controlled by cell signaling pathways that facilitate communication between germ cells and somatic cells. Nuclear receptor signaling is a key mediator of many aspects of reproduction, including gametogenesis. For example, the NR5A subfamily of nuclear receptors is essential for gonad development and sex steroid production in mammals. Despite the original identification of the NR5A subfamily in the model insect Drosophila melanogaster, it has been unclear whether Drosophila NR5A receptors directly control oocyte production. Ftz-f1 is expressed throughout the ovary, including in germline stem cells, germline cysts, and several populations of somatic cells. We show that ftz-f1 is required in follicle cells prior to stage 10 to promote egg chamber survival at the mid-oogenesis checkpoint. Our data suggest that egg chamber death in the absence of ftz-f1 is due, at least in part, to failure of follicle cells to exit the mitotic cell cycle or failure to accumulate oocyte-specific factors in the germline. Taken together, these results show that, as in mammals, the NR5A subfamily promotes maximal reproductive output in Drosophila. Our data underscore the importance of nuclear receptors in the control of reproduction and highlight the utility of Drosophila oogenesis as a key model for unraveling the complexity of nuclear receptor signaling in gametogenesis.
Collapse
Affiliation(s)
- Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | | | | | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Hanna E Berghout
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Corresponding author: Department of Biology, East Carolina University, 1001 E. 10th St., Mailstop 551, 553 Science & Technology Building, Greenville, NC 27858, USA.
| |
Collapse
|
2
|
Asaoka M, Hanyu-Nakamura K, Nakamura A, Kobayashi S. Maternal Nanos inhibits Importin-α2/Pendulin-dependent nuclear import to prevent somatic gene expression in the Drosophila germline. PLoS Genet 2019; 15:e1008090. [PMID: 31091233 PMCID: PMC6519790 DOI: 10.1371/journal.pgen.1008090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/13/2019] [Indexed: 01/15/2023] Open
Abstract
Repression of somatic gene expression in germline progenitors is one of the critical mechanisms involved in establishing the germ/soma dichotomy. In Drosophila, the maternal Nanos (Nos) and Polar granule component (Pgc) proteins are required for repression of somatic gene expression in the primordial germ cells, or pole cells. Pgc suppresses RNA polymerase II-dependent global transcription in pole cells, but it remains unclear how Nos represses somatic gene expression. Here, we show that Nos represses somatic gene expression by inhibiting translation of maternal importin-α2 (impα2) mRNA. Mis-expression of Impα2 caused aberrant nuclear import of a transcriptional activator, Ftz-F1, which in turn activated a somatic gene, fushi tarazu (ftz), in pole cells when Pgc-dependent transcriptional repression was impaired. Because ftz expression was not fully activated in pole cells in the absence of either Nos or Pgc, we propose that Nos-dependent repression of nuclear import of transcriptional activator(s) and Pgc-dependent suppression of global transcription act as a 'double-lock' mechanism to inhibit somatic gene expression in germline progenitors.
Collapse
Affiliation(s)
- Miho Asaoka
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Sultan ARS, Oish Y, Ueda H. Function of the nuclear receptor FTZ-F1 during the pupal stage in Drosophila melanogaster. Dev Growth Differ 2014; 56:245-53. [PMID: 24611773 DOI: 10.1111/dgd.12125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/04/2014] [Accepted: 01/23/2014] [Indexed: 01/15/2023]
Abstract
The nuclear receptor βFTZ-F1 is expressed in most cells in a temporally specific manner, and its expression is induced immediately after decline in ecdysteroid levels. This factor plays important roles during embryogenesis, larval ecdysis, and early metamorphic stages. However, little is known about the expression pattern, regulation and function of this receptor during the pupal stage. We analyzed the expression pattern and regulation of ftz-f1 during the pupal period, as well as the phenotypes of RNAi knockdown or mutant animals, to elucidate its function during this stage. Western blotting revealed that βFTZ-F1 is expressed at a high level during the late pupal stage, and this expression is dependent on decreasing ecdysteroid levels. By immunohistological analysis of the late pupal stage, FTZ-F1 was detected in the nuclei of most cells, but cytoplasmic localization was observed only in the oogonia and follicle cells of the ovary. Both the ftz-f1 genetic mutant and temporally specific ftz-f1 knockdown using RNAi during the pupal stage showed defects in eclosion and in the eye, the antennal segment, the wing and the leg, including bristle color and sclerosis. These results suggest that βFTZ-F1 is expressed in most cells at the late pupal stage, under the control of ecdysteroids and plays important roles during pupal development.
