1
|
Wang C, Xie Q, Wang G, Lyu Y, Wang Q, Ma X, Wang H, Guo T, Wu Y, Han J. Visualizing and Understanding the Ionic Liquid-Mediated Polybromide Electrochemistry for Aqueous Zinc-Bromine Redox Batteries. NANO LETTERS 2024; 24:13796-13804. [PMID: 39401413 DOI: 10.1021/acs.nanolett.4c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Aqueous zinc-bromine redox systems possess multiple merits for scalable energy storage. Applying bromine complexing agents shows effectiveness in alleviating the key challenge of ubiquitous crossover of reactive liquid bromine species, while the underlying microscopic mechanism requires a deep understanding to engineer better complexing electrochemistry. Herein, taking a series of quaternary ammonium ionic liquids (methyl4NBr, ethyl4NBr, propyl4NBr, and butyl4NBr) as a redox mediator model, operando optical monitoring was used to visualize the dynamic electrochemical behaviors, unveiling the ionic liquid-mediated polybromide electrochemistry with a distinct chain length effect. A longer chain length possesses a stronger electrostatic interaction in the complexing product to effectively capture Br2. Operando results reveal the liquid nature of the reversibly electrogenerated polybromide microdroplets in the butyl4NBr-added redox system, which promoted the Br3-/Br- conversion kinetics and alleviated the self-discharge for improved battery performance. This work provides direct evidence and new insights into complexing electrochemistry for advancing Zn-Br2 batteries.
Collapse
Affiliation(s)
- Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qihong Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guotao Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yimeng Lyu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qianhui Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinxi Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haobo Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Taolian Guo
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Yutong Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Wang Y, Zhang J, Zhang W, Yao J, Liu J, He H, Gu C, Gao G, Jin X. Electrostatic Field in Contact-Electro-Catalysis Driven C-F Bond Cleavage of Perfluoroalkyl Substances. Angew Chem Int Ed Engl 2024; 63:e202402440. [PMID: 38426574 DOI: 10.1002/anie.202402440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Perfluoroalkyl substances (PFASs) are persistent and toxic to human health. It is demanding for high-efficient and green technologies to remove PFASs from water. In this study, a novel PFAS treatment technology was developed, utilizing polytetrafluoroethylene (PTFE) particles (1-5 μm) as the catalyst and a low frequency ultrasound (US, 40 kHz, 0.3 W/cm2) for activation. Remarkably, this system can induce near-complete defluorination for different structured PFASs. The underlying mechanism relies on contact electrification between PTFE and water, which induces cumulative electrons on PTFE surface, and creates a high surface voltage (tens of volts). Such high surface voltage can generate abundant reactive oxygen species (ROS, i.e., O2⋅-, HO⋅, etc.) and a strong interfacial electrostatic field (IEF of 109~1010 V/m). Consequently, the strong IEF significantly activates PFAS molecules and reduces the energy barrier of O2⋅- nucleophilic reaction. Simultaneously, the co-existence of surface electrons (PTFE*(e-)) and HO⋅ enables synergetic reduction and oxidation of PFAS and its intermediates, leading to enhanced and thorough defluorination. The US/PTFE method shows compelling advantages of low energy consumption, zero chemical input, and few harmful intermediates. It offers a new and promising solution for effectively treating the PFAS-contaminated drinking water.
Collapse
Affiliation(s)
- Yanfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- School of Life and Environmental Sciences, Shaoxing University, Huancheng Road 508, Shaoxing, 312000, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Suzhou High School Of Jiangsu Province, Renmin Road 699, Suzhou, 215007, China
| | - Wenkai Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jiaming Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Huan He
- School of Environment, Nanjing, Normal University, Nanjing, 210023, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Chongqing Innovation Research Institute of Nanjing University, Chongqing, 401121, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- School of Environment, Nanjing, Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Liu L, Hu J, Ma Z, Zhu Z, He B, Chen F, Lu Y, Xu R, Zhang Y, Ma T, Sui M, Huang H. One-dimensional single atom arrays on ferroelectric nanosheets for enhanced CO 2 photoreduction. Nat Commun 2024; 15:305. [PMID: 38182600 PMCID: PMC10770382 DOI: 10.1038/s41467-023-44493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Single-atom catalysts show excellent catalytic performance because of their coordination environments and electronic configurations. However, controllable regulation of single-atom permutations still faces challenges. Herein, we demonstrate that a polarization electric field regulates single atom permutations and forms periodic one-dimensional Au single-atom arrays on ferroelectric Bi4Ti3O12 nanosheets. The Au single-atom arrays greatly lower the Gibbs free energy for CO2 conversion via Au-O=C=O-Au dual-site adsorption compared to that for Au-O=C=O single-site adsorption on Au isolated single atoms. Additionally, the Au single-atom arrays suppress the depolarization of Bi4Ti3O12, so it maintains a stronger driving force for separation and transfer of photogenerated charges. Thus, Bi4Ti3O12 with Au single-atom arrays exhibit an efficient CO production rate of 34.15 µmol·g-1·h-1, ∼18 times higher than that of pristine Bi4Ti3O12. More importantly, the polarization electric field proves to be a general tactic for the syntheses of one-dimensional Pt, Ag, Fe, Co and Ni single-atom arrays on the Bi4Ti3O12 surface.
Collapse
Affiliation(s)
- Lizhen Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jingcong Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Zhaoyu Ma
- School of Physics, Beihang University, Beijing, 100191, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Bin He
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fang Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China.
| | - Rong Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| |
Collapse
|