1
|
Bridges K, Pizzurro GA, Baysoy A, Baskaran JP, Xu Z, Mathew V, Tripple V, LaPorte M, Park K, Damsky W, Kluger H, Fan R, Kaech SM, Bosenberg MW, Miller-Jensen K. Mapping intratumoral myeloid-T cell interactomes at single-cell resolution reveals targets for overcoming checkpoint inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620093. [PMID: 39554094 PMCID: PMC11565996 DOI: 10.1101/2024.10.28.620093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Effective cancer immunotherapies restore anti-tumor immunity by rewiring cell-cell communication. Treatment-induced changes in communication can be inferred from single-cell RNA-sequencing (scRNA-seq) data, but current methods do not effectively manage heterogeneity within cell types. Here we developed a computational approach to efficiently analyze scRNA-seq-derived, single-cell-resolved cell-cell interactomes, which we applied to determine how agonistic CD40 (CD40ag) alters immune cell crosstalk alone, across tumor models, and in combination with immune checkpoint blockade (ICB). Our analyses suggested that CD40ag improves responses to ICB by targeting both immuno-stimulatory and immunosuppressive macrophage subsets communicating with T cells, and we experimentally validated a spatial basis for these subsets with immunofluorescence and spatial transcriptomics. Moreover, treatment with CD40ag and ICB established coordinated myeloid-T cell interaction hubs that are critical for reestablishing antitumor immunity. Our work advances the biological significance of hypotheses generated from scRNA-seq-derived cell-cell interactomes and supports the clinical translation of myeloid-targeted therapies for ICB-resistant tumors.
Collapse
Affiliation(s)
- Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Present address: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Janani P. Baskaran
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Varsha Mathew
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Victoria Tripple
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael LaPorte
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Harriet Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Systems Biology Institute, Yale University, New Haven, CT 06511, USA
- Lead contact
| |
Collapse
|
2
|
Bailey JT, Cangialosi S, Moshkani S, Rexhouse C, Cimino JL, Robek MD. CD40 stimulation activates CD8+ T cells and controls HBV in CD4-depleted mice. JHEP Rep 2024; 6:101121. [PMID: 39282227 PMCID: PMC11399595 DOI: 10.1016/j.jhepr.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 09/18/2024] Open
Abstract
Background & Aims HBV treatment is challenging due to the persistence of the covalently closed circular DNA replication pool, which remains unaffected by antiviral intervention. In this study, we determined whether targeting antigen-presenting cells via CD40 stimulation represents an appropriate therapeutic approach for achieving sustained HBV control in a mouse model of HBV replication. Methods Mice were transduced with an adeno-associated virus encoding the HBV genome (AAV-HBV) to initiate HBV replication and were administered agonistic CD40 antibody. CD4-depleting antibody was administered in addition to the CD40 antibody. Viral antigens in the blood were measured over time to determine HBV control. HBV-specific CD8+ T cells were quantified in the spleen and liver at the experimental endpoint. Results CD40 stimulation in CD4-depleted AAV-HBV mice resulted in the clearance of HBsAg and HBeAg, along with a reduction in liver HBV mRNA, contrasting with CD4-competent counterparts. CD8+ T cells were indispensable for CD40-mediated HBV control, determined by HBV persistence following their depletion. In CD4-replete mice, CD40 stimulation initially facilitated the expansion of HBV-specific CD8+ T cells, which subsequently could not control HBV. Finally, α-CD4/CD40 treatment reduced antigenemia and liver HBV mRNA levels in chronic AAV-HBV mice, with further enhancement through synergy with immunization by VSV-MHBs (vesicular stomatitis virus expressing middle HBsAg). Conclusions Our findings underscore the potential of CD40 stimulation as a targeted therapeutic strategy for achieving sustained HBV control and reveal a CD4+ T cell-dependent limitation on CD40-mediated antiviral efficacy. Impact and implications Immunotherapy has the potential to overcome immune dysfunction in chronic HBV infection. Using a mouse model of HBV replication, this study shows that CD40 stimulation can induce sustained HBV control, which is dependent on CD8+ T cells and further enhanced by co-immunization. Unexpectedly, CD40-mediated HBV reduction was improved by the depletion of CD4+ cells. These findings suggest potential strategies for reversing HBV persistence in infected individuals.
Collapse
Affiliation(s)
- Jacob T Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sophia Cangialosi
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Safiehkhatoon Moshkani
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Catherine Rexhouse
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Jesse L Cimino
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Michael D Robek
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
3
|
Ertl I, Shariat SF, Berger W, Englinger B. Preclinical models for bladder cancer therapy research. Curr Opin Urol 2024; 34:244-250. [PMID: 38630912 PMCID: PMC11155278 DOI: 10.1097/mou.0000000000001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
PURPOSE OF REVIEW Bladder cancer (BC) is a highly heterogenous disease comprising tumours of various molecular subtypes and histologic variants. This heterogeneity represents a major challenge for the development of novel therapeutics. Preclinical models that closely mimic in vivo tumours and reflect their diverse biology are indispensable for the identification of therapies with specific activity in various BC subtypes. In this review, we summarize efforts and progress made in this context during the last 24 months. RECENT FINDINGS In recent years, one main focus was laid on the development of patient-derived BC models. Patient-derived organoids (PDOs) and patient-derived xenografts (PDXs) were demonstrated to widely recapitulate the molecular and histopathological characteristics, as well as the drug response profiles of the corresponding tumours of origin. These models, thus, represent promising tools for drug development and personalized medicine. Besides PDXs, syngenic in vivo models are of growing importance. Since these models are generated using immunocompetent hosts, they can, amongst others, be used to develop novel immunotherapeutics and to evaluate the impact of the immune system on drug response and resistance. SUMMARY In the past two years, various in vivo and in vitro models closely recapitulating the biology and heterogeneity of human bladder tumours were developed.
Collapse
Affiliation(s)
- Iris Ertl
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F. Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Weill Cornell Medical College, New York, New York
- Department of Urology, University of Texas Southwestern, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Research Center for Evidence Medicine, Urology Department Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Walter Berger
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Bernard Englinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Jian CZ, Lin L, Hsu CL, Chen YH, Hsu C, Tan CT, Ou DL. A potential novel cancer immunotherapy: Agonistic anti-CD40 antibodies. Drug Discov Today 2024; 29:103893. [PMID: 38272173 DOI: 10.1016/j.drudis.2024.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
CD40, a novel immunomodulatory cancer therapy target, is expressed by B cells, macrophages, and dendritic cells (DCs) and mediates cytotoxic T cell priming through the CD40 ligand. Some tumors show promising responses to monotherapy or combination therapy with agonistic anti-CD40 antibodies. The development of improved anti-CD40 antibodies makes CD40 activation an innovative strategy in cancer immunotherapy. In this review, we trace the history of CD40 research and summarize preclinical and clinical findings. We emphasize the ongoing development of improved anti-CD40 antibodies and explore strategies for effective combination therapies. Guided by predictive biomarkers, future research should identify patient populations benefiting the most from CD40 activation.
Collapse
Affiliation(s)
- Cheng-Zhe Jian
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Li Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chia-Lang Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Yu-Hsin Chen
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chiun Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Medical Oncology, National Taiwan University Cancer Center, Taipei 10051, Taiwan
| | - Ching-Ting Tan
- Stem Cell Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan.
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|