1
|
Igloi GL. The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms. J Mol Evol 2021; 89:484-493. [PMID: 34254168 PMCID: PMC8318970 DOI: 10.1007/s00239-021-10019-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
During the endosymbiotic evolution of mitochondria, the genes for aminoacyl-tRNA synthetases were transferred to the ancestral nucleus. A further reduction of mitochondrial function resulted in mitochondrion-related organisms (MRO) with a loss of the organelle genome. The fate of the now redundant ancestral mitochondrial aminoacyl-tRNA synthetase genes is uncertain. The derived protein sequence for arginyl-tRNA synthetase from thirty mitosomal organisms have been classified as originating from the ancestral nuclear or mitochondrial gene and compared to the identity element at position 20 of the cognate tRNA that distinguishes the two enzyme forms. The evolutionary choice between loss and retention of the ancestral mitochondrial gene for arginyl-tRNA synthetase reflects the coevolution of arginyl-tRNA synthetase and tRNA identity elements.
Collapse
Affiliation(s)
- Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Nyamai DW, Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J 2019; 18:34. [PMID: 30728021 PMCID: PMC6366043 DOI: 10.1186/s12936-019-2665-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. METHODS Plasmodium berghei, Plasmodium falciparum, Plasmodium fragile, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Plasmodium yoelii and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. These families were further divided into two classes. Both families and classes were analysed. Motif discovery was carried out using the MEME software, sequence identity calculation was done using an in-house Python script, multiple sequence alignments were performed using PROMALS3D and TCOFFEE tools, and phylogenetic tree calculations were performed using MEGA vs 7.0 tool. Possible alternative binding sites were predicted using FTMap webserver and SiteMap tool. RESULTS Motif discovery revealed Plasmodium-specific motifs while phylogenetic tree calculations showed that Plasmodium proteins have different evolutionary history to the human homologues. Human aaRSs sequences showed low sequence identity (below 40%) compared to Plasmodium sequences. Prediction of alternative binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that are weakly conserved when compared to the human homologues. Multiple sequence analysis, motif discovery, pairwise sequence identity calculations and phylogenetic tree analysis showed significant differences between parasite and human aaRSs proteins despite functional and structural conservation. These differences may provide a basis for further exploration of Plasmodium aminoacyl tRNA synthetases as potential drug targets. CONCLUSION This study showed that, despite, functional and structural conservation, Plasmodium aaRSs have key differences from the human homologues. These differences in Plasmodium aaRSs can be targeted to develop anti-malarial drugs with less toxicity to the host.
Collapse
Affiliation(s)
- Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
3
|
Suppression of amber codons in Caulobacter crescentus by the orthogonal Escherichia coli histidyl-tRNA synthetase/tRNAHis pair. PLoS One 2013; 8:e83630. [PMID: 24386240 PMCID: PMC3875453 DOI: 10.1371/journal.pone.0083630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHisCUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHisCUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHisCUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHisCUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair.
Collapse
|
4
|
Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KEC, Ralph SA. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 4:1-13. [PMID: 24596663 PMCID: PMC3940080 DOI: 10.1016/j.ijpddr.2013.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 01/02/2023]
Abstract
Aminoacyl-tRNA synthetases are essential and many aaRS inhibitors kill parasites. We examine compound inhibitors tested experimentally against parasite aaRSs. Successful inhibitors were discovered by both phenotype and target-based approaches. Selectivity and resistance are ongoing challenges for development of parasite drugs.
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- James S Pham
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Karen L Dawson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Katherine E Jackson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Erin E Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Charisse Flerida A Pasaje
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Kelsey E C Turner
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity. Biochem J 2013; 450:243-52. [PMID: 23210460 DOI: 10.1042/bj20121493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
aaRSs (aminoacyl-tRNA synthetases) are responsible for ensuring the fidelity of the genetic code translation by accurately linking a particular amino acid to its cognate tRNA isoacceptor. To ensure accuracy of protein biosynthesis, some aaRSs have evolved an editing process to remove mischarged tRNA. The hydrolysis of the mischarged tRNA usually occurs in an editing domain, which is inserted into or appended to the main body of the aaRS. In addition, autonomous, editing domain-homologous proteins can also trans-edit mischarged tRNA in concert or in compensating for the editing function of its corresponding aaRS. The freestanding ProX is a homologue of the editing domain of bacterial ProRS (prolyl-tRNA synthetase). In the present study, we cloned for the first time a gene encoding HsProX (human cytoplasmic ProX) and purified the expressed recombinant protein. The catalytic specificity of HsProX for non-cognate amino acids and identity elements on tRNAPro for editing were also investigated. We found that HsProX could deacylate mischarged Ala-tRNAPro, but not Cys-HstRNA(UGGPro), and specifically targeted the alanine moiety of Ala-tRNAPro. The importance of the CCA76 end of the tRNA for deacylation activity and key amino acid residues in HsProX for its editing function were also identified.
