1
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
2
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
3
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
4
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
|
6
|
Receptor revision in CD4 T cells is influenced by follicular helper T cell formation and germinal-center interactions. Proc Natl Acad Sci U S A 2014; 111:5652-7. [PMID: 24706795 DOI: 10.1073/pnas.1321803111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral CD4 T cells in Vβ5 transgenic (Tg) C57BL/6J mice undergo tolerance to an endogenous superantigen encoded by mouse mammary tumor virus 8 (Mtv-8) by either deletion or T-cell receptor (TCR) revision. Revision is a process by which surface expression of the Vβ5(+) TCR is down-regulated in response to Mtv-8 and recombination activating genes are expressed to drive rearrangement of the endogenous TCRβ locus, effecting cell rescue through the expression of a newly generated, non-self-reactive TCR. In an effort to identify the microenvironment in which revision takes place, we show here that the proportion of T follicular helper cells (Tfh) and production of high-affinity antibody during a primary response are increased in Vβ5 Tg mice in an Mtv-8-dependent manner. Revising T cells have a Tfh-like surface phenotype and transcription factor profile, with elevated expression of B-cell leukemia/lymphoma 6 (Bcl-6), CXC chemokine receptor 5, programmed death-1, and other Tfh-associated markers. Efficient revision requires Bcl-6 and is inhibited by B lymphocyte-induced maturation protein-1. Revision completes less efficiently in the absence of signaling lymphocytic activation molecule-associated protein although initiation proceeds normally. These data indicate that Tfh formation is required for the initiation of revision and germinal-center interactions for its completion. The germinal center is known to provide a confined space in which B-cell antigen receptors undergo selection. Our data extend the impact of this selective microenvironment into the arena of T cells, suggesting that this fluid structure also provides a regulatory environment in which TCR revision can safely take place.
Collapse
|
7
|
Kuklina EM, Nekrasova IV, Schuklina OL, Baydina TV, Danchenko IY. Induction of recombinase activity in peripheral T cells in multiple sclerosis. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 453:391-3. [PMID: 24385179 DOI: 10.1134/s0012496613060136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Indexed: 11/23/2022]
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia
| | | | | | | | | |
Collapse
|
8
|
Vaitaitis GM, Wagner DH. CD40 interacts directly with RAG1 and RAG2 in autoaggressive T cells and Fas prevents CD40-induced RAG expression. Cell Mol Immunol 2013; 10:483-9. [PMID: 24037181 DOI: 10.1038/cmi.2013.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 12/20/2022] Open
Abstract
CD4(+) T cells expressing CD40 (Th40 cells) constitute a pathogenic T-cell subset that is necessary and sufficient to transfer autoimmune disease. We have previously demonstrated that CD40 signals peripheral Th40 cells to induce RAG1 and RAG2 expression, proteins necessary for the expression of T-cell receptor (TCR), leading to TCR revision. The dependency of TCR expression in the thymus on RAG proteins has long been known. However, despite numerous publications, there is controversy as to whether TCR expression can be altered in the periphery, post-thymic selective pressures. Therefore, a better understanding of TCR expression in primary peripheral cells is needed. We now show that the CD40 protein itself interacts with RAG1 and RAG2 as well as with Ku70 and translocates to the nucleus in Th40 cells. This indicates that the CD40 molecule is closely involved in the mechanism of TCR expression in the periphery. In addition, Fas signals act as a silencing mechanism for CD40-induced RAGs and prevent CD40 translocation to the nucleus. It will be important to further understand the involvement of CD40 in peripheral TCR expression and how TCR revision impacts auto-antigen recognition in order to effectively target and tolerize autoaggressive T cells in autoimmune disease.
Collapse
|
9
|
Blanchfield JL, Shorter SK, Evavold BD. Monitoring the Dynamics of T Cell Clonal Diversity Using Recombinant Peptide:MHC Technology. Front Immunol 2013; 4:170. [PMID: 23840195 PMCID: PMC3699728 DOI: 10.3389/fimmu.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/14/2013] [Indexed: 12/31/2022] Open
Abstract
The capacity to probe antigen specific T cells within the polyclonal repertoire has been revolutionized by the advent of recombinant peptide:MHC (pMHC) technology. Monomers and multimers of pMHC molecules can enrich for and identify antigen specific T cells to elucidate the contributions of T cell frequency, localization, and T cell receptor (TCR) affinity during immune responses. Two-dimensional (2D) measurements of TCR–pMHC interactions are at the forefront of this field because the biological topography is replicated such that TCR and pMHC are membrane anchored on opposing cells, allowing for biologically pertinent measures of TCR antigen specificity and diversity. 2D measurements of TCR-pMHC kinetics have also demonstrated increased fidelity compared to three-dimensional surface plasmon resonance data and are capable of detecting T cell affinities that are below the detection level of most pMHC multimers. Importantly, 2D techniques provide a platform to evaluate T cell affinity and antigen specificity against multiple protein epitopes within the polyclonal repertoire directly ex vivo from sites of ongoing immune responses. This review will discuss how antigen specific pMHC molecules, with a focus on 2D technologies, can be used as effective tools to evaluate the range of TCR affinities that comprise an immune response and more importantly how the breadth of affinities determine functional outcome against a given exposure to antigen.
