1
|
Wetzstein N, Diricks M, Anton TB, Andres S, Kuhns M, Kohl TA, Schwarz C, Lewin A, Kehrmann J, Kahl BC, Schmidt A, Zimmermann S, Jansson MK, Baron SA, Schulthess B, Hogardt M, Friesen I, Niemann S, Wichelhaus TA. Clinical and genomic features of Mycobacterium avium complex: a multi-national European study. Genome Med 2024; 16:86. [PMID: 38982539 PMCID: PMC11232273 DOI: 10.1186/s13073-024-01359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The Mycobacterium avium complex (MAC) comprises the most frequent non-tuberculous mycobacteria (NTM) in Central Europe and currently includes twelve species. M. avium (MAV), M. intracellulare subsp. intracellulare (MINT), and M. intracellulare subsp. chimaera (MCH) are clinically most relevant. However, the population structure and genomic landscape of MAC linked with potential pathobiological differences remain little investigated. METHODS Whole genome sequencing (WGS) was performed on a multi-national set of MAC isolates from Germany, France, and Switzerland. Phylogenetic analysis was conducted, as well as plasmids, resistance, and virulence genes predicted from WGS data. Data was set into a global context with publicly available sequences. Finally, detailed clinical characteristics were associated with genomic data in a subset of the cohort. RESULTS Overall, 610 isolates from 465 patients were included. The majority could be assigned to MAV (n = 386), MCH (n = 111), and MINT (n = 77). We demonstrate clustering with less than 12 SNPs distance of isolates obtained from different patients in all major MAC species and the identification of trans-European or even trans-continental clusters when set into relation with 1307 public sequences. However, none of our MCH isolates clustered closely with the heater-cooler unit outbreak strain Zuerich-1. Known plasmids were detected in MAV (325/1076, 30.2%), MINT (62/327, 19.0%), and almost all MCH-isolates (457/463, 98.7%). Predicted resistance to aminoglycosides or macrolides was rare. Overall, there was no direct link between phylogenomic grouping and clinical manifestations, but MCH and MINT were rarely found in patients with extra-pulmonary disease (OR 0.12 95% CI 0.04-0.28, p < 0.001 and OR 0.11 95% CI 0.02-0.4, p = 0.004, respectively) and MCH was negatively associated with fulfillment of the ATS criteria when isolated from respiratory samples (OR 0.28 95% CI 0.09-0.7, p = 0.011). With 14 out of 43 patients with available serial isolates, co-infections or co-colonizations with different strains or even species of the MAC were frequent (32.6%). CONCLUSIONS This study demonstrates clustering and the presence of plasmids in a large proportion of MAC isolates in Europe and in a global context. Future studies need to urgently define potential ways of transmission of MAC isolates and the potential involvement of plasmids in virulence.
Collapse
Affiliation(s)
- Nils Wetzstein
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany.
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas B Anton
- Department of Internal Medicine, Infectious Diseases, Goethe University, University Hospital, Theodor-Stern-Kai 7, FrankfurtFrankfurt Am Main, 60590, Germany
| | - Sönke Andres
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Martin Kuhns
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Carsten Schwarz
- Division of Cystic Fibrosis, CF Center Westbrandenburg, Campus Potsdam, Klinikum Potsdam, Potsdam, Germany
| | - Astrid Lewin
- Unit Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Annika Schmidt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz K Jansson
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Sophie A Baron
- Faculté de Médecine Et de Pharmacie, IRD, APHM, Aix Marseille Univ, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bettina Schulthess
- National Reference Laboratory for Mycobacteria, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
- German National Consiliary Laboratory On Cystic Fibrosis Bacteriology, Frankfurt Am Main, Germany
| | - Inna Friesen
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University, University Hospital, FrankfurtFrankfurt Am Main, Germany
| |
Collapse
|
2
|
Baker AW, Nick SE, Jia F, Graves AM, Warren BG, Zavala S, Stout JE, Lee MJ, Alexander BD, Davidson RM, Anderson DJ. Mycobacterium immunogenum acquisition from hospital tap water: a genomic and epidemiologic analysis. J Clin Microbiol 2024; 62:e0014924. [PMID: 38690881 PMCID: PMC11237794 DOI: 10.1128/jcm.00149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024] Open
Abstract
We identified 23 cases of Mycobacterium immunogenum respiratory acquisition linked to a colonized plumbing system at a new hospital addition. We conducted a genomic and epidemiologic investigation to assess for clonal acquisition of M. immunogenum from hospital water sources and improve understanding of genetic distances between M. immunogenum isolates. We performed whole-genome sequencing on 28 M. immunogenum isolates obtained from August 2013 to July 2021 from patients and water sources on four intensive care and intermediate units at an academic hospital. Study hospital isolates were recovered from 23 patients who experienced de novo respiratory isolation of M. immunogenum and from biofilms obtained from five tap water outlets. We also analyzed 10 M. immunogenum genomes from previously sequenced clinical (n = 7) and environmental (n = 3) external control isolates. The 38-isolate cohort clustered into three clades with pairwise single-nucleotide polymorphism (SNP) distances ranging from 0 to 106,697 SNPs. We identified two clusters of study hospital isolates in Clade 1 and one cluster in Clade 2 for which clinical and environmental isolates differed by fewer than 10 SNPs and had less than 0.5% accessory genome variation. A less restrictive combined threshold of 40 SNPs and 5% accessory genes reliably captured additional isolates that met clinical criteria for hospital acquisition, but 12 (4%) of 310 epidemiologically unrelated isolate pairs also met this threshold. Core and accessory genome analyses confirmed respiratory acquisition of multiple clones of M. immunogenum from hospital water sources to patients. When combined with epidemiologic investigation, genomic thresholds accurately distinguished hospital acquisition.