Collapse
|
6
|
Larson ET, Kim JE, Napuli AJ, Verlinde CLMJ, Fan E, Zucker FH, Van Voorhis WC, Buckner FS, Hol WGJ, Merritt EA. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1194-200. [PMID: 22948920 PMCID: PMC3489102 DOI: 10.1107/s0907444912024699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/30/2012] [Indexed: 11/10/2022]
Abstract
The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.
Collapse
Affiliation(s)
- Eric T. Larson
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jessica E. Kim
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alberto J. Napuli
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christophe L. M. J. Verlinde
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Frank H. Zucker
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Frederick S. Buckner
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wim G. J. Hol
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ethan A. Merritt
- Medical Structural Genomics of Pathogenic Protozoa, http://msgpp.org, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Jiang L, Wang S, Li H, Zhang G, Li H. EMBRYONIC FACTOR 31 encodes a tyrosyl-tRNA synthetase that is essential for seed development. Mol Biol Rep 2012; 39:8297-305. [DOI: 10.1007/s11033-012-1678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
8
|
Umehara T, Kim J, Lee S, Guo LT, Söll D, Park HS. N-Acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possessN-acetyl lysine specificity in vitro and in vivo. FEBS Lett 2012; 586:729-33. [DOI: 10.1016/j.febslet.2012.01.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/16/2012] [Accepted: 01/16/2012] [Indexed: 11/30/2022]
|
9
|
Park HS, Hohn MJ, Umehara T, Guo LT, Osborne EM, Benner J, Noren CJ, Rinehart J, Söll D. Expanding the genetic code of Escherichia coli with phosphoserine. Science 2011; 333:1151-4. [PMID: 21868676 PMCID: PMC5547737 DOI: 10.1126/science.1207203] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
O-Phosphoserine (Sep), the most abundant phosphoamino acid in the eukaryotic phosphoproteome, is not encoded in the genetic code, but synthesized posttranslationally. Here, we present an engineered system for specific cotranslational Sep incorporation (directed by UAG) into any desired position in a protein by an Escherichia coli strain that harbors a Sep-accepting transfer RNA (tRNA(Sep)), its cognate Sep-tRNA synthetase (SepRS), and an engineered EF-Tu (EF-Sep). Expanding the genetic code rested on reengineering EF-Tu to relax its quality-control function and permit Sep-tRNA(Sep) binding. To test our system, we synthesized the activated form of human mitogen-activated ERK activating kinase 1 (MEK1) with either one or two Sep residues cotranslationally inserted in their canonical positions (Sep(218), Sep(222)). This system has general utility in protein engineering, molecular biology, and disease research.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon
- Chloramphenicol/pharmacology
- Chloramphenicol O-Acetyltransferase/genetics
- Codon, Terminator
- Drug Resistance, Bacterial
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genetic Code
- Genetic Engineering
- Humans
- MAP Kinase Kinase 1/biosynthesis
- MAP Kinase Kinase 1/chemistry
- MAP Kinase Kinase 1/genetics
- Peptide Elongation Factor Tu
- Phosphoserine/metabolism
- Protein Engineering
- Protein Modification, Translational
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Cys/genetics
- Recombinant Fusion Proteins/biosynthesis
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Hee-Sung Park
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Michael J. Hohn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Takuya Umehara
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Li-Tao Guo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
- Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Zhou XL, Yao P, Ruan LL, Zhu B, Luo J, Qu LH, Wang ED. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase. Biochemistry 2009; 48:1340-7. [PMID: 19170608 DOI: 10.1021/bi801832j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leucyl-tRNA synthetase (LeuRS) catalyzes the esterification of the tRNA(Leu) isoacceptor with leucine. It contains a large insertion domain, connective peptide 1 (CP1), for amino acid editing. Here, we cloned the gene encoding LeuRS from Giardia lamblia (GlLeuRS), one of the most ancient eukaryotes. GlLeuRS was purified from an Escherichia coli overproduction strain, and its properties were investigated. The isolated CP1 domain of GlLeuRS (GlLeuRS-CP1) was an active protein for editing mischarged G. lamblia tRNA(Leu)(AAG) (GltRNA(Leu)). Insertion of 49 amino acid residues within the CP1 domain (the so-called 49-amino acid motif) was important for the optimal aminoacylation activity of GlLeuRS and was crucial for the editing capacity of GlLeuRS-CP1. Additionally, the motif can confer editing activity on the editing-defective isolated CP1 domain from E. coli LeuRS (EcLeuRS-CP1). We also found that GlLeuRS could not rescue a Saccharomyces cerevisiae leuS null strain, suggesting different recognition modes for these two LeuRSs with respect to tRNA(Leu).