Collapse
Affiliation(s)
- Abdel-Rahman S Sultan
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | | | | |
Collapse
|
4
|
Heffer A, Grubbs N, Mahaffey J, Pick L. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene. Evol Dev 2014; 15:406-17. [PMID: 24261442 DOI: 10.1111/ede.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We propose that the dependence of Dm-Ftz-F1 on interaction with the homeodomain protein Ftz which is expressed in stripes in Drosophila, loosened constraints on Dm-ftz-f1 expression, allowing for ubiquitous expression of this pair-rule gene in Drosophila.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Despite enormous body plan variation, genes regulating embryonic development are highly conserved. Here, we probe the mechanisms that predispose ancient regulatory genes to reutilization and diversification rather than evolutionary loss. The Hox gene fushi tarazu (ftz) arose as a homeotic gene but functions as a pair-rule segmentation gene in Drosophila. ftz shows extensive variation in expression and protein coding regions but has managed to elude loss from arthropod genomes. We asked what properties prevent this loss by testing the importance of different protein motifs and partners in the developing CNS, where ftz expression is conserved. Drosophila Ftz proteins with mutated protein motifs were expressed under the control of a neurogenic-specific ftz cis-regulatory element (CRE) in a ftz mutant background rescued for segmentation defects. Ftz CNS function did not require the variable motifs that mediate differential cofactor interactions involved in homeosis or segmentation, which vary in arthropods. Rather, CNS function did require the shared DNA-binding homeodomain, which plays less of a role in Ftz segmentation activity. The Antennapedia homeodomain substituted for Ftz homeodomain function in the Drosophila CNS, but full-length Antennapedia did not rescue CNS defects. These results suggest that a core CNS function retains ftz in arthropod genomes. Acquisition of a neurogenic CRE led to ftz expression in unique CNS cells, differentiating its role from neighboring Hox genes, rendering it nonredundant. The inherent flexibility of modular CREs and protein domains allows for stepwise acquisition of new functions, explaining broad retention of regulatory genes during animal evolution.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742
| | - Jie Xiang
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742
| | - Leslie Pick
- Department of Entomology and Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
6
|
Functional conservation of Drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity. Dev Genes Evol 2013; 223:199-205. [PMID: 23340581 DOI: 10.1007/s00427-012-0435-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
Drosophila Ftz-F1 is an orphan nuclear receptor required for segmentation and metamorphosis. Its mammalian orthologs, SF-1 and LRH-1, function in sexual development and homeostasis, and have been implicated in stem cell pluripotency maintenance and tumorigenesis. These NR5A family members bind DNA as monomers and strongly activate transcription. However, controversy exists as to whether their activity is regulated by ligand-binding. Structural evidence suggested that SF-1 and human LRH-1 bind regulatory ligands, but mouse LRH-1 and Drosophila FTZ-F1 are active in the absence of ligand. We found that Dm-Ftz-F1 and mLRH-1, thought not to bind ligand, or mSF-1 and hLRH-1, predicted to bind ligand, each efficiently rescued the defects of Drosophila ftz-f1 mutants. Further, each correctly activated expression of a Dm-Ftz-F1 target gene in Drosophila embryos. The functional equivalence of ftz-f1 orthologs in these sensitive in vivo assays argues against specific activating ligands for NR5A family members.
Collapse
|
7
|
Heffer A, Pick L. Conservation and variation in Hox genes: how insect models pioneered the evo-devo field. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:161-179. [PMID: 23317041 DOI: 10.1146/annurev-ento-120811-153601] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Evolutionary developmental biology, or evo-devo, broadly investigates how body plan diversity and morphological novelties have arisen and persisted in nature. The discovery of Hox genes in Drosophila, and their subsequent identification in most other metazoans, led biologists to try to understand how embryonic genes crucial for proper development have changed to promote the vast morphological variation seen in nature. Insects are ideal model systems for studying this diversity and the mechanisms underlying it because phylogenetic relationships are well established, powerful genetic tools have been developed, and there are many examples of evolutionary specializations that have arisen in nature in different insect lineages, such as the jumping leg of orthopterans and the helmet structures of treehoppers. Here, we briefly introduce the field of evo-devo and Hox genes, discuss functional tools available to study early developmental genes in insects, and provide examples in which changes in Hox genes have contributed to changes in body plan or morphology.
