1
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3842-3853. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Tarnopol RL, Tamsil JA, Cinege G, Ha JH, Verster KI, Ábrahám E, Magyar LB, Kim BY, Bernstein SL, Lipinszki Z, Andó I, Whiteman NK. Experimental horizontal transfer of phage-derived genes to Drosophila confers innate immunity to parasitoids. Curr Biol 2025; 35:514-529.e7. [PMID: 39708795 DOI: 10.1016/j.cub.2024.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/01/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins. In some cases, the genes that encode these toxins have been horizontally transferred to the genomes of the insects. Here, we used genome editing in Drosophila melanogaster to recapitulate the evolution of two toxin genes-cytolethal distending toxin B (cdtB) and apoptosis inducing protein of 56kDa (aip56)-that were horizontally transferred likely from phages of endosymbiotic bacteria to insects millions of years ago. We found that a cdtB::aip56 fusion gene (fusionB), which is conserved in D. ananassae subgroup species, dramatically promoted fly survival and suppressed parasitoid wasp development when heterologously expressed in D. melanogaster immune tissues. We found that FusionB was a functional nuclease and was secreted into the host hemolymph where it targeted the parasitoid embryo's serosal tissue. Although the mechanism of toxicity remains unknown, when expressed ubiquitously, fusionB resulted in delayed development of late-stage fly larvae and eventually killed pupating flies. These results point to the salience of regulatory constraint in mitigating autoimmunity during the domestication process following horizontal transfer. Our findings demonstrate how horizontal gene transfer can instantly provide new, potent innate immune modules in animals.
Collapse
Affiliation(s)
- Rebecca L Tarnopol
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Josephine A Tamsil
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - Ji Heon Ha
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirsten I Verster
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Edit Ábrahám
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged 6726, Hungary; National Laboratory for Biotechnology Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - Lilla B Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - Bernard Y Kim
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Susan L Bernstein
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zoltán Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged 6726, Hungary; National Laboratory for Biotechnology Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged 6726, Hungary.
| | - Noah K Whiteman
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Whiteman NK. Insect herbivory: An inordinate fondness for plant cell wall degrading enzymes. Curr Biol 2025; 35:R107-R109. [PMID: 39904308 DOI: 10.1016/j.cub.2024.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Tens of thousands of species of leaf beetles rely on plant cell wall degrading enzymes in order to make the most of nutritionally depauperate plant tissues. Many of the genes encoding these enzymes were acquired from microbial donors, either through horizontal gene transfer or by hosting microbial endosymbionts. A new study explores how these insects have leveraged this metabolic potential to diversify and expand into new niches.
Collapse
Affiliation(s)
- Noah K Whiteman
- Department of Integrative Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94618, USA.
| |
Collapse
|
4
|
Zhang Y, Tu C, Bai J, Li X, Sun Z, Xu L. Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles. Proc Natl Acad Sci U S A 2025; 122:e2415717122. [PMID: 39793087 PMCID: PMC11725898 DOI: 10.1073/pnas.2415717122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources. Adults of the leaf beetle Plagiodera versicolora (Coleoptera) preferentially consume new leaves; nevertheless, we found that they selectively oviposit on mature leaves, thereby establishing a distinct dietary niche separation between adults and larvae. Based on the de novo assembled chromosome-level genome, we identified two horizontally transferred genes with cellulose degradation potential, belonging to the glycosyl hydrolase 48 family (GH48-1 and GH48-2). Prokaryotic expression of the HGTs confirmed the cellulose degradation capability of the two genes. Knockdown of GH48 significantly hampered the growth and survival rate of larvae feeding on mature leaves compared to wild-type larvae, with no similar effect observed in adults. Replenishing the GH48-expressing bacteria compensated for the knockdown of these two genes and recurred larval adaptability to mature leaves. Taken together, our results highlight the advantage and metabolic enhancement conferred by the two cellulose-degrading HGTs in P. versicolora larvae, enabling their development on cellulose-enriched mature leaves and underscoring the indispensable role of HGTs in facilitating the adaptation of leaf beetles to plants.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan430062, China
| | - Chengjie Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan430062, China
| | - Jianyang Bai
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei230036, China
| | - Xiayu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan430062, China
| | - Ziyue Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan430062, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan430062, China
| |
Collapse
|
5
|
Magyar LB, Andó I, Cinege G. Encapsulation and Melanization Are Not Correlated to Successful Immune Defense Against Parasitoid Wasps in Drosophila melanogaster. Cells 2025; 14:46. [PMID: 39791747 PMCID: PMC11719603 DOI: 10.3390/cells14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Parasitoid elimination in Drosophila melanogaster involves special hemocytes, called lamellocytes, which encapsulate the eggs or larvae of the parasitoid wasps. The capsules are melanized, and metabolites of the melanization reaction may play a potential role in parasitoid killing. We have observed a variation in the melanization capacity of different, commonly used D. melanogaster strains, such as Canton-S, Oregon-R, and BL5905, BL6326. In this work, we aimed to clarify a possible connection between the effectiveness of capsule melanization and the success of parasitoid elimination following infection with Leptopilina parasitoid wasps. Circulating hemocytes and lamellocyte attachment were visualized by confocal and epifluorescence microscopy using indirect immunofluorescence. Expression profiles of the PPO2 and PPO3 prophenoloxidase genes, which encode key enzymes in the melanization reaction, were detected by qRT-PCR. Parasitization assays were used to analyze fly and wasp eclosion success. Active encapsulation and melanization reactions against Leptopilina boulardi were observed in the BL5905 and the BL6326 strains, though restricted to the dead supernumerary parasitoids, while fly and wasp eclosion rates were essentially the same in the four examined D. melanogaster strains. We conclude that encapsulation and melanization carried out by D. melanogaster following L. boulardi infection have no impact on survival.