Collapse
Affiliation(s)
- Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Guo LT, Chen XL, Zhao BT, Shi Y, Li W, Xue H, Jin YX. Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311. Nucleic Acids Res 2007; 35:5934-43. [PMID: 17726052 PMCID: PMC2034488 DOI: 10.1093/nar/gkm633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activate the ATP-PPi exchange reaction. Tryptophanyl-tRNA synthetase is a class I aaRS that catalyzes tryptophan activation in the absence of its cognate tRNA. Here we describe mutations located at the appended β1–β2 hairpin and the AIDQ sequence of human tryptophanyl-tRNA synthetase that switch this enzyme to a tRNA-dependent mode in the tryptophan activation step. For some mutant enzymes, ATP-PPi exchange activity was completely lacking in the absence of tRNATrp, which could be partially rescued by adding tRNATrp, even if it had been oxidized by sodium periodate. Therefore, these mutant enzymes have strong similarity to arginyl-tRNA synthetase, glutaminyl-tRNA synthetase and glutamyl-tRNA synthetase in their mode of amino acid activation. The results suggest that an aaRS that does not normally require tRNA for amino acid activation can be switched to a tRNA-dependent mode.
Collapse
Affiliation(s)
- Li-Tao Guo
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Xiang-Long Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Bo-Tao Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Yi Shi
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Wei Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Hong Xue
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - You-Xin Jin
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
- *To whom correspondence should be addressed. 0086 21 549212220086 21 5492 1011
| |
Collapse
|
12
|
Teodorovic S, Braverman JM, Elmendorf HG. Unusually low levels of genetic variation among Giardia lamblia isolates. EUKARYOTIC CELL 2007; 6:1421-30. [PMID: 17557879 PMCID: PMC1951139 DOI: 10.1128/ec.00138-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/29/2007] [Indexed: 11/20/2022]
Abstract
Giardia lamblia, an intestinal pathogen of mammals, including humans, is a significant cause of diarrheal disease around the world. Additionally, the parasite is found on a lineage which separated early from the main branch in eukaryotic evolution. The extent of genetic diversity among G. lamblia isolates is insufficiently understood, but this knowledge is a prerequisite to better understand the role of parasite variation in disease etiology and to examine the evolution of mechanisms of genetic exchange among eukaryotes. Intraisolate genetic variation in G. lamblia has never been estimated, and previous studies on interisolate genetic variation have included a limited sample of loci. Here we report a population genetics study of intra- and interisolate genetic diversity based on six coding and four noncoding regions from nine G. lamblia isolates. Our results indicate exceedingly low levels of genetic variation in two out of three G. lamblia groups that infect humans; this variation is sufficient to allow identification of isolate-specific markers. Low genetic diversity at both coding and noncoding regions, with an overall bias towards synonymous substitutions, was discovered. Surprisingly, we found a dichotomous haplotype structure in the third, more variable G. lamblia group, represented by a haplotype shared with one of the homogenous groups and an additional group-specific haplotype. We propose that the distinct patterns of genetic-variation distribution among lineages are a consequence of the presence of genetic exchange. More broadly, our findings have implications for the regulation of gene expression, as well as the mode of reproduction in the parasite.
Collapse
Affiliation(s)
- Smilja Teodorovic
- Biology Department, 406 Reiss Bldg., 37th and O Sts. NW, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
13
|
Cathopoulis T, Chuawong P, Hendrickson TL. Novel tRNA aminoacylation mechanisms. MOLECULAR BIOSYSTEMS 2007; 3:408-18. [PMID: 17533454 DOI: 10.1039/b618899k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Aspartate-tRNA Ligase/metabolism
- Bacteria/enzymology
- RNA, Transfer, Amino Acyl/biosynthesis
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/biosynthesis
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Gln/biosynthesis
- RNA, Transfer, Gln/chemistry
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Terry Cathopoulis
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
14
|
Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D. Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. THE PLANT CELL 2006; 18:970-91. [PMID: 16517761 PMCID: PMC1425842 DOI: 10.1105/tpc.105.039073] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana mutants prors1-1 and -2 were identified on the basis of a decrease in effective photosystem II quantum yield. Mutations were localized to the 5'-untranslated region of the nuclear gene PROLYL-tRNA SYNTHETASE1 (PRORS1), which acts in both plastids and mitochondria. In prors1-1 and -2, PRORS1 expression is reduced, along with protein synthesis in both organelles. PRORS1 null alleles (prors1-3 and -4) result in embryo sac and embryo development arrest. In mutants with the leaky prors1-1 and -2 alleles, transcription of nuclear genes for proteins involved in photosynthetic light reactions is downregulated, whereas genes for other chloroplast proteins are upregulated. Downregulation of nuclear photosynthetic genes is not associated with a marked increase in the level of reactive oxygen species in leaves and persists in the dark, suggesting that the transcriptional response is light and photooxidative stress independent. The mrpl11 and prpl11 mutants are impaired in the mitochondrial and plastid ribosomal L11 proteins, respectively. The prpl11 mrpl11 double mutant, but neither of the single mutants, resulted in strong downregulation of nuclear photosynthetic genes, like that seen in leaky mutants for PRORS1, implying that, when organellar translation is perturbed, signals derived from both types of organelles cooperate in the regulation of nuclear photosynthetic gene expression.
