1
|
Remis J, Petrov PN, Zhang JT, Axelrod JJ, Cheng H, Sandhaus S, Mueller H, Glaeser RM. Cryo-EM phase-plate images reveal unexpected levels of apparent specimen damage. J Struct Biol 2024:108150. [PMID: 39536845 DOI: 10.1016/j.jsb.2024.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Apoferritin (apoF) is commonly used as a test specimen in single-particle electron cryo-microscopy (cryo-EM), since it consistently produces density maps that go to 3 Å resolution or higher. When we imaged apoF with a laser phase plate (LPP), however, we observed more severe particle-to-particle variation in the images than we had previously thought to exist. Similarly, we found that images of ribulose bisphosphate carboxylase/oxygenase (rubisco) also exhibited a much greater amount of heterogeneity than expected. By comparison to simulations of images, we verified that the heterogeneity is not explained by the known features of the LPP, shot noise, or differences in particle orientation. We also demonstrate that our specimens are comparable to those previously used in the literature, based on using the final-reconstruction resolution as the metric for evaluation. All of this leads us to the hypothesis that the heterogeneity is due to damage that has occurred either during purification of the specimen or during preparation of the grids. It is not, however, our goal to explain the causes of heterogeneity; rather, we report that using the LPP has made the apparent damage too obvious to be ignored. In hindsight, similar heterogeneity can be seen in images of apoF and the 20S proteasome which others had recorded with a Volta phase plate. We therefore conclude that the increased contrast of phase-plate images (at low spatial frequencies) should also make it possible to visualize, on a single-particle basis, various forms of biologically functional heterogeneity in structure that had previously gone unnoticed.
Collapse
Affiliation(s)
- Jonathan Remis
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Petar N Petrov
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jessie T Zhang
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jeremy J Axelrod
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Hang Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Shahar Sandhaus
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Holger Mueller
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Robert M Glaeser
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Sarkar D, Maffeo C, Sutter M, Aksimentiev A, Kerfeld CA, Vermaas JV. Atomic view of photosynthetic metabolite permeability pathways and confinement in synthetic carboxysome shells. Proc Natl Acad Sci U S A 2024; 121:e2402277121. [PMID: 39485798 PMCID: PMC11551347 DOI: 10.1073/pnas.2402277121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Carboxysomes are protein microcompartments found in cyanobacteria, whose shell encapsulates rubisco at the heart of carbon fixation in the Calvin cycle. Carboxysomes are thought to locally concentrate CO2 in the shell interior to improve rubisco efficiency through selective metabolite permeability, creating a concentrated catalytic center. However, permeability coefficients have not previously been determined for these gases, or for Calvin-cycle intermediates such as bicarbonate ([Formula: see text]), 3-phosphoglycerate, or ribulose-1,5-bisphosphate. Starting from a high-resolution cryogenic electron microscopy structure of a synthetic [Formula: see text]-carboxysome shell, we perform unbiased all-atom molecular dynamics to track metabolite permeability across the shell. The synthetic carboxysome shell structure, lacking the bacterial microcompartment trimer proteins and encapsulation peptides, is found to have similar permeability coefficients for multiple metabolites, and is not selectively permeable to [Formula: see text] relative to CO2. To resolve how these comparable permeabilities can be reconciled with the clear role of the carboxysome in the CO2-concentrating mechanism in cyanobacteria, complementary atomic-resolution Brownian Dynamics simulations estimate the mean first passage time for CO2 assimilation in a crowded model carboxysome. Despite a relatively high CO2 permeability of approximately 10-2 cm/s across the carboxysome shell, the shell proteins reflect enough CO2 back toward rubisco that 2,650 CO2 molecules can be fixed by rubisco for every 1 CO2 molecule that escapes under typical conditions. The permeabilities determined from all-atom molecular simulation are key inputs into flux modeling, and the insight gained into carbon fixation can facilitate the engineering of carboxysomes and other bacterial microcompartments for multiple applications.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
3
|
Walker RM, Zhang M, Burnap RL. Elucidating the role of primary and secondary sphere Zn 2+ ligands in the cyanobacterial CO 2 uptake complex NDH-1 4: The essentiality of arginine in zinc coordination and catalysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149149. [PMID: 38906312 DOI: 10.1016/j.bbabio.2024.149149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Inorganic carbon uptake in cyanobacteria is facilitated by an energetically intensive CO2-concentrating mechanism (CCM). Specialized Type-1 NDH complexes function as a part of this mechanism to couple photosynthetic energy generated by redox reactions of the electron transport chain (ETC) to CO2 hydration. This active site of CO2 hydration incorporates an arginine side chain as a Zn ligand, diverging from the typical histidine and/or cysteine residues found in standard CAs. In this study, we focused on mutating three amino acids in the active site of the constitutively expressed NDH-14 CO2 hydration complex in Synechococcus sp. PCC7942: CupB-R91, which acts as a zinc ligand, and CupB-E95 and CupB-H89, both of which closely interact with the arginine ligand. These mutations aimed to explore how they affect the unusual metal ligation by CupB-R91 and potentially influence the unusual catalytic process. The most severe defects in activity among the targeted residues are due to a substitution of CupB-R91 and the ionically interacting E95 since both proved essential for the structural stability of the CupB protein. On the other hand, CupB-H89 mutations show a range of catalytic phenotypes indicating a role of this residue in the catalytic mechanism of CO2-hydration, but no evidence was obtained for aberrant carbonic anhydrase activity that would have indicated uncoupling of the CO2-hydration activity from proton pumping. The results are discussed in terms of possible alternative CO2 hydration mechanisms.