Collapse
Affiliation(s)
- Alison Heffer
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
8
|
Damage in brain development by morpholino knockdown of zebrafish dax1. J Biosci Bioeng 2012; 113:683-8. [PMID: 22483435 DOI: 10.1016/j.jbiosc.2012.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/21/2022]
Abstract
DAX1 is an orphan nuclear receptor and involved in development of steroidogenic organs, which activates transcription of genes involved in steroidogenesis. In this study, we analyzed the function of the zebrafish dax1 during early development of central nervous systems to appear unidentified aspects of DAX1 and decrease confusions concerned with functions of DAX1 in early development of vertebrates. By whole-mount in situ hybridization of embryo at the 32 h post fertilization (hpf), expression of zebrafish dax1 was detected around the forebrain, midbrain, hindbrain, and the extending tail tip. Embryos injected with zebrafish dax1 morpholino antisense nucleotide (MO) exhibited delayed development. When the developmental stage of wild type embryos was at Prim-15 (32 hpf), zebrafish dax1MO injected embryos were at Prim-5 (24 hpf). Concurrently with developmental delay, the MO injected embryos showed high mortality. At 48 hpf, the MO injected embryos exhibited abnormal development in the central nervous systems. The enlarged tectum and the protruded rhombomeres were observed. Moreover, development of central nervous systems, especially midbrain-hindbrain boundary, became narrower. At 5 day post fertilization, the MO injected embryos formed edemas around head, pericardial sac and abdomen. Collectively, our results indicated that the zebrafish dax1 is important for brain development.
Collapse
|
9
|
Bernardo TJ, Dubrovsky EB. The Drosophila juvenile hormone receptor candidates methoprene-tolerant (MET) and germ cell-expressed (GCE) utilize a conserved LIXXL motif to bind the FTZ-F1 nuclear receptor. J Biol Chem 2012; 287:7821-33. [PMID: 22249180 DOI: 10.1074/jbc.m111.327254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Juvenile hormone (JH) has been implicated in many developmental processes in holometabolous insects, but its mechanism of signaling remains controversial. We previously found that in Drosophila Schneider 2 cells, the nuclear receptor FTZ-F1 is required for activation of the E75A gene by JH. Here, we utilized insect two-hybrid assays to show that FTZ-F1 interacts with two JH receptor candidates, the bHLH-PAS paralogs MET and GCE, in a JH-dependent manner. These interactions are severely reduced when helix 12 of the FTZ-F1 activation function 2 (AF2) is removed, implicating AF2 as an interacting site. Through homology modeling, we found that MET and GCE possess a C-terminal α-helix featuring a conserved motif LIXXL that represents a novel nuclear receptor (NR) box. Docking simulations supported by two-hybrid experiments revealed that FTZ-F1·MET and FTZ-F1·GCE heterodimer formation involves a typical NR box-AF2 interaction but does not require the canonical charge clamp residues of FTZ-F1 and relies primarily on hydrophobic contacts, including a unique interaction with helix 4. Moreover, we identified paralog-specific features, including a secondary interaction site found only in MET. Our findings suggest that a novel NR box enables MET and GCE to interact JH-dependently with the AF2 of FTZ-F1.
Collapse
Affiliation(s)
- Travis J Bernardo
- Department of Biology, Fordham University, Bronx, New York 10458 , USA
| | | |
Collapse
|
10
|
Starr MO, Ho MCW, Gunther EJM, Tu YK, Shur AS, Goetz SE, Borok MJ, Kang V, Drewell RA. Molecular dissection of cis-regulatory modules at the Drosophila bithorax complex reveals critical transcription factor signature motifs. Dev Biol 2011; 359:290-302. [PMID: 21821017 PMCID: PMC3202680 DOI: 10.1016/j.ydbio.2011.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 11/17/2022]
Abstract
At the Drosophila melanogaster bithorax complex (BX-C) over 330kb of intergenic DNA is responsible for directing the transcription of just three homeotic (Hox) genes during embryonic development. A number of distinct enhancer cis-regulatory modules (CRMs) are responsible for controlling the specific expression patterns of the Hox genes in the BX-C. While it has proven possible to identify orthologs of known BX-C CRMs in different Drosophila species using overall sequence conservation, this approach has not proven sufficiently effective for identifying novel CRMs or defining the key functional sequences within enhancer CRMs. Here we demonstrate that the specific spatial clustering of transcription factor (TF) binding sites is important for BX-C enhancer activity. A bioinformatic search for combinations of putative TF binding sites in the BX-C suggests that simple clustering of binding sites is frequently not indicative of enhancer activity. However, through molecular dissection and evolutionary comparison across the Drosophila genus we discovered that specific TF binding site clustering patterns are an important feature of three known BX-C enhancers. Sub-regions of the defined IAB5 and IAB7b enhancers were both found to contain an evolutionarily conserved signature motif of clustered TF binding sites which is critical for the functional activity of the enhancers. Together, these results indicate that the spatial organization of specific activator and repressor binding sites within BX-C enhancers is of greater importance than overall sequence conservation and is indicative of enhancer functional activity.
