1
|
Bhuckory MB, Wang BY, Chen ZC, Shin A, Pham-Howard D, Shah S, Monkongpitukkul N, Galambos L, Kamins T, Mathieson K, Palanker D. 3D electronic implants in subretinal space: Long-term follow-up in rodents. Biomaterials 2024; 311:122674. [PMID: 38897028 PMCID: PMC11298295 DOI: 10.1016/j.biomaterials.2024.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Clinical results with photovoltaic subretinal prosthesis (PRIMA) demonstrated restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution matching the 100 μm pixel size. Since scaling the pixels below 75 μm in the current bipolar planar geometry will significantly limit the penetration depth of the electric field and increase stimulation threshold, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 32-36 weeks post-implantation in aged rats. With both flat and 3D implants, signals elicited in the visual cortex decreased after the day of implantation by more than 3-fold, and gradually recovered over the next 12-16 weeks. With 25 μm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the retina. Retinal thickness and full-field stimulation threshold with 40 μm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10 ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 μm-wide wells, and stimulation threshold increased over 12-16 weeks, before stabilizing at about 0.08 mW/mm2. Such threshold is still significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.
Collapse
Affiliation(s)
- Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA.
| | - Bing-Yi Wang
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Zhijie C Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Andrew Shin
- Department of Material Science, Stanford University, Stanford, CA, USA
| | - Davis Pham-Howard
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Sarthak Shah
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Nicharee Monkongpitukkul
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Ludwig Galambos
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Theodore Kamins
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Keith Mathieson
- Department of Physics, Institute of Photonics, University of Strathclyde, Glasgow, Scotland, UK
| | - Daniel Palanker
- Department of Ophthalmology, Stanford University, Stanford, CA, USA; Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Du Z, Chen G, Li Y, Zheng N, Cheng JX, Yang C. Photoacoustic: A Versatile Nongenetic Method for High-Precision Neuromodulation. Acc Chem Res 2024; 57:1595-1607. [PMID: 38759211 PMCID: PMC11154953 DOI: 10.1021/acs.accounts.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
High-precision neuromodulation plays a pivotal role in elucidating fundamental principles of neuroscience and treating specific neurological disorders. Optical neuromodulation, enabled by spatial resolution defined by the diffraction limit at the submicrometer scale, is a general strategy to achieve such precision. Optogenetics offers single-neuron spatial resolution with cellular specificity, whereas the requirement of genetic transfection hinders its clinical application. Direct photothermal modulation, an alternative nongenetic optical approach, often associates a large temperature increase with the risk of thermal damage to surrounding tissues.Photoacoustic (also called optoacoustic) neural stimulation is an emerging technology for neural stimulation with the following key features demonstrated. First, the photoacoustic approach demonstrated high efficacy without the need for genetic modification. The generated pulsed ultrasound upon ns laser pulses with energy ranging from a few μJ to tens of μJ is sufficient to activate wild-type neurons. Second, the photoacoustic approach provides sub-100-μm spatial precision. It overcomes the fundamental wave diffraction limit of ultrasound by harnessing the localized ultrasound field generated through light absorption. A spatial precision of 400 μm has been achieved in rodent brains using a fiber-based photoacoustic emitter. Single-cell stimulation in neuronal cultures in vitro and in brain slices ex vivo is achieved using tapered fiber-based photoacoustic emitters. This precision is 10 to 100 times better than that for piezo-based low-frequency ultrasound and is essential to pinpoint a specific region or cell population in a living brain. Third, compared to direct photothermal stimulation via temperature increase, photoacoustic stimulation requires 40 times less laser energy dose to evoke neuron activities and is associated with a minimal temperature increase of less than 1 °C, preventing potential thermal damage to neurons. Fourth, photoacoustics is a versatile approach and can be designed in various platforms aiming at specific applications. Our team has shown the design of fiber-based photoacoustic emitters, photoacoustic nanotransducers, soft biocompatible photoacoustic films, and soft photoacoustic lenses. Since they interact with neurons through ultrasound without the need for direct contact, photoacoustic enables noninvasive transcranial and dura-penetrating brain stimulation without compromising high precision.In this Account, we will first review the basic principles of photoacoustic and discuss the key design elements of PA transducers for neural modulation guided by the principle. We will also highlight how these design goals were achieved from a materials chemistry perspective. The design of different PA interfaces, their unique capability, and their applications in neural systems will be reviewed. In the end, we will discuss the remaining challenges and future perspectives for this technology.
Collapse
Affiliation(s)
- Zhiyi Du
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Guo Chen
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yueming Li
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Nan Zheng
- Division
of Materials Science and Engineering, Boston
University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Chen Yang
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Azrad Leibovitch T, Farah N, Markus A, Mandel Y. A novel GCaMP6f-RCS rat model for studying electrical stimulation in the degenerated retina. Front Cell Dev Biol 2024; 12:1386141. [PMID: 38711618 PMCID: PMC11070775 DOI: 10.3389/fcell.2024.1386141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background: Retinal prostheses aim to restore vision by electrically stimulating the remaining viable retinal cells in Retinal Degeneration (RD) cases. Research in this field necessitates a comprehensive analysis of retinal ganglion cells' (RGCs) responses to assess the obtained visual acuity and quality. Here we present a novel animal model which facilitates the optical recording of RGCs activity in an RD rat. This model can significantly enhance the functional evaluation of vision restoration treatments. Methods: The development of the novel rat model is based on crossbreeding a retinal degenerated Royal College of Surgeons (RCS) rat with a transgenic line expressing the genetic calcium indicator GCaMP6f in the RGCs. Characterization of the model was achieved using Optical Coherence Tomography (OCT) imaging, histology, and electroretinography (ERG) at the ages of 4, 8, and 12 weeks. Additionally, optical recordings of RGCs function in response to ex-vivo subretinal electrical stimulations were performed. Results: Histological investigations confirmed the high expression of GCaMP6f in the RGCs and minimal expression in the inner nuclear layer (INL). OCT imaging and histological studies revealed the expected gradual retinal degeneration, as evident by the decrease in retinal thickness with age and the formation of subretinal debris. This degeneration was further confirmed by ERG recordings, which demonstrated a significant decrease in the b-wave amplitude throughout the degeneration process, culminating in its absence at 12 weeks in the GCaMP6f-RCS rat. Importantly, the feasibility of investigating subretinal stimulation was demonstrated, revealing a consistent increase in activation threshold throughout degeneration. Furthermore, an increase in the diameter of the activated area with increasing currents was observed. The spatial spread of the activation area in the GCaMP6f-RCS rat was found to be smaller and exhibited faster activation dynamics compared with the GCaMP6f-LE strain. Conclusion: This novel animal model offers an opportunity to deepen our understanding of prosthetically induced retinal responses, potentially leading to significant advancements in prosthetic interventions in visual impairments.