Collapse
Affiliation(s)
- Paolo Pesaresi
- Abteilung für Pflanzenzüchtung und Genetik, Max-Planck-Institut für Züchtungsforschung, D-50829 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Berg M, Rogers R, Muralla R, Meinke D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:866-78. [PMID: 16297076 DOI: 10.1111/j.1365-313x.2005.02580.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are required for translation in three different compartments of the plant cell: chloroplasts, mitochondria and the cytosol. Elimination of this basal function should result in lethality early in development. Phenotypes of individual mutants may vary considerably, depending on patterns of gene expression, functional redundancy, allele strength and protein localization. We describe here a reverse genetic screen of 50 insertion mutants disrupted in 21 of the 45 predicted AARSs in Arabidopsis. Our initial goal was to find additional EMB genes with a loss-of-function phenotype in the seed. Several different classes of knockouts were discovered, with defects in both gametogenesis and seed development. Three major trends were observed. Disruption of translation in chloroplasts often results in seed abortion at the transition stage of embryogenesis with minimal effects on gametophytes. Disruption of translation in mitochondria often results in ovule abortion before and immediately after fertilization. This early phenotype was frequently missed in prior screens for embryo-defective mutants. Knockout alleles of non-redundant cytosolic AARSs were in general not identified, consistent with the absolute requirement of cytosolic translation for development of male and female gametophytes. These results provide a framework for evaluating redundant functions of AARSs in Arabidopsis, a valuable data set of phenotypes resulting from multiple disruptions of a single basal process, and insights into which genes are required for both gametogenesis and embryo development and might therefore escape detection in screens for embryo-defective mutants.
Collapse
Affiliation(s)
- Michael Berg
- Department of Botany, Oklahoma State University, Stillwater, 74078, USA
| | | | | | | |
Collapse
|
16
|
Tsoka S, Simon D, Ouzounis CA. Automated metabolic reconstruction for Methanococcus jannaschii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:223-9. [PMID: 15810431 PMCID: PMC2685575 DOI: 10.1155/2004/324925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present the computational prediction and synthesis of the metabolic pathways in Methanococcus jannaschii from its genomic sequence using the PathoLogic software. Metabolic reconstruction is based on a reference knowledge base of metabolic pathways and is performed with minimal manual intervention. We predict the existence of 609 metabolic reactions that are assembled in 113 metabolic pathways and an additional 17 super-pathways consisting of one or more component pathways. These assignments represent significantly improved enzyme and pathway predictions compared with previous metabolic reconstructions, and some key metabolic reactions, previously missing, have been identified. Our results, in the form of enzymatic assignments and metabolic pathway predictions, form a database (MJCyc) that is accessible over the World Wide Web for further dissemination among members of the scientific community.
Collapse
Affiliation(s)
- Sophia Tsoka
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| | | | | |
Collapse
|
17
|
Ruan B, Nakano H, Tanaka M, Mills JA, DeVito JA, Min B, Low KB, Battista JR, Söll D. Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is still unknown. J Bacteriol 2004; 186:8-14. [PMID: 14679218 PMCID: PMC303452 DOI: 10.1128/jb.186.1.8-14.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 10/02/2003] [Indexed: 11/20/2022] Open
Abstract
Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. Söll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.
Collapse
Affiliation(s)
- Benfang Ruan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stathopoulos C, Ahel I, Ali K, Ambrogelly A, Becker H, Bunjun S, Feng L, Herring S, Jacquin-Becker C, Kobayashi H, Korencic D, Krett B, Mejlhede N, Min B, Nakano H, Namgoong S, Polycarpo C, Raczniak G, Rinehart J, Rosas-Sandoval G, Ruan B, Sabina J, Sauerwald A, Toogood H, Tumbula-Hansen D, Ibba M, Söll D. Aminoacyl-tRNA synthesis: a postgenomic perspective. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:175-83. [PMID: 12762020 DOI: 10.1101/sqb.2001.66.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C Stathopoulos
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Accurate aminoacyl-tRNA synthesis is essential for correct translation of the genetic code in all organisms. Whereas many aspects of this process are conserved, others display a surprisingly high level of divergence from the canonical Escherichia coli model system. These differences are most pronounced in archaea where novel mechanisms have recently been described for aminoacylating tRNAs with asparagine, cysteine, glutamine and lysine. Whereas these mechanisms were initially assumed to be uniquely archaeal, both the alternative asparagine and lysine pathways have subsequently been demonstrated in numerous bacteria. Similarly, studies of the means by which archaea insert the rare amino acid selenocysteine in response to UGA stop codons have helped provide a better understanding of both archaeal and eukaryal selenoprotein synthesis. Most recently a new co-translationally inserted amino acid, pyrrolysine, has been found in archaea although again there is some suggestion that it may also be present in bacteria. Thus, whereas archaea contain a preponderance of non-canonical aminoacyl-tRNA synthesis systems most are also found elsewhere albeit less frequently.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
20
|
Emelyanov VV. Mitochondrial connection to the origin of the eukaryotic cell. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1599-618. [PMID: 12694174 DOI: 10.1046/j.1432-1033.2003.03499.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic evidence is presented that primitively amitochondriate eukaryotes containing the nucleus, cytoskeleton, and endomembrane system may have never existed. Instead, the primary host for the mitochondrial progenitor may have been a chimeric prokaryote, created by fusion between an archaebacterium and a eubacterium, in which eubacterial energy metabolism (glycolysis and fermentation) was retained. A Rickettsia-like intracellular symbiont, suggested to be the last common ancestor of the family Rickettsiaceae and mitochondria, may have penetrated such a host (pro-eukaryote), surrounded by a single membrane, due to tightly membrane-associated phospholipase activity, as do present-day rickettsiae. The relatively rapid evolutionary conversion of the invader into an organelle may have occurred in a safe milieu via numerous, often dramatic, changes involving both partners, which resulted in successful coupling of the host glycolysis and the symbiont respiration. Establishment of a potent energy-generating organelle made it possible, through rapid dramatic changes, to develop genuine eukaryotic elements. Such sequential, or converging, global events could fill the gap between prokaryotes and eukaryotes known as major evolutionary discontinuity.
