1
|
Lee J, Stewart C, Schäfer A, Leaf EM, Park YJ, Asarnow D, Powers JM, Treichel C, Sprouse KR, Corti D, Baric R, King NP, Veesler D. A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines. Nat Commun 2024; 15:5496. [PMID: 38944664 PMCID: PMC11214633 DOI: 10.1038/s41467-024-49656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Evolution of SARS-CoV-2 alters the antigenicity of the immunodominant spike (S) receptor-binding domain and N-terminal domain, undermining the efficacy of vaccines and antibody therapies. To overcome this challenge, we set out to develop a vaccine focusing antibody responses on the highly conserved but metastable S2 subunit, which folds as a spring-loaded fusion machinery. We describe a strategy for prefusion-stabilization and high yield recombinant production of SARS-CoV-2 S2 trimers with native structure and antigenicity. We demonstrate that our design strategy is broadly generalizable to sarbecoviruses, as exemplified with the SARS-CoV-1 (clade 1a) and PRD-0038 (clade 3) S2 subunits. Immunization of mice with a prefusion-stabilized SARS-CoV-2 S2 trimer elicits broadly reactive sarbecovirus antibodies and neutralizing antibody titers of comparable magnitude against Wuhan-Hu-1 and the immune evasive XBB.1.5 variant. Vaccinated mice were protected from weight loss and disease upon challenge with XBB.1.5, providing proof-of-principle for fusion machinery sarbecovirus vaccines.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
2
|
Gong L, Zhang Y, Wang L, Zhao X, Wang L, Qiu X, Yang X, Zhu W, Lv L, Kang Y, Wu Y, Zhang A, Du Y, Wang X, Zhang G, Sun A, Zhuang G. Advancing vaccine development: Evaluation of a mannose-modified lipid nanoparticle-based candidate for African swine fever p30 mRNA vaccine eliciting robust immune response in mice. Int J Biol Macromol 2024; 270:132432. [PMID: 38761609 DOI: 10.1016/j.ijbiomac.2024.132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The African swine fever virus (ASFV) continues to pose significant economic and pandemic risks. Consequently, discovering new, efficient vaccines is crucial. Messenger RNA (mRNA) vaccines have emerged as promising candidates, providing minimal risk of insertional mutagenesis, high safety profiles, effectiveness, rapid scalability in production, and cost-effectiveness. In this study, we have developed an ASF p30 mRNA vaccine candidate (mRNA/Man-LNP) employing mannose-modified lipid nanoparticles (LNPs). The mRNA/Man-LNP exhibited effective antigen presentation and facilitated dendritic cells (DCs) maturation. Notably, it elicited strong IgG titers and activated CD4+ and CD8+ T-cells in immunized mice, all while adhering to stringent biosafety standards. This investigation demonstrates that mRNA/Man-LNP can trigger both humoral and cellular immune responses, suggesting its potential as a potent and promising vaccine candidate for controlling African swine fever (ASF).
Collapse
Affiliation(s)
- Lele Gong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lele Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuyang Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lucai Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangqi Qiu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xilong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenhui Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijie Lv
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunzhe Kang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuannian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Aijun Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Lee J, Stewart C, Schaefer A, Leaf EM, Park YJ, Asarnow D, Powers JM, Treichel C, Corti D, Baric R, King NP, Veesler D. A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571160. [PMID: 38168207 PMCID: PMC10760017 DOI: 10.1101/2023.12.12.571160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Continuous evolution of SARS-CoV-2 alters the antigenicity of the immunodominant spike (S) receptor-binding domain and N-terminal domain, undermining the efficacy of vaccines and monoclonal antibody therapies. To overcome this challenge, we set out to develop a vaccine focusing antibody responses on the highly conserved but metastable S2 subunit, which folds as a spring-loaded fusion machinery. Here, we describe a protein design strategy enabling prefusion-stabilization of the SARS-CoV-2 S2 subunit and high yield recombinant expression of trimers with native structure and antigenicity. We demonstrate that our design strategy is broadly generalizable to all sarbecoviruses, as exemplified with the SARS-CoV-1 (clade 1a) and PRD-0038 (clade 3) S2 fusion machineries. Immunization of mice with a prefusion-stabilized SARS-CoV-2 S2 trimer vaccine elicits broadly reactive sarbecovirus antibody responses and neutralizing antibody titers of comparable magnitude against Wuhan-Hu-1 and the immune evasive XBB.1.5 variant. Vaccinated mice were protected from weight loss and disease upon challenge with SARS-CoV-2 XBB.1.5, providing proof-of-principle for fusion machinery sarbecovirus vaccines motivating future development.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Alexandra Schaefer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth M. Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|