1
|
Yang SM, Gruber A, Jiroutová K, Richtová J, Vancová M, Tesařová M, Masařová P, Dorrell RG, Oborník M. Localization of heme biosynthesis in the diatom Phaeodactylum tricornutum and differential expression of multi-copy enzymes. FRONTIERS IN PLANT SCIENCE 2025; 16:1537037. [PMID: 40104036 PMCID: PMC11914136 DOI: 10.3389/fpls.2025.1537037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Heme is essential for all organisms. The composition and location of the pathway for heme biosynthesis, have been influenced by past endosymbiotic events and organelle evolution in eukaryotes. Endosymbioses led to temporary redundancy of the enzymes and the genes involved. Genes were transferred to the nucleus from different endosymbiotic partners, and their multiple copies were either lost or retained, resulting in a mosaic pathway. This mosaic is particularly complex in organisms with eukaryote-derived plastids, such as diatoms. The plastids of diatoms are clearly derived from red algae. However, it is not entirely clear whether they were acquired directly from a red algal ancestor or indirectly in higher-order endosymbioses. In the diatom Phaeodactylum tricornutum, most enzymes of the pathway are present in a single copy, but three, glutamyl-tRNA synthetase (GluRS), uroporphyrinogen decarboxylase (UROD) and coproporphyrinogen oxidase (CPOX), are encoded in multiple copies. These are not direct paralogs resulting from gene duplication within the lineage but were acquired horizontally during the plastid endosymbioses. While some iso-enzymes originate from the host cell, others originate either from the genome of the cyanobacterial ancestor of all plastids or from the nuclear genome of the eukaryotic ancestor of the diatom complex plastid, a rhodophyte or an alga containing rhodophyte-derived plastids, a situation known as pseudoparalogy. Using green fluorescent protein-tagged expression and immunogold labeling, we experimentally localized all enzymes of the pathway in P. tricornutum, and confirmed their localization in the plastid, with a few possible exceptions. Our meta-analyses of transcription data showed that the pseudoparalogs are differentially expressed in response to nitrate starvation, blue light, high light, high CO2, and the cell cycle. Taken together, our findings emphasize that the evolution of complex plastids via endosymbiosis has a direct impact not only on the genetics but also on the physiology of resulting organisms.
Collapse
Affiliation(s)
- Shun-Min Yang
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Ansgar Gruber
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kateřina Jiroutová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Marie Vancová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Petra Masařová
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
| | - Richard G Dorrell
- Department of Computational, Quantitative and Synthetic Biology (CQSB, UMR7238), Institut de Biologie Paris-Seine (IBPS), Centre National de la Recherche Scientifique (CNRS), INSERM, Sorbonne Université, Paris, France
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre Czech Academy of Sciences (CAS), České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
2
|
Díaz-Santos E, Heredia-Martínez LG, López-Maury L, Hervás M, Ortega JM, Navarro JA, Roncel M. Combined Effect of Temperature and Different Light Regimes on the Photosynthetic Activity and Lipid Accumulation in the Diatom Phaeodactylum tricornutum. PLANTS (BASEL, SWITZERLAND) 2025; 14:329. [PMID: 39942891 PMCID: PMC11820123 DOI: 10.3390/plants14030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
The aim of this study was to investigate the combined effects of temperature and light on the photosynthetic parameters and lipid accumulation in the diatom Phaeodactylum tricornutum, a model organism widely used for studies on diatom physiology, ecology, and biotechnology. Our results highlight the importance of the interaction between temperature and light intensity in influencing growth rates, pigments and active photosystems content, photosynthetic efficiency, lipid production and fatty acid composition in P. tricornutum. Measurements of the maximum electron transport rate (rETRmax) and rETR at maximum PAR (830 µmol m-2 s-1) confirmed that P. tricornutum exhibits significantly higher light sensitivity as growth temperature increases under light/dark cycles at two light intensities (25-60 µmol m-2 s-1). However, this trend was reversed under continuous light (25 µmol m-2 s-1). Moreover, higher rETRmax values (up to double) were observed at higher irradiance, either in intensity or under continuous light regimes, at the two temperatures tested. On the other hand, increasing light intensity amplified the observed effect of temperature on photosystem I (PSI) activity under light/dark regimes, but not under continuous light conditions. This resulted in a greater deficiency in PSI activity, likely due to limitations in electron supply to this photosystem. Furthermore, increasing the culture temperature from 20 °C to 25 °C triggered an increase in the number and size of cytoplasmic lipid droplets under conditions of increased light intensity, with an even more pronounced effect under continuous illumination. Notably, the combination of 25 °C and continuous illumination resulted in a more than twofold increase in triacylglyceride (TAG) content, reaching approximately 17 mg L-1. This condition also caused a substantial rise (up to ≈90%) in the proportions of palmitoleic and palmitic acids in the TAG fatty acid profile.