Collapse
Affiliation(s)
- Ross M Walker
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Minquan Zhang
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
4
|
Trettel DS, Hoang Y, Vecchiarelli AG, Gonzalez-Esquer CR. A robust synthetic biology toolkit to advance carboxysome study and redesign. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617227. [PMID: 39416180 PMCID: PMC11482911 DOI: 10.1101/2024.10.08.617227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Carboxysomes are polyhedral protein organelles that microorganisms use to facilitate carbon dioxide assimilation. They are composed of a modular protein shell which envelops an enzymatic core mainly comprised of physically coupled Rubisco and carbonic anhydrase. While the modular construction principles of carboxysomes make them attractive targets as customizable metabolic platforms, their size and complexity can be a hinderance. In this work, we design and validate a plasmid set - the pXpressome toolkit - in which α-carboxysomes are robustly expressed and remain intact and functional after purification. We tested this toolkit by introducing mutations which influence carboxysome structure and performance. We find that deletion of vertex-capping genes results in formation of larger carboxysomes while deletion of facet forming genes produces smaller particles, suggesting that adjusting the ratio of these proteins can rationally affect morphology. Through a series of fluorescently labeled constructs, we observe this toolkit leads to more uniform expression and better cell health than previously published carboxysome expression systems. Overall, the pXpressome toolkit facilitates the study and redesign of carboxysomes with robust performance and improved phenotype uniformity. The pXpressome toolkit will support efforts to remodel carboxysomes for enhanced carbon fixation or serve as a platform for other nanoencapsulation goals.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Cesar R. Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| |
Collapse
|
5
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Wieschollek J, Fuller D, Gahramanova A, Millen T, Mislay AJ, Payne RR, Walsh DP, Zhao Y, Carney M, Cross J, Kashem J, Korde R, Lacy C, Lyons N, Mason T, Torres-Betancourt K, Trapnell T, Dennison CL, Chaput D, Scott KM. A new type of carboxysomal carbonic anhydrase in sulfur chemolithoautotrophs from alkaline environments. Appl Environ Microbiol 2024; 90:e0107524. [PMID: 39177330 PMCID: PMC11409652 DOI: 10.1128/aem.01075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
Autotrophic bacteria are able to fix CO2 in a great diversity of habitats, even though this dissolved gas is relatively scarce at neutral pH and above. As many of these bacteria rely on CO2 fixation by ribulose 1,5-bisphospate carboxylase/oxygenase (RubisCO) for biomass generation, they must compensate for the catalytical constraints of this enzyme with CO2-concentrating mechanisms (CCMs). CCMs consist of CO2 and HCO3- transporters and carboxysomes. Carboxysomes encapsulate RubisCO and carbonic anhydrase (CA) within a protein shell and are essential for the operation of a CCM in autotrophic Bacteria that use the Calvin-Benson-Basham cycle. Members of the genus Thiomicrospira lack genes homologous to those encoding previously described CA, and prior to this work, the mechanism of function for their carboxysomes was unclear. In this paper, we provide evidence that a member of the recently discovered iota family of carbonic anhydrase enzymes (ιCA) plays a role in CO2 fixation by carboxysomes from members of Thiomicrospira and potentially other Bacteria. Carboxysome enrichments from Thiomicrospira pelophila and Thiomicrospira aerophila were found to have CA activity and contain ιCA, which is encoded in their carboxysome loci. When the gene encoding ιCA was interrupted in T. pelophila, cells could no longer grow under low-CO2 conditions, and CA activity was no longer detectable in their carboxysomes. When T. pelophila ιCA was expressed in a strain of Escherichia coli lacking native CA activity, this strain recovered an ability to grow under low CO2 conditions, and CA activity was present in crude cell extracts prepared from this strain. IMPORTANCE Here, we provide evidence that iota carbonic anhydrase (ιCA) plays a role in CO2 fixation by some organisms with CO2-concentrating mechanisms; this is the first time that ιCA has been detected in carboxysomes. While ιCA genes have been previously described in other members of bacteria, this is the first description of a physiological role for this type of carbonic anhydrase in this domain. Given its distribution in alkaliphilic autotrophic bacteria, ιCA may provide an advantage to organisms growing at high pH values and could be helpful for engineering autotrophic organisms to synthesize compounds of industrial interest under alkaline conditions.