Collapse
Affiliation(s)
| | | | | | - Yen-Kuei Tu
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Andrey S. Shur
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Sara E. Goetz
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Matthew J. Borok
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Victoria Kang
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| |
Collapse
|
11
|
Heffer A, Löhr U, Pick L. ftz Evolution: Findings, hypotheses and speculations (response to DOI 10.1002/bies.201100019). Bioessays 2011; 33:910-8. [DOI: 10.1002/bies.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Surprising flexibility in a conserved Hox transcription factor over 550 million years of evolution. Proc Natl Acad Sci U S A 2010; 107:18040-5. [PMID: 20921393 DOI: 10.1073/pnas.1010746107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although metazoan body plans are remarkably diverse, the structure and function of many embryonic regulatory genes are conserved because large changes would be detrimental to development. However, the fushi tarazu (ftz) gene has changed dramatically during arthropod evolution from Hox-like to a pair-rule segmentation gene in Drosophila. Changes in both expression and protein sequence contributed to this new function: ftz expression switched from Hox-like to stripes and changes in Ftz cofactor interaction motifs led to loss of homeotic and gain of segmentation potential. Here, we reconstructed ftz changes in a rigorous phylogenetic context. We found that ftz did not simply switch from Hox-like to segmentation function; rather, ftz is remarkably labile, having undergone multiple changes in sequence and expression. The segmentation LXXLL motif was stably acquired in holometabolous insects after the appearance of striped expression in early insect lineages. The homeotic YPWM motif independently degenerated multiple times. These "degen-YPWMs" showed varying degrees of homeotic potential when expressed in Drosophila, suggesting variable loss of Hox function in different arthropods. Finally, the intensity of ftz Hox-like expression decreased to marginal levels in some crustaceans. We propose that decreased expression levels permitted ftz variants to arise and persist in populations without disadvantaging organismal development. This process, in turn, allowed evolutionary transitions in protein function, as weakly expressed "hopeful gene variants" were coopted into alternative developmental pathways. Our findings show that variation of a pleiotropic transcription factor is more extensive than previously imagined, suggesting that evolutionary plasticity may be widespread among regulatory genes.
Collapse
|
13
|
Bowler T, Kosman D, Licht JD, Pick L. Computational Identification of Ftz/Ftz-F1 downstream target genes. Dev Biol 2006; 299:78-90. [PMID: 16996052 DOI: 10.1016/j.ydbio.2006.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 07/04/2006] [Accepted: 07/07/2006] [Indexed: 11/22/2022]
Abstract
Hox genes encode DNA binding transcription factors that regulate the body plans of metazoans by regulating the expression of downstream target 'realizator genes' that direct morphogenesis and growth. Although some Hox target genes have been identified, the code used by Hox proteins to select regulatory targets remains elusive. This failure is due, in part, to the overlapping and promiscuous DNA binding potential of different Hox proteins. The identification of cofactors that modulate Hox DNA binding specificity suggested that target site selection is specified by composite binding sites in the genome for a Hox protein plus its cofactor. Here we have made use of the fact that the DNA binding specificity of the Drosophila Hox protein Fushi Tarazu (Ftz) is modulated by interaction with its partner, the orphan nuclear receptor Ftz-F1, to carry out a computational screen for genomic targets. At least two of the first 30 potential target genes--apontic (apt) and sulfated (Sulf1)--appear to be bona fide targets of Ftz and Ftz-F1. apt is expressed in stripes within the Ftz domain, but posterior to engrailed (en) stripes, suggesting a parasegmental border-independent function of ftz. Ftz/Ftz-F1 activate Sulf1 expression in blastoderm embryos via composite binding sites. Sulf1 encodes a sulfatase thought to be involved in wingless (Wg) signaling. Thus, in addition to regulating en, Ftz and Ftz-F1 coordinately and directly regulate different components of segment polarity pathways in parallel.
Collapse
Affiliation(s)
- Timothy Bowler
- Department of Biochemistry, Cellular and Developmental Biology, Mount Sinai Medical School, New York, NY 10029, USA
| | | | | | | |
Collapse
|
14
|
Pick L, Anderson WR, Shultz J, Woodard CT. The Ftz‐F1 family: Orphan nuclear receptors regulated by novel protein–protein interactions. NUCLEAR RECEPTORS IN DEVELOPMENT 2006. [DOI: 10.1016/s1574-3349(06)16008-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K. Stably Transformed Insect Cell Lines: Tools for Expression of Secreted and Membrane‐anchored Proteins and High‐throughput Screening Platforms for Drug and Insecticide Discovery. Adv Virus Res 2006; 68:113-56. [PMID: 16997011 DOI: 10.1016/s0065-3527(06)68004-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insect cell-based expression systems are prominent amongst current expression platforms for their ability to express virtually all types of heterologous recombinant proteins. Stably transformed insect cell lines represent an attractive alternative to the baculovirus expression system, particularly for the production of secreted and membrane-anchored proteins. For this reason, transformed insect cell systems are receiving increased attention from the research community and the biotechnology industry. In this article, we review recent developments in the field of insect cell-based expression from two main perspectives, the production of secreted and membrane-anchored proteins and the establishment of novel methodological tools for the identification of bioactive compounds that can be used as research reagents and leads for new pharmaceuticals and insecticides.