Collapse
Affiliation(s)
- Tamar Azrad Leibovitch
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Nairouz Farah
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Amos Markus
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| | - Yossi Mandel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan, Israel
- Faculty of Life Sciences, School of Optometry and Visual Science, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Bhuckory MB, Monkongpitukkul N, Shin A, Goldstein AK, Jensen N, Shah SV, Pham-Howard D, Butt E, Dalal R, Galambos L, Mathieson K, Kamins T, Palanker D. Enhancing Prosthetic Vision by Upgrade of a Subretinal Photovoltaic Implant in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589465. [PMID: 38659843 PMCID: PMC11042236 DOI: 10.1101/2024.04.15.589465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In patients with atrophic age-related macular degeneration, subretinal photovoltaic implant (PRIMA) provided visual acuity up to 20/440, matching its 100μm pixels size. Next-generation implants with smaller pixels should significantly improve the acuity. This study in rats evaluates removal of a subretinal implant, replacement with a newer device, and the resulting grating acuity in-vivo. Six weeks after the initial implantation with planar and 3-dimensional devices, the retina was re-detached, and the devices were successfully removed. Histology demonstrated a preserved inner nuclear layer. Re-implantation of new devices into the same location demonstrated retinal re-attachment to a new implant. New devices with 22μm pixels increased the grating acuity from the 100μm capability of PRIMA implants to 28μm, reaching the limit of natural resolution in rats. Reimplanted devices exhibited the same stimulation threshold as for the first implantation of the same implants in a control group. This study demonstrates the feasibility of safely upgrading the subretinal photovoltaic implants to improve prosthetic visual acuity.
Collapse
Affiliation(s)
- Mohajeet B Bhuckory
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Nicharee Monkongpitukkul
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Faculty of Medicine, Prince of Songkla University, Thailand
| | - Andrew Shin
- Department of Material Science, Stanford University, Stanford, CA, USA
| | | | - Nathan Jensen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Sarthak V Shah
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Davis Pham-Howard
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Emma Butt
- Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Ludwig Galambos
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
| | - Keith Mathieson
- Department of Physics, University of Strathclyde, Glasgow, Scotland, UK
| | - Theodore Kamins
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94303, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Butt E, Wang BY, Shin A, Chen ZC, Bhuckory M, Shah S, Galambos L, Kamins T, Palanker D, Mathieson K. Three-dimensional electro-neural interfaces electroplated on subretinal prostheses. J Neural Eng 2024; 21:016030. [PMID: 38364290 PMCID: PMC10884765 DOI: 10.1088/1741-2552/ad2a37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Objective.Retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigated 3-dimensional (3d) structures on top of photovoltaic arrays for enhanced penetration of the electric field, permitting higher resolution implants.Approach.3D COMSOL models of subretinal photovoltaic arrays were developed to accurately quantify the electrodynamics during stimulation and verified through comparison to flat photovoltaic arrays. Models were applied to optimize the design of 3D electrode structures (pillars and honeycombs). Return electrodes on honeycomb walls vertically align the electric field with bipolar cells for optimal stimulation. Pillars elevate the active electrode, thus improving proximity to target neurons. The optimized 3D structures were electroplated onto existing flat subretinal prostheses.Main results.Simulations demonstrate that despite exposed conductive sidewalls, charge mostly flows via high-capacitance sputtered iridium oxide films topping the 3D structures. The 24μm height of honeycomb structures was optimized for integration with the inner nuclear layer cells in the rat retina, whilst 35μm tall pillars were optimized for penetrating the debris layer in human patients. Implantation of released 3D arrays demonstrates mechanical robustness, with histology demonstrating successful integration of 3D structures with the rat retinain-vivo.Significance. Electroplated 3D honeycomb structures produce vertically oriented electric fields, providing low stimulation thresholds, high spatial resolution, and high contrast for pixel sizes down to 20μm. Pillar electrodes offer an alternative for extending past the debris layer. Electroplating of 3D structures is compatible with the fabrication process of flat photovoltaic arrays, enabling much more efficient retinal stimulation.
Collapse
Affiliation(s)
- Emma Butt
- Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| | - Bing-Yi Wang
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America
- Department of Physics, Stanford University, Stanford, CA, United States of America
| | - Andrew Shin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| | - Zhijie Charles Chen
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Mohajeet Bhuckory
- Department of Ophthalmology, Stanford University, Stanford, CA, United States of America
| | - Sarthak Shah
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America
| | - Ludwig Galambos
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Theodore Kamins
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States of America
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, United States of America
- Department of Ophthalmology, Stanford University, Stanford, CA, United States of America
| | - Keith Mathieson
- Institute of Photonics, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|