1
|
Qian C, Liu Y, Meng W, Jiang Y, Wang S, Wang L. Modeling Infrared Spectroscopy of Nucleic Acids: Integrating Vibrational Non-Condon Effects with Machine Learning Schemes. J Chem Theory Comput 2024; 20:10080-10094. [PMID: 39526974 DOI: 10.1021/acs.jctc.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vibrational non-Condon effects, which describe how molecular vibrational transitions are influenced by a system's rotational and translational degrees of freedom, are often overlooked in spectroscopy studies of biological macromolecules. In this work, we explore these effects in the modeling of infrared (IR) spectra for nucleic acids in the 1600-1800 cm-1 region. Through electronic structure calculations, we reveal that the transition dipole moments of the C═O and C═C stretching modes in nucleobases are highly sensitive to solvation, hydrogen bonding, and base stacking conditions. To incorporate vibrational non-Condon effects into spectroscopy modeling, we use local electric fields on chromophore atoms as collective coordinates and leverage experimental IR spectra of oligonucleotides to develop deep neural network-based transition dipole strength (TDS) maps for the C═O and C═C chromophores. By integrating molecular dynamics simulations with a mixed quantum/classical treatment of the line shape theory, we apply the TDS maps to calculate the IR spectra of nucleoside 5'-monophosphates, DNA double helices and yeast phenylalanine tRNA. The resulting theoretical spectra show quantitative agreement with experimental measurements. While the predictions for nucleoside 5'-monophosphates are comparable to baseline performance, the TDS maps yield significantly improved IR peak intensities across all oligonucleotides. This theoretical framework effectively bridges atomistic simulations and IR spectroscopy experiments, offering molecular insights into how vibrational non-Condon effects impact the observed spectral features.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yaoyukun Jiang
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Sijian Wang
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Balduzzi E, Geinguenaud F, Sordyl D, Maiti S, Farsani MA, Nikolaev G, Arluison V, Bujnicki JM. NAIRDB: a database of Fourier transform infrared (FTIR) data for nucleic acids. Nucleic Acids Res 2024:gkae885. [PMID: 39413200 DOI: 10.1093/nar/gkae885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The Nucleic Acid InfraRed Data Bank (NAIRDB) serves as a comprehensive public repository dedicated to the archival and free distribution of Fourier transform infrared (FTIR) spectral data specific to nucleic acids. This database encompasses a collection of FTIR spectra covering diverse nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids and their various derivatives. NAIRDB covers details of the experimental conditions for FTIR measurements, literature links, primary sequence data, information about experimentally determined structures for related nucleic acid molecules and/or computationally modeled 3D structures. All entries undergo expert validation and curation to maintain the completeness, consistency and quality of the data. NAIRDB can be searched by similarity of nucleic acid sequences or by direct comparison of spectra. The database is open for the submission of the FTIR data for nucleic acids. NAIRDB is available at https://nairdb.genesilico.pl.
Collapse
Affiliation(s)
- Elsa Balduzzi
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
| | - Frédéric Geinguenaud
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, 74 rue Marcel Cachin, F-93017 Bobigny, France
| | - Dominik Sordyl
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Satyabrata Maiti
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Grigory Nikolaev
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
3
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
4
|
Dong T, Yu P, Zhao J, Wang J. Site specifically probing the unfolding process of human telomere i-motif DNA using vibrationally enhanced alkynyl stretch. Phys Chem Chem Phys 2024; 26:3857-3868. [PMID: 38224126 DOI: 10.1039/d3cp05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The microscopic unfolding process of a cytosine-rich DNA forming i-motif by hemi-protonated base pairs is related to gene regulation. However, the detailed thermal unfolding mechanism and the protonation/deprotonation status of site-specific cytosine in DNA in a physiological environment are still obscure. To address this issue, a vibration-enhanced CC probe tagged on 5'E terminal cytosine of human telomere i-motif DNA was examined using linear and nonlinear infrared (IR) spectroscopies and quantum-chemistry calculations. The CC probe extended into the major groove of the i-motif was found using nonlinear IR results only to introduce a minor steric effect on both steady-state structure and local structure dynamics; however, its IR absorption profile effectively reports the cleavage of the hemi-protonated base pair of C1-C13 upon the unfolding with C1 remaining protonated. The temperature mid-point (Tm) of the local transition reported using the CC tag was slightly lower than the Tm of global transition, and the enthalpy of the former exceeds 60% of the global transition. It is shown that the base-pair unraveling is noncooperative, with outer base pairs breaking first and being likely the rate limiting step. Our results offered an in-depth understanding of the macroscopic unfolding characteristics of the i-motif DNA and provided a nonlinear IR approach to monitoring the local structural transition and dynamics of DNA and its complexes.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Schroeder SJ. Insights into nucleic acid helix formation from infrared spectroscopy. Biophys J 2024; 123:115-117. [PMID: 38130057 PMCID: PMC10808036 DOI: 10.1016/j.bpj.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry and Biochemistry, School of Biological Sciences, University of Oklahoma, Norman, Oklahoma.