Collapse
Affiliation(s)
- Vassilis Douris
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology National Centre for Scientific Research Demokritos, GR 153 10 Aghia Paraskevi Attikis (Athens), Greece
| | | | | | | | | | | |
Collapse
|
16
|
Pierce RJ, Wu W, Hirai H, Ivens A, Murphy LD, Noël C, Johnston DA, Artiguenave F, Adams M, Cornette J, Viscogliosi E, Capron M, Balavoine G. Evidence for a Dispersed Hox Gene Cluster in the Platyhelminth Parasite Schistosoma mansoni. Mol Biol Evol 2005; 22:2491-503. [PMID: 16120809 DOI: 10.1093/molbev/msi239] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In most bilaterian organisms so far studied, Hox genes are organized in genomic clusters and determine development along the anteroposterior axis. It has been suggested that this clustering, together with spatial and temporal colinearity of gene expression, represents the ancestral condition. However, in organisms with derived modes of embryogenesis and lineage-dependent mechanisms for the determination of cell fate, temporal colinearity of expression can be lost and Hox cluster organization disrupted, as is the case for the ecdysozoans Drosophila melanogaster and Caenorhabditis elegans and the urochordates Ciona intestinalis and Oikopleura dioica. We sought to determine whether a lophotrochozoan, the platyhelminth parasite Schistosoma mansoni, possesses a conserved or disrupted Hox cluster. Using a polymerase chain reaction (PCR)-based strategy, we have cloned and characterized three novel S. mansoni genes encoding orthologues of Drosophila labial (SmHox1), deformed (SmHox4), and abdominal A (SmHox8), as well as the full-length coding sequence of the previously described Smox1, which we identify as an orthologue of fushi tarazu. Quantitative reverse transcriptase-PCR showed that the four genes were expressed at all life-cycle stages but that levels of expression were differentially regulated. Phylogenetic analysis and the conservation of "parapeptide" sequences C-terminal to the homeodomains of SmHox8 and Smox1 support the grouping of platyhelminths within the lophotrochozoan clade. However, Bacterial Artificial Chromosome (BAC) library screening followed by genome walking failed to reconstitute a cluster. The BAC clones containing Hox genes were sequenced, and in no case were other Hox genes found on the same clone. Moreover, the SmHox4 and SmHox8 genes contained single very large introns (>40 kbp) further indicating that the schistosome Hox cluster is highly extended. Localization of the Hox genes to chromosomes using fluorescence in situ hybridization showed that SmHox4 and SmHox8 are on the long arm of chromosome 4, whereas SmHox1 and Smox1 are on chromosome 3. In silico screening of the available genome sequences corroborated results of Southern blotting and BAC library screening that indicate that there are no paralogues of SmHox1, SmHox4, or SmHox8. The schistosome Hox cluster is therefore not duplicated, but is both dispersed and disintegrated in the genome.
Collapse
|
17
|
Silhánková M, Jindra M, Asahina M. Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans. J Cell Sci 2005; 118:223-32. [PMID: 15615786 DOI: 10.1242/jcs.01609] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cell shape changes underlie important events in animal development. During the postembryonic life of the nematode Caenorhabditis elegans, stem epidermal seam cells lose and actively renew mutual adherens junction contacts after each asymmetric division that separates them. The seam cell contacts are important for epidermal differentiation, but what regulates the cell-shape changes that restore them is unknown. Here, we show that NHR-25, a transcription factor of the nuclear receptor family, is expressed in the seam cells and is necessary for these cells to elongate and reach their neighbors after the asymmetric divisions. A failure to do so, caused by nhr-25 RNA interference, compromises the subsequent fate of seam-cell anterior daughters. Unexpectedly, the lack of cell-cell contacts does not prevent a unique seam cell to produce a neuroblast, even though a homeotic gene (mab-5) that normally prevents the neuroblast commitment is ectopically expressed in the absence of nhr-25 function. Seam cells lacking mutual contacts display reduced expression of a Fat-like cadherin marker cdh-3::gfp. Although some seam cells retain the ability to fuse at the final larval stage, the resulting syncytium shows gaps and bifurcations, translating into anomalies in cuticular ridges (alae) produced by the syncytium. nhr-25 RNAi markedly enhances branching of the alae caused by a mutant cuticular collagen gene rol-6. Silencing of nhr-25 also disturbs epidermal ultrastructure, which is probably the cause of compromised cuticle secretion and molting. Cell shape dynamics and molting thus represent distinct roles for NHR-25 in epidermal development.
