1
|
Armstrong A, Isalan M. Engineering bacterial theranostics: from logic gates to in vivo applications. Front Bioeng Biotechnol 2024; 12:1437301. [PMID: 39359265 PMCID: PMC11444965 DOI: 10.3389/fbioe.2024.1437301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Over the past 2 decades, rapid advances in synthetic biology have enabled the design of increasingly intricate and biologically relevant systems with broad applications in healthcare. A growing area of interest is in designing bacteria that sense and respond to endogenous disease-associated signals, creating engineered theranostics that function as disease surveyors for human health. In particular, engineered cells hold potential in facilitating greatly enhanced temporal and spatial control over the release of a range of therapeutics. Such systems are particularly useful for targeting challenging, under-drugged disease targets in a more nuanced manner than is currently possible. This review provides an overview of the recent advances in the design, delivery, and dynamics of bacterial theranostics to enable safe, robust, and genetically tractable therapies to treat disease. It outlines the primary challenges in theranostic clinical translation, proposes strategies to overcome these issues, and explores promising future avenues for the field.
Collapse
Affiliation(s)
- Angus Armstrong
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Allen ME, Kamilova E, Monck C, Ceroni F, Hu Y, Yetisen AK, Elani Y. Engineered Bacteria as Living Biosensors in Dermal Tattoos. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309509. [PMID: 38884139 PMCID: PMC11321667 DOI: 10.1002/advs.202309509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Dermal tattoo biosensors are promising platforms for real-time monitoring of biomarkers, with skin used as a diagnostic interface. Traditional tattoo sensors have utilized small molecules as biosensing elements. However, the rise of synthetic biology has enabled the potential employment of engineered bacteria as living analytical tools. Exploiting engineered bacterial sensors will allow for potentially more sensitive detection across a broad biomarker range, with advanced processing and sense/response functionalities using genetic circuits. Here, the interfacing of bacterial biosensors as living analytics in tattoos is shown. Engineered bacteria are encapsulated into micron-scale hydrogel beads prepared through scalable microfluidics. These biosensors can sense both biochemical cues (model biomarkers) and biophysical cues (temperature changes, using RNA thermometers), with fluorescent readouts. By tattooing beads into skin models and confirming sensor activity post-tattooing, our study establishes a foundation for integrating bacteria as living biosensing entities in tattoos.
Collapse
Affiliation(s)
- Matthew E. Allen
- Department of ChemistryImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Institute of Chemical BiologyImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Department of Chemical EngineeringImperial College LondonSouth KensingtonLondonSW7 2AZUK
- fabriCELLImperial College London and King's College LondonLondonW12 0BZUK
| | - Elina Kamilova
- Department of Chemical EngineeringImperial College LondonSouth KensingtonLondonSW7 2AZUK
| | - Carolina Monck
- Department of Chemical EngineeringImperial College LondonSouth KensingtonLondonSW7 2AZUK
| | - Francesca Ceroni
- Department of Chemical EngineeringImperial College LondonSouth KensingtonLondonSW7 2AZUK
| | - Yubing Hu
- Department of Chemical EngineeringImperial College LondonSouth KensingtonLondonSW7 2AZUK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonSouth KensingtonLondonSW7 2AZUK
| | - Yuval Elani
- Institute of Chemical BiologyImperial College LondonMolecular Sciences Research HubLondonW12 0BZUK
- Department of Chemical EngineeringImperial College LondonSouth KensingtonLondonSW7 2AZUK
- fabriCELLImperial College London and King's College LondonLondonW12 0BZUK
| |
Collapse
|
3
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
4
|
Dimitriou P, Li J, Jamieson WD, Schneider JJ, Castell OK, Barrow DA. Manipulation of encapsulated artificial phospholipid membranes using sub-micellar lysolipid concentrations. Commun Chem 2024; 7:120. [PMID: 38824266 PMCID: PMC11144220 DOI: 10.1038/s42004-024-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Droplet Interface Bilayers (DIBs) constitute a commonly used model of artificial membranes for synthetic biology research applications. However, their practical use is often limited by their requirement to be surrounded by oil. Here we demonstrate in-situ bilayer manipulation of submillimeter, hydrogel-encapsulated droplet interface bilayers (eDIBs). Monolithic, Cyclic Olefin Copolymer/Nylon 3D-printed microfluidic devices facilitated the eDIB formation through high-order emulsification. By exposing the eDIB capsules to varying lysophosphatidylcholine (LPC) concentrations, we investigated the interaction of lysolipids with three-dimensional DIB networks. Micellar LPC concentrations triggered the bursting of encapsulated droplet networks, while at lower concentrations the droplet network endured structural changes, precisely affecting the membrane dimensions. This chemically-mediated manipulation of enclosed, 3D-orchestrated membrane mimics, facilitates the exploration of readily accessible compartmentalized artificial cellular machinery. Collectively, the droplet-based construct can pose as a chemically responsive soft material for studying membrane mechanics, and drug delivery, by controlling the cargo release from artificial cell chassis.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - Jin Li