Collapse
Affiliation(s)
- Jana Wieschollek
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Daniella Fuller
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Arin Gahramanova
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Terrence Millen
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ashianna J. Mislay
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ren R. Payne
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Daniel P. Walsh
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - YuXuan Zhao
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Madilyn Carney
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Jaden Cross
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - John Kashem
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Ruchi Korde
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Christine Lacy
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Noah Lyons
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Tori Mason
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | | | - Tyler Trapnell
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Clare L. Dennison
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| | - Kathleen M. Scott
- Integrative Biology Department, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
7
|
Kong WW, Zhu Y, Zhao HR, Du K, Zhou RQ, Li B, Yang F, Hou P, Huang XH, Chen Y, Wang YC, Sun F, Jiang YL, Zhou CZ. Cryo-electron tomography reveals the packaging pattern of RuBisCOs in Synechococcus β-carboxysome. Structure 2024; 32:1110-1120.e4. [PMID: 38823379 DOI: 10.1016/j.str.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Carboxysomes are large self-assembled microcompartments that serve as the central machinery of a CO2-concentrating mechanism (CCM). Biogenesis of carboxysome requires the fine organization of thousands of individual proteins; however, the packaging pattern of internal RuBisCOs remains largely unknown. Here we purified the intact β-carboxysomes from Synechococcus elongatus PCC 7942 and identified the protein components by mass spectrometry. Cryo-electron tomography combined with subtomogram averaging revealed the general organization pattern of internal RuBisCOs, in which the adjacent RuBisCOs are mainly arranged in three distinct manners: head-to-head, head-to-side, and side-by-side. The RuBisCOs in the outermost layer are regularly aligned along the shell, the majority of which directly interact with the shell. Moreover, statistical analysis enabled us to propose an ideal packaging model of RuBisCOs in the β-carboxysome. These results provide new insights into the biogenesis of β-carboxysomes and also advance our understanding of the efficient carbon fixation functionality of carboxysomes.
Collapse
Affiliation(s)
- Wen-Wen Kong
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Heng-Rui Zhao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kang Du
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Rui-Qian Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Bo Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Feng Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Pu Hou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xia-He Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxing Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ying-Chun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yong-Liang Jiang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Remis J, Petrov PN, Zhang JT, Axelrod JJ, Cheng H, Sandhaus S, Mueller H, Glaeser RM. Cryo-EM phase-plate images reveal unexpected levels of apparent specimen damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.606536. [PMID: 39149370 PMCID: PMC11326166 DOI: 10.1101/2024.08.04.606536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Apoferritin (apoF) is commonly used as a test specimen in single-particle electron cryo-microscopy (cryo-EM), since it consistently produces density maps that go to 3 Å resolution or higher. When we imaged apoF with a laser phase plate (LPP), however, we observed more severe particle-to-particle variation in the images than we had previously thought to exist. Similarly, we found that images of ribulose bisphosphate carboxylase/oxygenase (rubisco) also exhibited a much greater amount of heterogeneity than expected. By comparison to simulations of images, we verified that the heterogeneity is not explained by the known features of the LPP, shot noise, or differences in particle orientation. We also demonstrate that our specimens are comparable to those previously used in the literature, based on using the final-reconstruction resolution as the metric for evaluation. All of this leads us to the hypothesis that the heterogeneity is due to damage that has occurred either during purification of the specimen or during preparation of the grids. It is not, however, our goal to explain the causes of heterogeneity; rather, we report that using the LPP has made the apparent damage too obvious to be ignored. In hindsight, similar heterogeneity can be seen in images of apoF and the 20S proteasome which others had recorded with a Volta phase plate. We therefore conclude that the increased contrast of phase-plate images (at low spatial frequencies) should also make it possible to visualize, on a single-particle basis, various forms of biologically functional heterogeneity in structure that had previously gone unnoticed.
Collapse
Affiliation(s)
- Jonathan Remis
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Petar N. Petrov
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jessie T, Zhang
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jeremy J. Axelrod
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Hang Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Shahar Sandhaus
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Holger Mueller
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Robert M. Glaeser
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Nguyen ND, Pulsford SB, Förster B, Rottet S, Rourke L, Long BM, Price GD. A carboxysome-based CO 2 concentrating mechanism for C 3 crop chloroplasts: advances and the road ahead. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:940-952. [PMID: 38321620 DOI: 10.1111/tpj.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.