Collapse
Affiliation(s)
- Arthur W. Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Sophie E. Nick
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Fan Jia
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Amanda M. Graves
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Bobby G. Warren
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Sofia Zavala
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jason E. Stout
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark J. Lee
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barbara D. Alexander
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rebecca M. Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Deverick J. Anderson
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| |
Collapse
|
3
|
Kwak N, Park J, Kim SJ, Kim JY, Kim TS, Yoon JK, Whang J, Lee W, Shin SJ, Yim JJ. Genetic stability of Mycobacterium abscessus during antibiotic treatment. J Glob Antimicrob Resist 2024; 36:45-49. [PMID: 38128724 DOI: 10.1016/j.jgar.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES Genetic changes in Mycobacterium abscessus during antibiotic treatment are not fully understood. This study aimed to investigate the genetic changes in M. abscessus in patients receiving antibiotic treatment, and their clinical implications. METHODS Pretreatment and 12-month post-treatment M. abscessus isolates were obtained from patients with M. abscessus pulmonary disease. Isolates from each time point were separated into six groups based on their distinctive morphological characteristics. Twenty-four isolates, comprising 12 from patient A exhibiting progressive disease and 12 from patient B demonstrating stable disease, underwent sequencing. Subsequently, minimal inhibitory concentrations (MICs) for the administered antibiotics were measured. RESULTS Persistent infection with a single strain was observed in patients A and B. During 12 months of treatment, MICs for administered drugs did not generally change over time in either patient and single nucleotide variations (SNV) associated with antimicrobial resistance (rrl, rrs, erm(41), gyrA, gyrB, whiB7 and hflX) were not mutated. Although not significant, 47 and 52 non-synonymous SNVs occurred in M. abscessus from patients A and B, respectively, and the accumulation of these SNVs differed in patients A and B, except for five SNVs. The most variable positions were within a probable NADH-dependent glutamate synthase gene and a putative YrbE family protein gene in patients A and B, respectively. CONCLUSIONS Persistent infections by a single strain of M. abscessus were observed in two patients with different clinical courses. Genetic changes in M. abscessus during antibiotic treatment were relatively stable in these patients. CLINICAL TRIALS IDENTIFIER NCT01616745 (ClinicalTrials.gov ID).
Collapse
Affiliation(s)
- Nakwon Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, The Republic of Korea
| | - Sun Ju Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, The Republic of Korea
| | - Joong-Yub Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Taek Soo Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Jung-Ki Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea
| | - Jake Whang
- Department of Research and Development, Korean Institute of Tuberculosis, Osong, The Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, The Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, The Republic of Korea
| | - Jae-Joon Yim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, The Republic of Korea.
| |
Collapse
|
4
|
Aguilar-Bultet L, García-Martín AB, Vock I, Maurer Pekerman L, Stadler R, Schindler R, Battegay M, Stadler T, Gómez-Sanz E, Tschudin-Sutter S. Within-host genetic diversity of extended-spectrum beta-lactamase-producing Enterobacterales in long-term colonized patients. Nat Commun 2023; 14:8495. [PMID: 38129423 PMCID: PMC10739949 DOI: 10.1038/s41467-023-44285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Despite recognition of the immediate impact of infections caused by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales (ESBL-PE) on human health, essential aspects of their molecular epidemiology remain under-investigated. This includes knowledge on the potential of a particular strain to persist in a host, mutational events during colonization, and the genetic diversity in individual patients over time. To investigate long-term genetic diversity of colonizing and infecting ESBL-Klebsiella pneumoniae species complex and ESBL-Escherichia coli in individual patients over time, we performed a ten-year longitudinal retrospective study and extracted clinical and microbiological data from electronic health records. In this investigation, 76 ESBL-K. pneumoniae species complex and 284 ESBL-E. coli isolates were recovered from 19 and 61 patients. Strain persistence was detected in all patients colonized with ESBL-K. pneumoniae species complex, and 83.6% of patients colonized with ESBL-E. coli. We frequently observed isolates of the same strain recovered from different body sites associated with either colonization or infection. Antimicrobial resistance genes, plasmid replicons, and whole ESBL-plasmids were shared between isolates regardless of chromosomal relatedness. Our study suggests that patients colonized with ESBL-producers may act as durable reservoirs for ongoing transmission of ESBLs, and that they are at prolonged risk of recurrent infection with colonizing strains.
Collapse
Affiliation(s)
- Lisandra Aguilar-Bultet
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ana B García-Martín
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Isabelle Vock
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura Maurer Pekerman
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rahel Stadler
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ruth Schindler
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tanja Stadler
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elena Gómez-Sanz
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|