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - William David Jamieson
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Johannes Josef Schneider
- Institute of Applied Mathematics and Physics, School of Engineering, Zurich University of Applied Sciences, Technikumstr. 9, 8401, Winterthur, Switzerland
| | - Oliver Kieran Castell
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - David Anthony Barrow
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK
| |
Collapse
|
5
|
Zhu K, Gispert Contamina I, Ces O, Barter LMC, Hindley JW, Elani Y. Magnetic Modulation of Biochemical Synthesis in Synthetic Cells. J Am Chem Soc 2024; 146:13176-13182. [PMID: 38691505 PMCID: PMC11099998 DOI: 10.1021/jacs.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Synthetic cells can be constructed from diverse molecular components, without the design constraints associated with modifying 'living' biological systems. This can be exploited to generate cells with abiotic components, creating functionalities absent in biology. One example is magnetic responsiveness, the activation and modulation of encapsulated biochemical processes using a magnetic field, which is absent from existing synthetic cell designs. This is a critical oversight, as magnetic fields are uniquely bio-orthogonal, noninvasive, and highly penetrative. Here, we address this by producing artificial magneto-responsive organelles by coupling thermoresponsive membranes with hyperthermic Fe3O4 nanoparticles and embedding them in synthetic cells. Combining these systems enables synthetic cell microreactors to be built using a nested vesicle architecture, which can respond to alternating magnetic fields through in situ enzymatic catalysis. We also demonstrate the modulation of biochemical reactions by using different magnetic field strengths and the potential to tune the system using different lipid compositions. This platform could unlock a wide range of applications for synthetic cells as programmable micromachines in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Karen
K. Zhu
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City, London W12
0BZ, U.K.
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
- fabriCELL, Imperial
College London, Molecular Sciences Research
Hub, White City, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Imperial College London,
Molecular Sciences Research Hub, White City, London W12
0BZ, U.K.
| | - Ignacio Gispert Contamina
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
- fabriCELL, Imperial
College London, Molecular Sciences Research
Hub, White City, London W12 0BZ, U.K.
| | - Oscar Ces
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City, London W12
0BZ, U.K.
- fabriCELL, Imperial
College London, Molecular Sciences Research
Hub, White City, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Imperial College London,
Molecular Sciences Research Hub, White City, London W12
0BZ, U.K.
| | - Laura M. C. Barter
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City, London W12
0BZ, U.K.
- Institute
of Chemical Biology, Imperial College London,
Molecular Sciences Research Hub, White City, London W12
0BZ, U.K.
| | - James W. Hindley
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City, London W12
0BZ, U.K.
- fabriCELL, Imperial
College London, Molecular Sciences Research
Hub, White City, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Imperial College London,
Molecular Sciences Research Hub, White City, London W12
0BZ, U.K.
| | - Yuval Elani
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
- fabriCELL, Imperial
College London, Molecular Sciences Research
Hub, White City, London W12 0BZ, U.K.
| |
Collapse
|
6
|
Gómez-Márquez J. The Lithbea Domain. Adv Biol (Weinh) 2024; 8:e2300679. [PMID: 38386280 DOI: 10.1002/adbi.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The tree of life is the evolutionary metaphor for the past and present connections of all cellular organisms. Today, to speak of biodiversity is not only to speak of archaea, bacteria, and eukaryotes, but they should also consider the "new biodiversity" that includes viruses and synthetic organisms, which represent the new forms of life created in laboratories. There is even a third group of artificial entities that, although not living systems, pretend to imitate the living. To embrace and organize all this new biodiversity, I propose the creation of a new domain, with the name Lithbea (from life-on-the-border entites) The criteria for inclusion as members of Lithbea are: i) the acellular nature of the living system, ii) its origin in laboratory manipulation, iii) showing new biological traits, iv) the presence of exogenous genetic elements, v) artificial or inorganic nature. Within Lithbea there are two subdomains: Virworld (from virus world) which includes all viruses, regarded as lifeless living systems, and classified according to the International Committee on Taxonomy of Viruses (ICTV), and ii) Humade (from human-made) which includes all synthetic organisms and artificial entities. The relationships of Lithbea members to the three classical woesian domains and their implications are briefly discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain
| |
Collapse
|