1
|
Shen S, Zhang L, Zhang L. Population Density-Dependent Developmental Regulation in Migratory Locust. INSECTS 2024; 15:443. [PMID: 38921158 PMCID: PMC11203946 DOI: 10.3390/insects15060443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Insect development is intricately governed by hormonal signaling pathways, yet the pivotal upstream regulator that potentiates hormone activation remains largely elusive. The migratory locust, Locusta migratoria, exhibits population density-dependent phenotypic plasticity, encompassing traits such as flight capability, body coloration, and behavior. In this study, we elucidated a negative correlation between population density and ontogenetic development during the nymphal stage of locusts. We found that the level of density influences the developmental trajectory by modulating transcript abundance within the ecdysone signaling pathway, with knockdown of the prothoracicotropic hormone (PTTH) resulting in developmental delay. Transcriptomic analysis of locust brains across solitary and gregarious phases revealed significant differential expression of genes involved in various pathways, including protein synthesis, energy metabolism, hormonal regulation, and immunity. Notably, knockdown experiments targeting two energy regulators, adipokinetic hormone (AKH) and insulin-like polypeptide 1 (ilp1), failed to elicit changes in the developmental process in solitary locusts. However, knockdown of immunoglobulin (IG) significantly shortened the developmental time in higher-density populations. Collectively, our findings underscore the regulatory role of population density in determining developmental duration and suggest that an immune-related gene contributes to the observed differences in developmental patterns.
Collapse
Affiliation(s)
- Sifan Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Long Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
2
|
Yu J, Zhao W, Chen X, Lu H, Xiao Y, Li Q, Luo L, Kang L, Cui F. A plant virus manipulates the long-winged morph of insect vectors. Proc Natl Acad Sci U S A 2024; 121:e2315341121. [PMID: 38190519 PMCID: PMC10801844 DOI: 10.1073/pnas.2315341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.
Collapse
Affiliation(s)
- Jinting Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaofang Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
3
|
Ahmed F. QnAs with Le Kang. Proc Natl Acad Sci U S A 2023; 120:e2306994120. [PMID: 37216552 PMCID: PMC10235945 DOI: 10.1073/pnas.2306994120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
|