Collapse
|
21
|
Andersson JO, Sjögren AM, Davis LAM, Embley TM, Roger AJ. Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 2003; 13:94-104. [PMID: 12546782 DOI: 10.1016/s0960-9822(03)00003-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lateral gene transfer (LGT) is an important evolutionary mechanism among prokaryotes. The situation in eukaryotes is less clear; the human genome sequence failed to give strong support for any recent transfers from prokaryotes to vertebrates, yet a number of LGTs from prokaryotes to protists (unicellular eukaryotes) have been documented. Here, we perform a systematic analysis to investigate the impact of LGT on the evolution of diplomonads, a group of anaerobic protists. RESULTS Phylogenetic analyses of 15 genes present in the genome of the Atlantic Salmon parasite Spironucleus barkhanus and/or the intestinal parasite Giardia lamblia show that most of these genes originated via LGT. Half of the genes are putatively involved in processes related to an anaerobic lifestyle, and this finding suggests that a common ancestor, which most probably was aerobic, of Spironucleus and Giardia adapted to an anaerobic environment in part by acquiring genes via LGT from prokaryotes. The sources of the transferred diplomonad genes are found among all three domains of life, including other eukaryotes. Many of the phylogenetic reconstructions show eukaryotes emerging in several distinct regions of the tree, strongly suggesting that LGT not only involved diplomonads, but also involved other eukaryotic groups. CONCLUSIONS Our study shows that LGT is a significant evolutionary mechanism among diplomonads in particular and protists in general. These findings provide insights into the evolution of biochemical pathways in early eukaryote evolution and have important implications for studies of eukaryotic genome evolution and organismal relationships. Furthermore, "fusion" hypotheses for the origin of eukaryotes need to be rigorously reexamined in the light of these results.
Collapse
Affiliation(s)
- Jan O Andersson
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry, Dalhousie University, B3H 4H7, Halifax, Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|
22
|
Guimarães S, Sogayar MITL, Franco MF. Protease activity in Giardia duodenalis trophozoites of axenic strains isolated from symptomatic and asymptomatic patients. Mem Inst Oswaldo Cruz 2003; 98:77-81. [PMID: 12700865 DOI: 10.1590/s0074-02762003000100011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined by gelatin-SDS-PAGE the protease activity in cell lysates of Giardia duodenalis trophozoites of two axenic strains isolated in Brazil from a symptomatic patient (BTU-11) and an asymptomatic carrier (BTU-10), and the reference strain Portland 1 (P1). The proteolysis band patterns showed differences among strains isolated from asymptomatic and symptomatic individuals. The lysate of the strain BTU-10, showed only five hydrolysis bands, while a greater number of bands (10-11 bands) was seen in strains BTU-11 and P1. The protease activity in all lysates was inhibited by cysteine (E-64 and iodoacetamide) and serine proteases (TPCK and TLCK) inhibitors, but not by PMSF and EDTA. In general, the results revealed protease activities in G. duodenalis trophozoites of Brazilian axenic strains and the predominance of cysteine proteinases. It should be stressed the inter-strain difference in hydrolysis band patterns observed between strains isolated from symptomatic patients and the strain obtained from an asymptomatic carrier.
Collapse
Affiliation(s)
- Semíramis Guimarães
- Departamento de Parasitologia, Instituto de Bioci ncias, Universidade Estadual Paulista, Botucatu, SP, 18618-000, Brasil.
| | | | | |
Collapse
|
23
|
Francklyn C, Perona JJ, Puetz J, Hou YM. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA (NEW YORK, N.Y.) 2002; 8:1363-1372. [PMID: 12458790 PMCID: PMC1370343 DOI: 10.1017/s1355838202021180] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code.