Collapse
Affiliation(s)
- Marie Silhánková
- Department of Molecular Biology, Faculty of Biological Sciences, University of South Bohemia, CZ-370 05, Czech Republic
| | | | | |
Collapse
|
18
|
Kankel MW, Duncan DM, Duncan I. A screen for genes that interact with the Drosophila pair-rule segmentation gene fushi tarazu. Genetics 2005; 168:161-80. [PMID: 15454535 PMCID: PMC1448101 DOI: 10.1534/genetics.104.027250] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pair-rule gene fushi tarazu (ftz) of Drosophila is expressed at the blastoderm stage in seven stripes that serve to define the even-numbered parasegments. ftz encodes a DNA-binding homeodomain protein and is known to regulate genes of the segment polarity, homeotic, and pair-rule classes. Despite intensive analysis in a number of laboratories, how ftz is regulated and how it controls its targets are still poorly understood. To help understand these processes, we conducted a screen to identify dominant mutations that enhance the lethality of a ftz temperature-sensitive mutant. Twenty-six enhancers were isolated, which define 21 genes. All but one of the mutations recovered show a maternal effect in their interaction with ftz. Three of the enhancers proved to be alleles of the known ftz protein cofactor gene ftz-f1, demonstrating the efficacy of the screen. Four enhancers are alleles of Atrophin (Atro), the Drosophila homolog of the human gene responsible for the neurodegenerative disease dentatorubral-pallidoluysian atrophy. Embryos from Atro mutant germ-line mothers lack the even-numbered (ftz-dependent) engrailed stripes and show strong ftz-like segmentation defects. These defects likely result from a reduction in Even-skipped (Eve) repression ability, as Atro has been shown to function as a corepressor for Eve. In this study, we present evidence that Atro is also a member of the trithorax group (trxG) of Hox gene regulators. Atro appears to be particularly closely related in function to the trxG gene osa, which encodes a component of the brahma chromatin remodeling complex. One additional gene was identified that causes pair-rule segmentation defects in embryos from homozygous mutant germ-line mothers. The single allele of this gene, called bek, also causes nuclear abnormalities similar to those caused by alleles of the Trithorax-like gene, which encodes the GAGA factor.
Collapse
Affiliation(s)
- Mark W Kankel
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
19
|
Abstract
Nuclear receptors are ancient ligand-regulated transcription factors that control key metabolic and developmental pathways. The fruitfly Drosophila melanogaster has only 18 nuclear-receptor genes - far fewer than any other genetic model organism and representing all 6 subfamilies of vertebrate receptors. These unique attributes establish the fly as an ideal system for studying the regulation and function of nuclear receptors during development. Here, we review recent breakthroughs in our understanding of D. melanogaster nuclear receptors, and interpret these results in light of findings from their evolutionarily conserved vertebrate homologues.
Collapse
Affiliation(s)
- Kirst King-Jones
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 North 2030 East, Room 5100, Salt Lake City, Utah 84112-5331, USA.
| | | |
Collapse
|
20
|
Löhr U, Pick L. Cofactor-Interaction Motifs and the Cooption of a Homeotic Hox Protein into the Segmentation Pathway of Drosophila melanogaster. Curr Biol 2005; 15:643-9. [PMID: 15823536 DOI: 10.1016/j.cub.2005.02.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/24/2005] [Accepted: 02/03/2005] [Indexed: 11/16/2022]
Abstract
Some Drosophila Hox-complex members, including the segmentation gene fushi tarazu (Dm-ftz), have nonhomeotic functions. Characteristic expression in other arthropods supports an ancestral homeotic role for ftz, indicating that ftz function changed during arthropod evolution. Dm-Ftz segmentation function depends on interaction with ftz-F1 via an LXXLL motif and homeodomain N-terminal arm. Hox proteins interact with the cofactor Extradenticle (Exd) via their YPWM motif. Previously, we found that Dm-ftz mediates segmentation but not homeosis, whereas orthologs from grasshopper (Sg-ftz) and beetle (Tc-Ftz), both containing a YPWM motif, have homeotic function. Tc-Ftz, which unlike Sg-Ftz contains an LXXLL motif, displays stronger segmentation function than Sg-Ftz. Cofactor-interaction motifs were mutated in Dm-Ftz and Tc-Ftz and effects were evaluated in Drosophila to assess how these motifs contributed to Ftz evolution. Addition of YPWM to Dm-Ftz confers weak homeotic function, which is increased by simultaneous LXXLL mutation. LXXLL is required for strong segmentation function, which is unimpeded by the YPWM, suggesting that acquisition of LXXLL specialized Ftz for segmentation. Strengthening the Ftz/Ftz-F1 interaction led to degeneration of the YPWM and loss of homeotic activity. Thus, small changes in protein sequence can result in a qualitative switch in function during evolution.
