1
|
Kundu P, Oviedo-Diego M, Cargnelutti F, Jones RR, Garcia E, Hebets EA, Gaffin DD. Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01731-y. [PMID: 39909907 DOI: 10.1007/s00359-025-01731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
A fundamental understanding of animal sensory systems is crucial for comprehending their interactions with the environment and with other conspecifics. However, knowledge gaps persist, particularly in arachnids like the order Solifugae. While certain solifuge setae and palpal papillae have been studied structurally and electrophysiologically, providing evidence of chemoreception and mechanoreception, the sensilla on their walking legs remain unexplored. Notably, elongated sensilla on the femur and tibia of the 4th walking legs resemble trichobothria in other arachnid orders yet their function remains unknown. Thus, this study investigates whether these sensilla serve a mechanosensory function. Using electrophysiological and behavioral assays on Eremobates pallipes (Eremobatidae), we assessed the response of the elongated 4th leg sensilla to- (i) air particle movement and- (ii) air pressure changes. Air particle movement stimuli were generated using a speaker placed in the near field of the elongated sensilla that emitted low-frequency pure tones (10-1000 Hz). Air pressure stimuli involved forceful blowing on the sensilla. No response to air particle movement was observed, but a mechanosensory response to air pressure stimuli was detected. Electrophysiological data identified a fast-adapting and fast-recovering cell, and behavioral observations revealed a startle response. Our electrophysiology results suggest a mechanosensory role of elongated sensilla on the 4th walking legs of solifuge, indicating that although they are not sensitive enough to detect air particle movement stimuli, they can receive and respond to air pressure stimuli. Our behavioral experiments similarly show that these sensilla are not sensitive enough to detect air particle movement but respond to more forceful mechanosensory stimuli.
Collapse
Affiliation(s)
- Pallabi Kundu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, USA.
- Institute for Integrative Conservation, William & Mary, Williamsburg, VA, United States.
| | - Mariela Oviedo-Diego
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Laboratorio de Biología Reproductiva y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - Franco Cargnelutti
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Laboratorio de Biología Reproductiva y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - R Ryan Jones
- Department of Integrative Biology, University of Colorado, Denver, USA
| | - Erika Garcia
- Department of Integrative Biology, University of Colorado, Denver, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, USA
| | - Douglas D Gaffin
- School of Biological Sciences, University of Oklahoma, Norman, USA
| |
Collapse
|
2
|
Male spiders smell with their legs. Nature 2025; 637:521. [PMID: 39789139 DOI: 10.1038/d41586-025-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|