Collapse
Affiliation(s)
| | | | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary (I.A.)
| |
Collapse
|
6
|
Magyar LB, Ábrahám E, Lipinszki Z, Tarnopol RL, Whiteman NK, Varga V, Hultmark D, Andó I, Cinege G. Pore-Forming Toxin-Like Proteins in the Anti-Parasitoid Immune Response of Drosophila. J Innate Immun 2024; 17:10-28. [PMID: 39626640 PMCID: PMC11731912 DOI: 10.1159/000542583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/10/2024] [Indexed: 12/08/2024] Open
Abstract
INTRODUCTION Species of the ananassae subgroup of Drosophilidae are highly resistant to parasitoid wasp infections. We have previously shown that the genes encoding cytolethal distending toxin B (CdtB) and the apoptosis inducing protein of 56 kDa (AIP56) were horizontally transferred to these fly species from prokaryotes and are now instrumental in the anti-parasitoid immune defense of Drosophila ananassae. Here we describe a new family of genes, which encode proteins with hemolysin E domains, heretofore only identified in prokaryotes. Hemolysin E proteins are pore-forming toxins, important virulence factors of bacteria. METHODS Bioinformatical, transcriptional, and protein expressional studies were used. RESULTS The hemolysin E-like genes have a scattered distribution among the genomes of species belonging to several different monophyletic lineages in the family Drosophilidae. We detected structural homology with the bacterial Hemolysin E toxins and showed that the origin of the D. ananassae hemolysin E-like genes (hl1-38) is consistent with prokaryotic horizontal gene transfer. These genes encode humoral factors, secreted into the hemolymph by the fat body and hemocytes. Their expression is induced solely by parasitoid infection and the proteins bind to the developing parasitoids. CONCLUSIONS Hemolysin E-like proteins acquired by horizontal gene transfer and expressed by the primary immune organs may contribute to the elimination of parasitoids, as novel humoral factors in Drosophila innate immunity.
Collapse
Affiliation(s)
- Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Edit Ábrahám
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Rebecca L. Tarnopol
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Viktória Varga
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
7
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
8
|
Zhang C, Zhang JY, Wang N, Abou El-Ela AS, Shi ZY, You YZ, Ali SA, Zhou WW, Zhu ZR. RNAi-mediated knockdown of papilin gene affects the egg hatching in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4779-4789. [PMID: 38837578 DOI: 10.1002/ps.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Owing to the rapid adaptation of BPH to many pesticides and resistant varieties, identifying putative gene targets for developing RNA interference (RNAi)-based pest management strategies has received much attention for this pest. The glucoprotein papilin is the most abundant component in the basement membranes of many organisms, and its function is closely linked to development. RESULTS In this study, we identified a papilin homologous gene in BPH (NlPpn). Quantitative Real-time PCR analysis showed that the transcript of NlPpn was highly accumulated in the egg stage. RNAi of NlPpn in newly emerged BPH females caused nonhatching phenotypes of their eggs, which may be a consequence of the maldevelopment of their embryos. Moreover, the transcriptomic analysis identified 583 differentially expressed genes between eggs from the dsGFP- and dsNlPpn-treated insects. Among them, the 'structural constituent of cuticle' cluster ranked first among the top 15 enriched GO terms. Consistently, ultrastructural analysis unveiled that dsNlPpn-treated eggs displayed a discrete and distorted serosal endocuticle lamellar structure. Furthermore, the hatchability of BPH eggs was also successfully reduced by the topical application of NlPpn-dsRNA-layered double hydroxide nanosheets onto the adults. CONCLUSION Our findings demonstrate that NlPpn is essential to maintaining the regular structure of the serosal cuticle and the embryonic development in BPH, indicating NlPpn could be a potential target for pest control during the egg stage. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jin-Yi Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Ni Wang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Amr S Abou El-Ela
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Zhe-Yi Shi
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yuan-Zheng You
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Soomro Abid Ali
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
9
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
10
|