Collapse
Affiliation(s)
- Ulrike Löhr
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
21
|
Argiropoulos B, Ho J, Blachuta BJ, Tayyab I, Percival-Smith A. Low-level ectopic expression of Fushi tarazu in Drosophila melanogaster results in ftzUal/Rpl-like phenotypes and rescues ftz phenotypes. Mech Dev 2003; 120:1443-53. [PMID: 14654217 DOI: 10.1016/j.mod.2003.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protein encoded by the Drosophila pair-rule gene fushi tarazu (ftz) is required for the formation of the even-numbered parasegments. Here we analyze the phenotypes of ectopic expression of FTZ and FTZ protein deletions from the Tubulin alpha1 (Tubalpha1) promoter. Fusion of ftz to the Tubalpha1 promoter resulted in low-level ectopic expression of FTZ relative to FTZ expressed from the endogenous ftz gene. The effects of ectopic expression of four FTZ proteins, FTZ(1-413) (full length wild-type FTZ), FTZ(delta257-316) (a complete deletion of the HD), FTZ(delta101-150) (a deletion that includes the major FTZ-F1 binding site) and FTZ(delta151-209) were determined. Ectopic expression of FTZ(1-413), FTZ(delta257-316) and FTZ(delta101-151) did not result in an anti-ftz phenotype; however, ectopic expression of FTZ(1-413), and FTZ(delta257-316) did result in a ftz(Ual/Rpl)-like phenotype. In addition, low-level ectopic expression of FTZ(1-413) and FTZ(delta257-316) rescued ftz phenotypes. This was an important observation because the even-numbered parasegment pattern of FTZ expression is considered important for normal segmentation. Therefore, the rescue of ftz phenotypes by low-level FTZ expression in all cells of the embryo suggests that the even-numbered parasegment expression pattern of FTZ is not the sole factor restricting FTZ action. Low-level ectopic expression of FTZ(delta151-209) resulted in the anti-ftz phenotype and rescued hypomorphic ftz-f1 phenotypes indicating that FTZ(delta151-209) is a hyperactive FTZ molecule. Therefore, the region encompassing amino acids 151-209 of FTZ is required in some manner for repression of FTZ activity. These results are discussed in relation to the current understanding of the mechanism of FTZ action.
Collapse
Affiliation(s)
- Bob Argiropoulos
- Department of Biology, University of Western Ontario, London, Ont, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
22
|
Liu YW, Gao W, Teh HL, Tan JH, Chan WK. Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium. Mol Cell Biol 2003; 23:7243-55. [PMID: 14517294 PMCID: PMC230334 DOI: 10.1128/mcb.23.20.7243-7255.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) plays an essential role in adrenal development, although the exact molecular mechanisms are unclear. Our previous work established that Ff1b is the zebra fish homologue of SF-1 and that its disruption by antisense morpholinos leads to a complete ablation of the interrenal organ. In this study, results of biochemical analyses suggest that Ff1b and other Ff1 members interact with Prox1, a homeodomain protein. Fine mapping using site-directed mutants showed that this interaction requires an intact Ff1b heptad 9 and AF2, as well as Prox1 NR Box I. In vivo, this physical interaction led to the inhibition of Ff1-mediated transactivation of pLuc3XFRE, indicating that Prox1 acts to repress the transcriptional activity of Ff1b. In situ hybridization demonstrates that prox1 colocalizes with ff1a and ff1b in the liver and interrenal primordia, respectively. Embryos microinjected with prox1 morpholino displayed a consistent partial reduction of 3 eta-Hsd activity in the interrenal organ, while ff1b morpholino led to a disappearance of prox1. Based on these results, we propose that during the course of interrenal organogenesis, Prox1 functions as a tissue-specific coregulator of Ff1b and that the subsequent inhibition of Ff1b activity, after its initial roles in the specification of interrenal primordium, is critical for the maturation of the interrenal organ.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | | | | | | | | |
Collapse
|
23
|
Coulthard VH, Matsuda S, Heery DM. An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220. J Biol Chem 2003; 278:10942-51. [PMID: 12556447 DOI: 10.1074/jbc.m212950200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of coactivators with the ligand-binding domain of nuclear receptors (NRs) is mediated by amphipathic alpha-helices containing the signature motif LXXLL. TRAP220 contains two LXXLL motifs (LXM1 and LXM2) that are required for its interaction with NRs. Here we show that the nuclear receptor interaction domain (NID) of TRAP220 interacts weakly with Class I NRs. In contrast, SRC1 NID binds strongly to both Class I and Class II NRs. Interaction assays using nine amino acid LXXLL core motifs derived from SRC1 and TRAP220 revealed no discriminatory NR binding preferences. However, an extended LXM1 sequence containing amino acids -4 to +9, (where the first conserved leucine is +1) showed selective binding to thyroid hormone receptor and reduced binding to estrogen receptor. Replacement of either TRAP220 LXXLL motif with the corresponding 13 amino acids of SRC1 LXM2 strongly enhanced the interaction of the TRAP220 NID with the estrogen receptor. Mutational analysis revealed combinatorial effects of the LXM1 core and flanking sequences in the determination of the NR binding specificity of the TRAP220 NID. In contrast, a mutation that increased the spacing between TRAP220 LXM1 and LXM2 had little effect on the binding properties of this domain. Thus, a 13-amino acid sequence comprising an extended LXXLL motif acts as the key determinant of the NR binding specificity of TRAP220. Finally, we show that the NR binding specificity of full-length TRAP220 can be altered by swapping extended LXM sequences.