Collapse
|
24
|
Ahel I, Stathopoulos C, Ambrogelly A, Sauerwald A, Toogood H, Hartsch T, Söll D. Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases. J Biol Chem 2002; 277:34743-8. [PMID: 12130657 DOI: 10.1074/jbc.m206928200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases are well known for their remarkable precision in substrate selection during aminoacyl-tRNA formation. Some synthetases enhance the accuracy of this process by editing mechanisms that lead to hydrolysis of incorrectly activated and/or charged amino acids. Prolyl-tRNA synthetases (ProRSs) can be divided into two structurally divergent groups, archaeal-type and bacterial-type enzymes. A striking difference between these groups is the presence of an insertion domain (approximately 180 amino acids) in the bacterial-type ProRS. Because the archaeal-type ProRS enzymes have been shown to recognize cysteine, we tested selected ProRSs from all three domains of life to determine whether cysteine activation is a general property of ProRS. Here we show that cysteine is activated by recombinant ProRS enzymes from the archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus, from the eukaryote Saccharomyces cerevisiae, and from the bacteria Aquifex aeolicus, Borrelia burgdorferi, Clostridium sticklandii, Cytophaga hutchinsonii, Deinococcus radiodurans, Escherichia coli, Magnetospirillum magnetotacticum, Novosphingobium aromaticivorans, Rhodopseudomonas palustris, and Thermus thermophilus. This non-cognate amino acid was efficiently acylated in vitro onto tRNA(Pro), and the misacylated Cys-tRNA(Pro) was not edited by ProRS. Therefore, ProRS exhibits a natural level of mischarging that is to date unequalled among the aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Ivan Ahel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kitabatake M, Ali K, Demain A, Sakamoto K, Yokoyama S, Söll D. Indolmycin resistance of Streptomyces coelicolor A3(2) by induced expression of one of its two tryptophanyl-tRNA synthetases. J Biol Chem 2002; 277:23882-7. [PMID: 11970956 DOI: 10.1074/jbc.m202639200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases, a family of enzymes essential for protein synthesis, are promising targets of antimicrobials. Indolmycin, a secondary metabolite of Streptomyces griseus and a selective inhibitor of prokaryotic tryptophanyl-tRNA synthetase (TrpRS), was used to explore the mechanism of inhibition and to explain the resistance of a naturally occurring strain. Streptomyces coelicolor A3(2), an indolmycin-resistant strain, contains two trpS genes encoding distinct TrpRS enzymes. We show that TrpRS1 is indolmycin-resistant in vitro and in vivo, whereas TrpRS2 is sensitive. The lysine (position 9) in the enzyme tryptophan binding site is essential for making TrpRS1 indolmycin-resistant. Replacement of lysine 9 by glutamine, which at this position is conserved in most bacterial TrpRS proteins, abolished the ability of the mutant trpS gene to confer indolmycin resistance in vivo. Molecular modeling suggests that lysine 9 sterically hinders indolmycin binding to the enzyme. Tryptophan recognition (assessed by k(cat)/K(M)) by TrpRS1 is 4-fold lower than that of TrpRS2. Examination of the mRNA for the two enzymes revealed that only TrpRS2 mRNA is constitutively expressed, whereas mRNA for the indolmycin-resistant TrpRS1 enzyme is induced when the cells are exposed to indolmycin.
Collapse
Affiliation(s)
- Makoto Kitabatake
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Graham DE, Xu H, White RH. A divergent archaeal member of the alkaline phosphatase binuclear metalloenzyme superfamily has phosphoglycerate mutase activity. FEBS Lett 2002; 517:190-4. [PMID: 12062435 DOI: 10.1016/s0014-5793(02)02619-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The hyperthermophilic archaeon Methanococcus jannaschii uses several non-canonical enzymes to catalyze conserved reactions in glycolysis and gluconeogenesis. A highly diverged gene from that organism has been proposed to function as a phosphoglycerate mutase. Like the canonical cofactor-independent phosphoglycerate mutase and other members of the binuclear metalloenzyme superfamily, this M. jannaschii protein has conserved nucleophilic serine and metal-binding residues. Yet the substrate-binding residues are not conserved. We show that the genes at M. jannaschii loci MJ0010 and MJ1612 encode thermostable enzymes with phosphoglycerate mutase activity. Phylogenetic analyses suggest that this gene family arose before the divergence of the archaeal lineage.
Collapse
Affiliation(s)
- David E Graham
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0308, USA
| | | | | |
Collapse
|
27
|
Jacquin-Becker C, Ahel I, Ambrogelly A, Ruan B, Söll D, Stathopoulos C. Cysteinyl-tRNA formation and prolyl-tRNA synthetase. FEBS Lett 2002; 514:34-6. [PMID: 11904177 DOI: 10.1016/s0014-5793(02)02331-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aminoacyl-tRNA (AA-tRNA) formation is a key step in protein biosynthesis. This reaction is catalyzed with remarkable accuracy by the AA-tRNA synthetases, a family of 20 evolutionarily conserved enzymes. The lack of cysteinyl-tRNA (Cys-tRNA) synthetase in some archaea gave rise to the discovery of the archaeal prolyl-tRNA (Pro-tRNA) synthetase, an enzyme capable of synthesizing Pro-tRNA and Cys-tRNA. Here we review our current knowledge of this fascinating process.
