1
|
Bai H, Dai Y, Fan P, Zhou Y, Wang X, Chen J, Jiao Y, Du C, Huang Z, Xie Y, Guo X, Lang X, Ling Y, Deng Y, Liu Q, He S, Zhang Z. The METHYLTRANSFERASE B-SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m 6A modification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2613-2631. [PMID: 39206840 PMCID: PMC11622539 DOI: 10.1111/jipb.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)-SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid-liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
Collapse
Affiliation(s)
- Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Yanghuan Dai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Panting Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Xiangying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Yuzhe Jiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Zhuoxi Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Yuting Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Xiaoqiang Lang
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhou510640China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou510640China
| | - Yongqing Ling
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhou510640China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou510640China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
| | - Qi Liu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhou510640China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou510640China
| | - Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| |
Collapse
|
2
|
Zhong S, Li X, Li C, Bai H, Chen J, Gan L, Zhu J, Oh T, Yan X, Zhu J, Li N, Koiwa H, Meek T, Peng X, Yu B, Zhang Z, Zhang X. SERRATE drives phase separation behaviours to regulate m6A modification and miRNA biogenesis. Nat Cell Biol 2024; 26:2129-2143. [PMID: 39472512 PMCID: PMC11631688 DOI: 10.1038/s41556-024-01530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/12/2024] [Indexed: 11/02/2024]
Abstract
The methyltransferase complex (MTC) deposits N6-adenosine (m6A) onto RNA, whereas the microprocessor produces microRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B tends to form insoluble condensates with poor activity, with its level monitored by the 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promote the solubility and stability of the MTC subunit B, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behaviour, exhibit reduced m6A levels. Reciprocally, MTC can recruit the microprocessor to the MIRNA loci, prompting co-transcriptional cleavage of primary miRNA substrates. Additionally, primary miRNA substrates carrying m6A modifications at their single-stranded basal regions are enriched by m6A readers, which retain the microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.
Collapse
Affiliation(s)
- Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xindi Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Lu Gan
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyun Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Taerin Oh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Niankui Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Hisashi Koiwa
- Department of Horticulture, Texas A&M University, College Station, TX, USA
| | - Thomas Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Bin Yu
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China.
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Genschik P, Schiaffini M, Lechner E. Proteolytic control of the RNA silencing machinery. THE PLANT CELL 2024; 36:2997-3008. [PMID: 38456220 PMCID: PMC11371168 DOI: 10.1093/plcell/koae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Studies in plants were often pioneering in the field of RNA silencing and revealed a broad range of small RNA (sRNA) categories. When associated with ARGONAUTE (AGO) proteins, sRNAs play important functions in development, genome integrity, stress responses, and antiviral immunity. Today, most of the protein factors required for the biogenesis of sRNA classes, their amplification through the production of double-stranded RNA, and their function in transcriptional and posttranscriptional regulation have been identified. Nevertheless, and despite the importance of RNA silencing, we still know very little about their posttranslational regulation. This is in stark contrast with studies in metazoans, where different modifications such as prolyl hydroxylation, phosphorylation, sumoylation, ubiquitylation, and others have been reported to alter the activity and stability of key factors, such as AGO proteins. Here, we review current knowledge of how key components of the RNA silencing machinery in plants are regulated during development and by microbial hijacking of endogenous proteases.
Collapse
Affiliation(s)
- Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Marlene Schiaffini
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| |
Collapse
|
4
|
Zhong S, Li X, Li C, Bai H, Chen J, Gan L, Zhu J, Oh T, Yan X, Zhu J, Li N, Koiwa H, Meek T, Peng X, Yu B, Zhang Z, Zhang X. Reciprocal regulation of m 6 A modification and miRNA production machineries via phase separation-dependent and -independent mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610644. [PMID: 39257768 PMCID: PMC11383662 DOI: 10.1101/2024.08.31.610644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Methyltransferase complex (MTC) deposits N 6-adenosine (m 6 A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m 6 A level. Reciprocally, MTC can recruit microprocessor to MIRNA loci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m 6 A modifications at their single-stranded basal regions are enriched by m 6 A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.