Collapse
Affiliation(s)
- Victoria H Coulthard
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | |
Collapse
|
24
|
Suzuki T, Kasahara M, Yoshioka H, Morohashi KI, Umesono K. LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 2003; 23:238-49. [PMID: 12482977 PMCID: PMC140654 DOI: 10.1128/mcb.23.1.238-249.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 06/25/2002] [Accepted: 09/24/2002] [Indexed: 12/19/2022] Open
Abstract
The orphan receptor Ad4BP/SF-1 (NR5A1) is a constitutive activator, and its activity is repressed by another orphan receptor, Dax-1 (NR0B1). In the present study, we investigated the molecular mechanisms underlying this repression by Dax-1. Yeast two-hybrid and transient-transfection assays confirmed the necessity of three LXXLL-related motifs in Dax-1 for interaction with and repression of Ad4BP/SF-1. In vitro pull-down experiments confirmed that Dax-1 interacts with Ad4BP/SF-1 and also with LRH-1 (NR5A2). The target specificity of the LXXLL-related motifs was indicated by the observations that Ad4BP/SF-1, ERalpha (NR3A1), LRH-1, ERR2 (NR3B2), and fly FTZ-F1 (NR5A3) interacted through their ligand binding domains with all the LXXLL-related motifs in Dax-1 whereas HNF4 (NR2A1) and RORalpha (NR1F1) did not. Transcriptional activities of the receptors whose DNA binding domains (DBDs) were replaced by the GAL4 DBD were repressed by Dax-1 to various levels, which correlated with the strength of interaction. Amino acid substitutions revealed that Ad4BP/SF-1 and LRH-1 preferentially interact with L(+1)XXLL-related motifs containing serine, tyrosine, serine, and threonine at positions -2, +2, +3, and +6, respectively. Taken together, our results indicate that the specificities of LXXLL-related motifs in Dax-1 based on their amino acid sequences play an important role in regulation of orphan receptors.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Cells, Cultured
- DAX-1 Orphan Nuclear Receptor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Estrogen Receptor alpha
- Fushi Tarazu Transcription Factors
- Homeodomain Proteins
- Mice
- Molecular Sequence Data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serine/genetics
- Serine/metabolism
- Steroidogenic Factor 1
- Substrate Specificity
- Threonine/genetics
- Threonine/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Taiga Suzuki
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
25
|
Kawasaki H, Hirose S, Ueda H. BetaFTZ-F1 dependent and independent activation of Edg78E, a pupal cuticle gene, during the early metamorphic period in Drosophila melanogaster. Dev Growth Differ 2002; 44:419-25. [PMID: 12392575 DOI: 10.1046/j.1440-169x.2002.00655.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insect metamorphosis is a developmentally important event for formation of adult structures from larval imaginal cells, and it is controlled by the ecdysteroid hormone. At the onset of metamorphosis, both the cuticle gene Edg78E and the transcription factor betaFTZ-F1 are expressed during the mid- to late prepupal period after a large ecdysteroid pulse. Edg78E mRNA is inducible by premature expression of betaFTZ-F1 and the Edg78E expression level is reduced in an ftz-f1 mutant. Using a transgenic fly reporter assay, a 1.2 kb promoter region of the Edg78E gene has been identified, which was sufficient for appropriate temporally and spatially specific expression of the reporter gene LacZ. Within the promoter region, two betaFTZ-F1 binding sites are present and disruption of these sites reduced the expression level of the reporter gene. LacZ expression levels were dramatically reduced in the head and thorax regions but not affected in the abdominal region, suggesting that betaFTZ-F1 is required for high-level Edg78E expression specifically in the head and thorax regions. The findings suggest that betaFTZ-F1 is a regulator for temporal gene expression at the onset of metamorphosis, and that complex mechanisms regulate the temporal and spatial regulation of gene expression during metamorphosis.
Collapse
Affiliation(s)
- Haruhisa Kawasaki
- Science of the Biotic Environment Course, The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | | | | |
Collapse
|