Collapse
Affiliation(s)
- Clarisse Jacquin-Becker
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lipman RSA, Beuning PJ, Musier-Forsyth K, Hou YM. Amino acid activation of a dual-specificity tRNA synthetase is independent of tRNA. J Mol Biol 2002; 316:421-7. [PMID: 11866507 DOI: 10.1006/jmbi.2001.5373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transfer RNA can play a role in amino acid activation by aminoacyl-tRNA synthetases. For the prolyl-tRNA synthetase (ProRS) of Methanococcus jannaschii, which activates both proline and cysteine, the role of tRNA in amino acid selection and activation is of interest in the effort to understand the mechanism of the dual-specificity. While activation of proline does not require tRNA, whether or not tRNA is required in the activation of cysteine has been a matter of debate. Here, investigation of a series of buffer conditions shows that activation of cysteine occurs without tRNA in a wide-range of buffers. However, the extent of cysteine activation is strongly buffer-dependent, varying over a 180-fold range. In contrast, the extent of proline activation is much less sensitive to buffer conditions, varying over only a 36-fold range. We also find that addition of tRNA has a small threefold stimulatory effect on cysteine activation. The lack of a major role of tRNA in activation of cysteine suggests that the dual-specificity enzyme must distinguish cysteine from proline directly, without the assistance of each cognate tRNA, to achieve the necessary specificity required for protein synthesis.
Collapse
Affiliation(s)
- Richard S A Lipman
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
29
|
Stathopoulos C, Kim W, Li T, Anderson I, Deutsch B, Palioura S, Whitman W, Söll D. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 2001; 98:14292-7. [PMID: 11717392 PMCID: PMC64675 DOI: 10.1073/pnas.201540498] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The methanogenic archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus contain a dual-specificity prolyl-tRNA synthetase (ProCysRS) that accurately forms both prolyl-tRNA (Pro-tRNA) and cysteinyl-tRNA (Cys-tRNA) suitable for in vivo translation. This intriguing enzyme may even perform its dual role in organisms that possess a canonical single-specificity cysteinyl-tRNA synthetase (CysRS), raising the question as to whether this latter aminoacyl-tRNA synthetase is indeed required for cell viability. To test the postulate that all synthetase genes are essential, we disrupted the cysS gene (encoding CysRS) of Methanococcus maripaludis. The knockout strain was viable under normal growth conditions. Biochemical analysis showed that the pure M. maripaludis ProCysRS was capable of forming Cys-tRNA, implying that the dual-specificity enzyme compensates in vivo for the loss of CysRS. The canonical CysRS has a higher affinity for cysteine than ProCysRS, a reason why M. maripaludis may have acquired cysS by a late lateral gene transfer. These data challenge the notion that all twenty aminoacyl-tRNA synthetases are essential for the viability of a cell.
Collapse
Affiliation(s)
- C Stathopoulos
- Department of Molecular Biophysics, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The role of tRNA as the adaptor in protein synthesis has held an enduring fascination for molecular biologists. Over four decades of study, taking in numerous milestones in molecular biology, led to what was widely held to be a fairly complete picture of how tRNAs and amino acids are paired prior to protein synthesis. However, recent developments in genomics and structural biology have revealed an unexpected array of new enzymes, pathways and mechanisms involved in aminoacyl-tRNA synthesis. As a more complete picture of aminoacyl-tRNA synthesis now begins to emerge, the high degree of evolutionary diversity in this universal and essential process is becoming clearer.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, Laboratory B, The Panum Institute, Blegdamsvej 3c, DK-2200, Copenhagen N,
| | | |
Collapse
|
31
|
Yaremchuk A, Tukalo M, Grøtli M, Cusack S. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. J Mol Biol 2001; 309:989-1002. [PMID: 11399074 DOI: 10.1006/jmbi.2001.4712] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the recognition by Thermus thermophilus prolyl-tRNA synthetase (ProRSTT) of proline, ATP and prolyl-adenylate and the sequential conformational changes occurring when the substrates bind and the activated intermediate is formed. Proline and ATP binding cause respectively conformational changes in the proline binding loop and motif 2 loop. However formation of the activated intermediate is necessary for the final conformational ordering of a ten residue peptide ("ordering loop") close to the active site which would appear to be essential for functional tRNA 3' end binding. These induced fit conformational changes ensure that the enzyme is highly specific for proline activation and aminoacylation. We also present new structures of apo and AMP bound histidyl-tRNA synthetase (HisRS) from T. thermophilus which we compare to our previous structures of the histidine and histidyl-adenylate bound enzyme. Qualitatively, similar results to those observed with T. thermophilus prolyl-tRNA synthetase are found. However histidine binding is sufficient to induce the co-operative ordering of the topologically equivalent histidine binding loop and ordering loop. These two examples contrast with most other class II aminoacyl-tRNA synthetases whose pocket for the cognate amino acid side-chain is largely preformed. T. thermophilus prolyl-tRNA synthetase appears to be the second class II aminoacyl-tRNA synthetase, after HisRS, to use a positively charged amino acid instead of a divalent cation to catalyse the amino acid activation reaction.