| |
Collapse
|
6
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site modifies DNA duplex stability and dynamics. Biophys J 2024; 123:118-133. [PMID: 38006207 PMCID: PMC10808028 DOI: 10.1016/j.bpj.2023.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base-pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization of the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base-pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois.
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
7
|
Hunt NT. Biomolecular infrared spectroscopy: making time for dynamics. Chem Sci 2024; 15:414-430. [PMID: 38179520 PMCID: PMC10763549 DOI: 10.1039/d3sc05223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Time resolved infrared spectroscopy of biological molecules has provided a wealth of information relating to structural dynamics, conformational changes, solvation and intermolecular interactions. Challenges still exist however arising from the wide range of timescales over which biological processes occur, stretching from picoseconds to minutes or hours. Experimental methods are often limited by vibrational lifetimes of probe groups, which are typically on the order of picoseconds, while measuring an evolving system continuously over some 18 orders of magnitude in time presents a raft of technological hurdles. In this Perspective, a series of recent advances which allow biological molecules and processes to be studied over an increasing range of timescales, while maintaining ultrafast time resolution, will be reviewed, showing that the potential for real-time observation of biomolecular function draws ever closer, while offering a new set of challenges to be overcome.
Collapse
Affiliation(s)
- Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| |
Collapse
|
8
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs. Biophys J 2023; 122:3323-3339. [PMID: 37469144 PMCID: PMC10465710 DOI: 10.1016/j.bpj.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 μs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois; The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site and its sequence environment influence DNA duplex stability and dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550182. [PMID: 37546925 PMCID: PMC10401965 DOI: 10.1101/2023.07.22.550182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S. Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Ashwood B, Jones MS, Radakovic A, Khanna S, Lee Y, Sachleben JR, Szostak JW, Ferguson AL, Tokmakoff A. Direct monitoring of the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization from gaps and overhangs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536266. [PMID: 37090657 PMCID: PMC10120721 DOI: 10.1101/2023.04.10.536266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Hybridization of short nucleic acid segments (<4 nucleotides) to single-strand templates occurs as a critical intermediate in processes such as non-enzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood due to experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential non-canonical base pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2 to 40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involves a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | | | - Smayan Khanna
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Jack W Szostak
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637
- The James Franck Institute and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Ashwood B, Jones MS, Ferguson AL, Tokmakoff A. Disruption of energetic and dynamic base pairing cooperativity in DNA duplexes by an abasic site. Proc Natl Acad Sci U S A 2023; 120:e2219124120. [PMID: 36976762 PMCID: PMC10083564 DOI: 10.1073/pnas.2219124120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
DNA duplex stability arises from cooperative interactions between multiple adjacent nucleotides that favor base pairing and stacking when formed as a continuous stretch rather than individually. Lesions and nucleobase modifications alter this stability in complex manners that remain challenging to understand despite their centrality to biology. Here, we investigate how an abasic site destabilizes small DNA duplexes and reshapes base pairing dynamics and hybridization pathways using temperature-jump infrared spectroscopy and coarse-grained molecular dynamics simulations. We show how an abasic site splits the cooperativity in a short duplex into two segments, which destabilizes small duplexes as a whole and enables metastable half-dissociated configurations. Dynamically, it introduces an additional barrier to hybridization by constraining the hybridization mechanism to a step-wise process of nucleating and zipping a stretch on one side of the abasic site and then the other.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Michael S. Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL60637
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL60637
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|