1
|
Brewer JJ, Inlow K, Mooney RA, Bosch B, Olinares PDB, Marcelino LP, Chait BT, Landick R, Gelles J, Campbell EA, Darst SA. RapA opens the RNA polymerase clamp to disrupt post-termination complexes and prevent cytotoxic R-loop formation. Nat Struct Mol Biol 2025:10.1038/s41594-024-01447-8. [PMID: 39779919 DOI: 10.1038/s41594-024-01447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
Following transcript release during intrinsic termination, Escherichia coli RNA polymerase (RNAP) often remains associated with DNA in a post-termination complex (PTC). RNAPs in PTCs are removed from the DNA by the SWI2/SNF2 adenosine triphosphatase (ATPase) RapA. Here we determined PTC structures on negatively supercoiled DNA and with RapA engaged to dislodge the PTC. We found that core RNAP in the PTC can unwind DNA and initiate RNA synthesis but is prone to producing R-loops. Nucleotide binding to RapA triggers a conformational change that opens the RNAP clamp, allowing DNA in the RNAP cleft to reanneal and dissociate. We show that RapA helps to control cytotoxic R-loop formation in vivo, likely by disrupting PTCs. We suggest that analogous ATPases acting on PTCs to suppress transcriptional noise and R-loop formation may be widespread. These results hold importance for the bacterial transcription cycle and highlight a role for RapA in maintaining genome stability.
Collapse
Affiliation(s)
- Joshua J Brewer
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara Bosch
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Leandro Pimentel Marcelino
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Song E, Han S, Uhm H, Kang C, Hohng S. Single-mode termination of phage transcriptions, disclosing bacterial adaptation for facilitated reinitiations. Nucleic Acids Res 2024; 52:9092-9102. [PMID: 39011892 PMCID: PMC11347151 DOI: 10.1093/nar/gkae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial and bacteriophage RNA polymerases (RNAPs) have divergently evolved and share the RNA hairpin-dependent intrinsic termination of transcription. Here, we examined phage T7, T3 and SP6 RNAP terminations utilizing the single-molecule fluorescence assays we had developed for bacterial terminations. We discovered the phage termination mode or outcome is virtually single with decomposing termination. Therein, RNAP is displaced forward along DNA and departs both RNA and DNA for one-step decomposition, three-dimensional diffusion and reinitiation at any promoter. This phage displacement-mediated decomposing termination is much slower than readthrough and appears homologous with the bacterial one. However, the phage sole mode of termination contrasts with the bacterial dual mode, where both decomposing and recycling terminations occur compatibly at any single hairpin- or Rho-dependent terminator. In the bacterial recycling termination, RNA is sheared from RNA·DNA hybrid, and RNAP remains bound to DNA for one-dimensional diffusion, which enables facilitated recycling for reinitiation at the nearest promoter located downstream or upstream in the sense or antisense orientation. Aligning with proximity of most terminators to adjacent promoters in bacterial genomes, the shearing-mediated recycling termination could be bacterial adaptation for the facilitated reinitiations repeated at a promoter for accelerated expression and coupled at adjoining promoters for coordinated regulation.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Heesoo Uhm
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Song E, Han S, Hohng S, Kang C. Compatibility of termination mechanisms in bacterial transcription with inference on eukaryotic models. Biochem Soc Trans 2024; 52:887-897. [PMID: 38533838 DOI: 10.1042/bst20231229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Transcription termination has evolved to proceed through diverse mechanisms. For several classes of terminators, multiple models have been debatably proposed. Recent single-molecule studies on bacterial terminators have resolved several long-standing controversies. First, termination mode or outcome is twofold rather than single. RNA is released alone before DNA or together with DNA from RNA polymerase (RNAP), i.e. with RNA release for termination, RNAP retains on or dissociates off DNA, respectively. The concomitant release, described in textbooks, results in one-step decomposition of transcription complexes, and this 'decomposing termination' prevails at ρ factor-dependent terminators. Contrastingly, the sequential release was recently discovered abundantly from RNA hairpin-dependent intrinsic