Collapse
|
5
|
Legen J, Lenzen B, Kachariya N, Feltgen S, Gao Y, Mergenthal S, Weber W, Klotzsch E, Zoschke R, Sattler M, Schmitz-Linneweber C. A prion-like domain is required for phase separation and chloroplast RNA processing during cold acclimation in Arabidopsis. THE PLANT CELL 2024; 36:2851-2872. [PMID: 38723165 PMCID: PMC11289645 DOI: 10.1093/plcell/koae145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/06/2024] [Indexed: 08/02/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids. The PLD is required to support chloroplast RNA splicing and translation in cold-treated tissue. Together, our findings suggest that plant chloroplast gene expression is compartmentalized by inducible condensation of CP29A at low temperatures, a mechanism that could play a crucial role in plant cold resistance.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Nitin Kachariya
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Stephanie Feltgen
- Molecular Genetics, Humboldt Universität zu Berlin, Philippstrasse 13, Berlin 10115, Germany
| | - Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Simon Mergenthal
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Michael Sattler
- Helmholtz Munich, Institute of Structural Biology, Ingolstädter Landstrasse 1, Munich 85764, Germany
- Department of Bioscience, Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | | |
Collapse
|
6
|
Marathe S, Grotewold E, Otegui MS. Should I stay or should I go? Trafficking of plant extra-nuclear transcription factors. THE PLANT CELL 2024; 36:1524-1539. [PMID: 38163635 PMCID: PMC11062434 DOI: 10.1093/plcell/koad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/03/2024]
Abstract
At the heart of all biological processes lies the control of nuclear gene expression, which is primarily achieved through the action of transcription factors (TFs) that generally contain a nuclear localization signal (NLS) to facilitate their transport into the nucleus. However, some TFs reside in the cytoplasm in a transcriptionally inactive state and only enter the nucleus in response to specific signals, which in plants include biotic or abiotic stresses. These extra-nuclear TFs can be found in the cytosol or associated with various membrane systems, including the endoplasmic reticulum and plasma membrane. They may be integral proteins with transmembrane domains or associate peripherally with the lipid bilayer via acylation or membrane-binding domains. Although over 30 plant TFs, most of them involved in stress responses, have been experimentally shown to reside outside the nucleus, computational predictions suggest that this number is much larger. Understanding how extra-nuclear TFs are trafficked into the nucleus is essential for reconstructing transcriptional regulatory networks that govern major cellular pathways in response to biotic and abiotic signals. Here, we provide a perspective on what is known on plant extranuclear-nuclear TF retention, nuclear trafficking, and the post-translational modifications that ultimately enable them to regulate gene expression upon entering the nucleus.
Collapse
Affiliation(s)
- Sarika Marathe
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Shang B, Li C, Zhang X. How intrinsically disordered proteins order plant gene silencing. Trends Genet 2024; 40:260-275. [PMID: 38296708 PMCID: PMC10932933 DOI: 10.1016/j.tig.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.
Collapse
Affiliation(s)
- Baoshuan Shang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Li Q, Liu Y, Zhang X. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses. THE PLANT CELL 2024; 36:227-245. [PMID: 37772963 PMCID: PMC10827315 DOI: 10.1093/plcell/koad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Biomolecular condensates are dynamic structures formed through diverse mechanisms, including liquid-liquid phase separation. These condensates have emerged as crucial regulators of cellular processes in eukaryotic cells, enabling the compartmentalization of specific biological reactions while allowing for dynamic exchange of molecules with the surrounding environment. RNA silencing, a conserved gene regulatory mechanism mediated by small RNAs (sRNAs), plays pivotal roles in various biological processes. Multiple types of biomolecular condensate, including dicing bodies, processing bodies, small interfering RNA bodies, and Cajal bodies, have been identified as key players in RNA silencing pathways. These biomolecular condensates provide spatial compartmentation for the biogenesis, loading, action, and turnover of small RNAs. Moreover, they actively respond to stresses, such as viral infections, and modulate RNA silencing activities during stress responses. This review summarizes recent advances in understanding of dicing bodies and other biomolecular condensates involved in RNA silencing. We explore their formation, roles in RNA silencing, and contributions to antiviral resistance responses. This comprehensive overview provides insights into the functional significance of biomolecular condensates in RNA silencing and expands our understanding of their roles in gene expression and stress responses in plants.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
9
|
Shang B, Wang L, Yan X, Li Y, Li C, Wu C, Wang T, Guo X, Choi SW, Zhang T, Wang Z, Tong CY, Oh T, Zhang X, Wang Z, Peng X, Zhang X. Intrinsically disordered proteins SAID1/2 condensate on SERRATE for dual inhibition of miRNA biogenesis in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2216006120. [PMID: 36972460 PMCID: PMC10083546 DOI: 10.1073/pnas.2216006120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.
Collapse
Affiliation(s)
- Baoshuan Shang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Lin Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Yanjun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, College of Life Sciences, Ningbo University, Ningbo315211, China
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Chaohua Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Tian Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- College of Life Science, Shandong Normal University, Jinan, Shandong250014, China
| | - Xiang Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Suk Won Choi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Tianru Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Ziying Wang
- Department of Biology, Texas A&M University, College Station, TX77843
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Taerin Oh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Zhiye Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Xu Peng
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX77807
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
- Department of Biology, Texas A&M University, College Station, TX77843
| |
Collapse
|