Cinege G, Fodor K, Magyar LB, Lipinszki Z, Hultmark D, Andó I. Cellular Immunity of Drosophila willistoni Reveals Novel Complexity in Insect Anti-Parasitoid Defense. Cells 2024; 13:593. [PMID: 38607032 PMCID: PMC11011451 DOI: 10.3390/cells13070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Coevolution of hosts and their parasites has shaped heterogeneity of effector hemocyte types, providing immune defense reactions with variable effectiveness. In this work, we characterize hemocytes of Drosophila willistoni, a species that has evolved a cellular immune system with extensive variation and a high degree of plasticity. Monoclonal antibodies were raised and used in indirect immunofluorescence experiments to characterize hemocyte subpopulations, follow their functional features and differentiation. Pagocytosis and parasitization assays were used to determine the functional characteristics of hemocyte types. Samples were visualized using confocal and epifluorescence microscopy. We identified a new multinucleated giant hemocyte (MGH) type, which differentiates in the course of the cellular immune response to parasitoids. These cells differentiate in the circulation through nuclear division and cell fusion, and can also be derived from the central hematopoietic organ, the lymph gland. They have a binary function as they take up bacteria by phagocytosis and are involved in the encapsulation and elimination of the parasitoid. Here, we show that, in response to large foreign particles, such as parasitoids, MGHs differentiate, have a binary function and contribute to a highly effective cellular immune response, similar to the foreign body giant cells of vertebrates.
Collapse
Affiliation(s)
- Gyöngyi Cinege
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (K.F.); (L.B.M.); (I.A.)
| | - Kinga Fodor
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (K.F.); (L.B.M.); (I.A.)
| | - Lilla B. Magyar
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (K.F.); (L.B.M.); (I.A.)
- Doctoral School of Biology, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Dan Hultmark
- Department of Molecular Biology, Umea University, 901 87 Umea, Sweden;
| | - István Andó
- Innate Immunity Group, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (K.F.); (L.B.M.); (I.A.)
| |
Collapse
|
11
|
Patel V, Lynn-Bell N, Chevignon G, Kucuk RA, Higashi CHV, Carpenter M, Russell JA, Oliver KM. Mobile elements create strain-level variation in the services conferred by an aphid symbiont. Environ Microbiol 2023; 25:3333-3348. [PMID: 37864320 DOI: 10.1111/1462-2920.16520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Roy A Kucuk
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
12
|
Lisboa J, Pereira C, Pinto RD, Rodrigues IS, Pereira LMG, Pinheiro B, Oliveira P, Pereira PJB, Azevedo JE, Durand D, Benz R, do Vale A, Dos Santos NMS. Unconventional structure and mechanisms for membrane interaction and translocation of the NF-κB-targeting toxin AIP56. Nat Commun 2023; 14:7431. [PMID: 37973928 PMCID: PMC10654918 DOI: 10.1038/s41467-023-43054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation.
Collapse
Affiliation(s)
- Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bruno Pinheiro
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology (MCbiology), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Biomolecular Structure Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Macromolecular Structure Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Jorge E Azevedo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Roland Benz
- Science Faculty, Constructor University, Bremen, Germany
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Fish Immunology and Vaccinology Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
13
|
Lapadula WJ, Juri Ayub M. Ribosome Inactivating Proteins in Insects: HGT, gene expression, and functional implications. Gene 2023:147547. [PMID: 37286020 DOI: 10.1016/j.gene.2023.147547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA N-glycosidases that depurinate an adenine residue in the conserved alpha-sarcin/ricin loop (SRL) of rRNA, inhibiting protein synthesis. Previously, we reported the existence of these toxins in insects, whose presence is restricted to mosquitoes from the Culicinae subfamily (e.g., Aedes aegypti) and whiteflies from the Aleyrodidae family (e.g., Bemisia tabaci). Both groups of genes are derived from two independent horizontal gene transfer (HGT) events and are evolved under purifying selection. Here, we report and characterize the occurrence of a third HGT event in the Sciaroidea superfamily, which supports the recurrent acquisition of RIP genes by insects. Transcriptomic experiments, available in databases, allowed us to describe the temporal and spatial expression profiles for these foreign genes in these organisms. Furthermore, we found that RIP expression is induced after infection with pathogens and provided, for the first time, transcriptomic evidence of parasite SRL depurination. This evidence suggests a possible role of these foreign genes as immune effectors in insects.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes, 950, D5700HHW San Luis, Argentina
| |
Collapse
|
14
|
Oliver KM. Flies co-opt bacterial toxins for use in defense against parasitoids. Proc Natl Acad Sci U S A 2023; 120:e2304493120. [PMID: 37126694 PMCID: PMC10175828 DOI: 10.1073/pnas.2304493120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA30602
| |
Collapse
|