Collapse
Affiliation(s)
- Encarnación Díaz-Santos
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
| | - Luis G. Heredia-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - José M. Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - José A. Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), cicCartuja, Universidad de Sevilla and CSIC, 41092 Seville, Spain; (E.D.-S.); (L.G.H.-M.); (L.L.-M.); (M.H.); (J.M.O.); (J.A.N.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
3
|
Thi Nhu Bui Q, Kim T, Kim HS, Ki JS. Defensive responses of most antioxidant genes in the freshwater dinoflagellate Palatinus apiculatus to cadmium stress and their implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117380. [PMID: 39622126 DOI: 10.1016/j.ecoenv.2024.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025]
Abstract
Photosynthetic dinoflagellates are one of the major microalgal taxa, playing essential roles in biogeochemical cycles and food webs in aquatic environments. Some freshwater dinoflagellates are known to be sensitive to environmental conditions, like water quality and contaminants; however, their molecular toxicological responses are insufficiently discovered. In the present study, we evaluated the physiological and transcriptomic responses of the freshwater dinoflagellate Palatinus apiculatus exposed to cadmium (Cd), focusing on stress-responsive genes. The cell number of P. apiculatus decreased significantly at Cd concentrations above 0.25 mg/L after 72 h, with an estimated EC50 value of 1.35 mg/L. In addition, we constructed 87,207 transcriptomic contigs from the P. apiculatus cells exposed to the Cd. Differential expression gene analysis showed that 21.0 % of total contigs were statistically significant, including 8647 up-regulated and 4195 down-regulated genes. Gene Ontology enrichment results revealed that genes responsive to stress and external stimuli were highly expressed in Cd-treated cells. Moreover, Cd significantly induced reactive oxygen species (ROS) production in P. apiculatus cells, and their patterns were similar to the expressions of certain antioxidant genes. Among the selected genes, GR expression levels were down-regulated, which may lead to the failure of cell defense against heavy metals. These results showed molecular defense pathways of the freshwater dinoflagellate P. apiculatus against the heavy metal that could be served as potential sensitive biomarkers for evaluating molecular toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
4
|
Zhang H, Xiong X, Guo K, Zheng M, Cao T, Yang Y, Song J, Cen J, Zhang J, Jiang Y, Feng S, Tian L, Li X. A rapid aureochrome opto-switch enables diatom acclimation to dynamic light. Nat Commun 2024; 15:5578. [PMID: 38956103 PMCID: PMC11219949 DOI: 10.1038/s41467-024-49991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Diatoms often outnumber other eukaryotic algae in the oceans, especially in coastal environments characterized by frequent fluctuations in light intensity. The identities and operational mechanisms of regulatory factors governing diatom acclimation to high light stress remain largely elusive. Here, we identified the AUREO1c protein from the coastal diatom Phaeodactylum tricornutum as a crucial regulator of non-photochemical quenching (NPQ), a photoprotective mechanism that dissipates excess energy as heat. AUREO1c detects light stress using a light-oxygen-voltage (LOV) domain and directly activates the expression of target genes, including LI818 genes that encode NPQ effector proteins, via its bZIP DNA-binding domain. In comparison to a kinase-mediated pathway reported in the freshwater green alga Chlamydomonas reinhardtii, the AUREO1c pathway exhibits a faster response and enables accumulation of LI818 transcript and protein levels to comparable degrees between continuous high-light and fluctuating-light treatments. We propose that the AUREO1c-LI818 pathway contributes to the resilience of diatoms under dynamic light conditions.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofeng Xiong
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Kangning Guo
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiaojiao Song
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jie Cen
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiahuan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
5
|
Orizar IDS, Repetti SI, Lewandowska AM. Phytoplankton stoichiometry along the salinity gradient under limited nutrient and light supply. JOURNAL OF PLANKTON RESEARCH 2024; 46:387-397. [PMID: 39091691 PMCID: PMC11290246 DOI: 10.1093/plankt/fbae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Ongoing climate warming alters precipitation and water column stability, leading to salinity and nutrient supply changes in the euphotic zone of many coastal ecosystems and semi-enclosed seas. Changing salinity and nutrient conditions affect phytoplankton physiology by altering elemental ratios of carbon (C), nitrogen (N) and phosphorus (P). This study aimed to understand how salinity stress and resource acquisition affect phytoplankton stoichiometry. We incubated a phytoplankton polyculture composed of 10 species under different light, inorganic nutrient ratio and salinity levels. At the end of the incubation period, we measured particulate elemental composition (C, N and P), chlorophyll a and species abundances. The phytoplankton polyculture, dominated by Phaeodactylum tricornutum, accumulated more particulate organic carbon (POC) with increasing salinity. The low POC and low particulate C:N and C:P ratios toward 0 psu suggest that the hypoosmotic conditions highly affected primary production. The relative abundance of different species varied with salinity, and some species grew faster under low nutrient supply. Still, the dominant diatom regulated the overall POC of the polyculture, following the classic concept of the foundation species.
Collapse
Affiliation(s)
- Iris D S Orizar
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palmenin 260, 10900 Hanko, Finland
| | - Sonja I Repetti
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palmenin 260, 10900 Hanko, Finland
| | - Aleksandra M Lewandowska
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palmenin 260, 10900 Hanko, Finland
| |
Collapse
|
6
|
Liu X, Zuo Z, Xie X, Gao S, Wu S, Gu W, Wang G. SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway. THE ISME JOURNAL 2024; 18:wrae039. [PMID: 38457651 PMCID: PMC10982851 DOI: 10.1093/ismejo/wrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.
Collapse
Affiliation(s)
- Xuehua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiujun Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Shan Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Songcui Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| |
Collapse
|
7
|
Miyagishima SY. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems. Commun Biol 2023; 6:1150. [PMID: 37952050 PMCID: PMC10640588 DOI: 10.1038/s42003-023-05544-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|