terminations. RNA-only release allows RNAP to diffuse on DNA in both directions and recycle for reinitiation. This 'recycling termination' enables one-dimensional reinitiation, which would be more expeditious than three-dimensional reinitiation by RNAP dissociated at decomposing termination. Second, while both recycling and decomposing terminations occur at a hairpin-dependent terminator, four termination mechanisms compatibly operate at a ρ-dependent terminator with ρ in alternative modes and even intrinsically without ρ. RNA-bound catch-up ρ mediates recycling termination first and decomposing termination later, while RNAP-prebound stand-by ρ invokes only decomposing termination slowly. Without ρ, decomposing termination occurs slightly and sluggishly. These four mechanisms operate on distinct timescales, providing orderly fail-safes. The stand-by mechanism is benefited by terminational pause prolongation and modulated by accompanying riboswitches more greatly than the catch-up mechanisms. Conclusively, any mechanism alone is insufficient to perfect termination, and multiple mechanisms operate compatibly to achieve maximum possible efficiency under separate controls.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Wang L. RNA polymerase collisions and their role in transcription. Transcription 2024; 15:38-47. [PMID: 38357902 DOI: 10.1080/21541264.2024.2316972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious "traffic jams". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.
Collapse
Affiliation(s)
- Ling Wang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Tenenbaum D, Inlow K, Friedman LJ, Cai A, Gelles J, Kondev J. RNA polymerase sliding on DNA can couple the transcription of nearby bacterial operons. Proc Natl Acad Sci U S A 2023; 120:e2301402120. [PMID: 37459525 PMCID: PMC10372574 DOI: 10.1073/pnas.2301402120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 07/20/2023] Open
Abstract
DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of posttermination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance and timescales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant interoperon coupling can occur and the time required. These quantities depend on molecular association and dissociation rate constants between DNA, RNAP, and the transcription initiation factor σ70; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼1,000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the Escherichia coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.
Collapse
Affiliation(s)
- Debora Tenenbaum
- Department of Biochemistry, Brandeis University, Waltham, MA02453
- Department of Physics, Brandeis University, Waltham, MA02453
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | | | - Anthony Cai
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02453
| |
Collapse
|
6
|
Inlow K, Tenenbaum D, Friedman LJ, Kondev J, Gelles J. Recycling of bacterial RNA polymerase by the Swi2/Snf2 ATPase RapA. Proc Natl Acad Sci U S A 2023; 120:e2303849120. [PMID: 37406096 PMCID: PMC10334767 DOI: 10.1073/pnas.2303849120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Free-living bacteria have regulatory systems that can quickly reprogram gene transcription in response to changes in the cellular environment. The RapA ATPase, a prokaryotic homolog of the eukaryotic Swi2/Snf2 chromatin remodeling complex, may facilitate such reprogramming, but the mechanisms by which it does so are unclear. We used multiwavelength single-molecule fluorescence microscopy in vitro to examine RapA function in the Escherichia coli transcription cycle. In our experiments, RapA at <5 nM concentration did not appear to alter transcription initiation, elongation, or intrinsic termination. Instead, we directly observed a single RapA molecule bind specifically to the kinetically stable post termination complex (PTC)-consisting of core RNA polymerase (RNAP)-bound sequence nonspecifically to double-stranded DNA-and efficiently remove RNAP from DNA within seconds in an ATP-hydrolysis-dependent reaction. Kinetic analysis elucidates the process through which RapA locates the PTC and the key mechanistic intermediates that bind and hydrolyze ATP. This study defines how RapA participates in the transcription cycle between termination and initiation and suggests that RapA helps set the balance between global RNAP recycling and local transcription reinitiation in proteobacterial genomes.
Collapse
Affiliation(s)
- Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| | | | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA02453
| |
Collapse
|