Collapse
Affiliation(s)
- A Yaremchuk
- European Molecular Biology Laboratory, Grenoble Outstation, c/o ILL, 156X, F-38042, Grenoble, Cedex 9, France
| | | | | | | |
Collapse
|
32
|
Burke B, Lipman RS, Shiba K, Musier-Forsyth K, Hou YM. Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase. J Biol Chem 2001; 276:20286-91. [PMID: 11342535 DOI: 10.1074/jbc.m100456200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of prolyl-tRNA synthetase (ProRS) across all three taxonomic domains (Eubacteria, Eucarya, and Archaea) reveals that the sequences are divided into two distinct groups. Recent studies show that Escherichia coli ProRS, a member of the "prokaryotic-like" group, recognizes specific tRNA bases at both the acceptor and anticodon ends, whereas human ProRS, a member of the "eukaryotic-like" group, recognizes nucleotide bases primarily in the anticodon. The archaeal Methanococcus jannaschii ProRS is a member of the eukaryotic-like group, although its tRNA(Pro) possesses prokaryotic features in the acceptor stem. We show here that, in some respects, recognition of tRNA(Pro) by M. jannaschii ProRS parallels that of human, with a strong emphasis on the anticodon and only weak recognition of the acceptor stem. However, our data also indicate differences in the details of the anticodon recognition between these two eukaryotic-like synthetases. Although the human enzyme places a stronger emphasis on G35, the M. jannaschii enzyme places a stronger emphasis on G36, a feature that is shared by E. coli ProRS. These results, interpreted in the context of an extensive sequence alignment, provide evidence of divergent adaptation by M. jannaschii ProRS; recognition of the tRNA acceptor end is eukaryotic-like, whereas the details of the anticodon recognition are prokaryotic-like. This divergence may be a reflection of the unusual dual function of this enzyme, which catalyzes specific aminoacylation with proline as well as with cysteine.
Collapse
Affiliation(s)
- B Burke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
33
|
Fàbrega C, Farrow MA, Mukhopadhyay B, de Crécy-Lagard V, Ortiz AR, Schimmel P. An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Nature 2001; 411:110-4. [PMID: 11333988 DOI: 10.1038/35075121] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aminoacyl transfer RNA synthetases catalyse the first step of protein synthesis and establish the rules of the genetic code through the aminoacylation of tRNAs. There is a distinct synthetase for each of the 20 amino acids and throughout evolution these enzymes have been divided into two classes of ten enzymes each. These classes are defined by the distinct architectures of their active sites, which are associated with specific and universal sequence motifs. Because the synthesis of aminoacyl-tRNAs containing each of the twenty amino acids is a universally conserved, essential reaction, the absence of a recognizable gene for cysteinyl tRNA synthetase in the genomes of Archae such as Methanococcus jannaschii and Methanobacterium thermoautotrophicum has been difficult to interpret. Here we describe a different cysteinyl-tRNA synthetase from M. jannaschii and Deinococcus radiodurans and its characterization in vitro and in vivo. This protein lacks the characteristic sequence motifs seen in the more than 700 known members of the two canonical classes of tRNA synthetase and may be of ancient origin. The existence of this protein contrasts with proposals that aminoacylation with cysteine in M. jannaschii is an auxiliary function of a canonical prolyl-tRNA synthetase.
Collapse
Affiliation(s)
- C Fàbrega
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Beckman Center, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
34
|
Salazar JC, Zuñiga R, Lefimil C, Söll D, Orellana O. Conserved amino acids near the carboxy terminus of bacterial tyrosyl-tRNA synthetase are involved in tRNA and Tyr-AMP binding. FEBS Lett 2001; 491:257-60. [PMID: 11240138 DOI: 10.1016/s0014-5793(01)02214-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial tyrosyl-tRNA synthetases occur in two large subfamilies, TyrRS and TyrRZ, that possess about 25% amino acid identity. Their amino-terminal region, the active site domain, is more conserved (>36% identity). The carboxy-terminal segment of these enzymes includes the tRNA binding domain and contains only few conserved residues. Replacement of three of these residues in Acidithiobacillus ferrooxidans TyrRZ revealed that S356 and K395 play roles in tRNA binding, while H306, a residue at the junction of the catalytic and tRNA binding domains, stabilizes the Tyr-AMP:TyrRZ complex. The replacement data suggest that conserved amino acids in A. ferrooxidans TyrRZ and Bacillus stearothermophilus TyrRS play equivalent roles in enzyme function.
Collapse
Affiliation(s)
- J C Salazar
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|