Collapse
Affiliation(s)
- Nghiem D Nguyen
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sacha B Pulsford
- Research School of Chemistry, Australian National University, 137 Sullivan's Ck Rd, Acton, Australian Capital Territory, 2601, Australia
| | - Britta Förster
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Sarah Rottet
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Loraine Rourke
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| | - Benedict M Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, ARC Centre of Excellence in Synthetic Biology, The University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - G Dean Price
- Plant Science Division, Research School of Biology, Australian National University, 134 Linnaeus Way, Acton, Australian Capital Territory, 2601, Australia
| |
Collapse
|
10
|
Zhou RQ, Jiang YL, Li H, Hou P, Kong WW, Deng JX, Chen Y, Zhou CZ, Zeng Q. Structure and assembly of the α-carboxysome in the marine cyanobacterium Prochlorococcus. NATURE PLANTS 2024; 10:661-672. [PMID: 38589484 DOI: 10.1038/s41477-024-01660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Carboxysomes are bacterial microcompartments that encapsulate the enzymes RuBisCO and carbonic anhydrase in a proteinaceous shell to enhance the efficiency of photosynthetic carbon fixation. The self-assembly principles of the intact carboxysome remain elusive. Here we purified α-carboxysomes from Prochlorococcus and examined their intact structures using single-particle cryo-electron microscopy to solve the basic principles of their shell construction and internal RuBisCO organization. The 4.2 Å icosahedral-like shell structure reveals 24 CsoS1 hexamers on each facet and one CsoS4A pentamer at each vertex. RuBisCOs are organized into three concentric layers within the shell, consisting of 72, 32 and up to 4 RuBisCOs at the outer, middle and inner layers, respectively. We uniquely show how full-length and shorter forms of the scaffolding protein CsoS2 bind to the inner surface of the shell via repetitive motifs in the middle and C-terminal regions. Combined with previous reports, we propose a concomitant 'outside-in' assembly principle of α-carboxysomes: the inner surface of the self-assembled shell is reinforced by the middle and C-terminal motifs of the scaffolding protein, while the free N-terminal motifs cluster to recruit RuBisCO in concentric, three-layered spherical arrangements. These new insights into the coordinated assembly of α-carboxysomes may guide the rational design and repurposing of carboxysome structures for improving plant photosynthetic efficiency.
Collapse
Affiliation(s)
- Rui-Qian Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Haofu Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Pu Hou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen-Wen Kong
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Xin Deng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
11
|
Trettel DS, Pacheco SL, Laskie AK, Gonzalez-Esquer CR. Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation. FRONTIERS IN PLANT SCIENCE 2024; 15:1346759. [PMID: 38425792 PMCID: PMC10902431 DOI: 10.3389/fpls.2024.1346759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. In silico approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond in vivo experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States
| | | | | | | |
Collapse
|
12
|
Oltrogge LM, Chen AW, Chaijarasphong T, Turnšek JB, Savage DF. α-Carboxysome Size Is Controlled by the Disordered Scaffold Protein CsoS2. Biochemistry 2024; 63:219-229. [PMID: 38085650 PMCID: PMC10795168 DOI: 10.1021/acs.biochem.3c00403] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Carboxysomes are protein microcompartments that function in the bacterial CO2 concentrating mechanism (CCM) to facilitate CO2 assimilation. To do so, carboxysomes assemble from thousands of constituent proteins into an icosahedral shell, which encapsulates the enzymes Rubisco and carbonic anhydrase to form structures typically > 100 nm and > 300 megadaltons. Although many of the protein interactions driving the assembly process have been determined, it remains unknown how size and composition are precisely controlled. Here, we show that the size of α-carboxysomes is controlled by the disordered scaffolding protein CsoS2. CsoS2 contains two classes of related peptide repeats that bind to the shell in a distinct fashion, and our data indicate that size is controlled by the relative number of these interactions. We propose an energetic and structural model wherein the two repeat classes bind at the junction of shell hexamers but differ in their preferences for the shell contact angles, and thus the local curvature. In total, this model suggests that a set of specific and repeated interactions between CsoS2 and shell proteins collectively achieve the large size and monodispersity of α-carboxysomes.
Collapse
Affiliation(s)
- Luke M. Oltrogge
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Allen W. Chen
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Julia B. Turnšek
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Pulsford SB, Nguyen ND, Long BM. The ties that bind. Disordered linkers underpin carboxysome construction. Proc Natl Acad Sci U S A 2023; 120:e2316828120. [PMID: 37889932 PMCID: PMC10636299 DOI: 10.1073/pnas.2316828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Affiliation(s)
- Sacha B. Pulsford
- Research School of Chemistry, Australian National University, Acton, ACT2601, Australia
| | - Nghiem D. Nguyen
- Plant Science Division, Research School of Biology, Australian National University, Acton, ACT2601, Australia
| | - Benedict M. Long
- Discipline of Biological Sciences, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW2308, Australia
| |
Collapse
|