Collapse
Affiliation(s)
- J Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA , USA
| | | | | |
Collapse
|
10
|
Abstract
Activated T cells have classically been thought to progress unidirectionally through discrete phenotypic states and differentiate into static lineages. It is increasingly evident, however, that T cells exhibit much more complex and flexible dynamic behaviors than initially appreciated, and that these behaviors influence the efficacy of T cell responses to immunological challenges. In this review, we discuss how new technologies for monitoring the dynamics of T cells are enhancing the resolution of the fine phenotypic and functional heterogeneity within populations of T cells and revealing how individual T cells transition among a continuum of states. Such insights into the dynamic properties of T cells should improve immune monitoring and inform strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Yvonne J Yamanaka
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
11
|
Antigenic stimulation induces recombination activating gene 1 and terminal deoxynucleotidyl transferase expression in a murine T-cell hybridoma. Cell Immunol 2012; 274:19-25. [PMID: 22464913 DOI: 10.1016/j.cellimm.2012.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Secondary rearrangements of the T cell receptor (TCR) represent a genetic correction mechanism which changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. Murine T-cell hybridoma A1.1 was employed to investigate whether antigenic stimulation induced re-expression of recombinase genes and altered TCR Vβ expression. Following repeated antigenic stimulation, A1.1 cells were induced to re-express recombination activating gene (RAG)1 and terminal deoxynucleotidyl transferase (TdT) which are generally considered prerequisite to TCR gene rearrangement. Accompanied with the significant changes in TCR mRNA levels over time, it is suggested that secondary rearrangements may be induced in A1.1 cells, which represent a mature T cell clone capable of re-expressing RAG genes and possesses the prerequisite for secondary V(D)J rearrangement.
Collapse
|
12
|
Surman SL, Rudraraju R, Woodland DL, Dash P, Thomas PG, Hurwitz JL. Clonally related CD8+ T cells responsible for rapid population of both diffuse nasal-associated lymphoid tissue and lung after respiratory virus infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:835-41. [PMID: 21690324 DOI: 10.4049/jimmunol.1100125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune system has evolved to use sophisticated mechanisms to recruit lymphocytes to sites of pathogen exposure. Trafficking pathways are precise. For example, lymphocytes that are primed by gut pathogens can, in some cases, be imprinted with CCR9 membrane receptors, which can influence migration to the small intestine. Currently, little is known about T cell trafficking to the upper respiratory tract or the relationship between effectors that migrate to the diffuse nasal-associated lymphoid tissue (d-NALT), the lower airways, and the lung. To determine whether a T cell primed by Ag from a respiratory pathogen is imprinted for exclusive trafficking to the upper or lower respiratory tract or whether descendents from that cell have the capacity to migrate to both sites, we inoculated mice by the intranasal route with Sendai virus and conducted single-cell-sequencing analyses of CD8(+) T lymphocytes responsive to a K(b)-restricted immunodominant peptide, FAPGNYPAL (Tet(+)). Cells from the d-NALT, lung airways (bronchoalveolar lavage), lung, and mediastinal lymph node were examined 10 d postinfection to determine TCR usage and clonal relationships. We discovered that 1) Tet(+) cells were heterogeneous but preferentially used TCR elements TRAV6, TRAV16, and TRBD1; 2) both N and C termini of Vα and Vβ TCR junctions frequently encompassed charged residues, perhaps facilitating TCR αβ pairing and interactions with a neutral target peptide; and 3) T cells in the d-NALT were often clonally related to cells in the lower respiratory tract.
Collapse
Affiliation(s)
- Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
13
|
Orlando L, Accomasso L, Circosta P, Turinetto V, Lantelme E, Porcedda P, Minieri V, Pautasso M, Willemsen RA, Cignetti A, Giachino C. TCR transfer induces TCR-mediated tonic inhibition of RAG genes in human T cells. Mol Immunol 2011; 48:1369-76. [PMID: 21481940 DOI: 10.1016/j.molimm.2011.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/24/2022]
Abstract
Induction of the TCR signaling pathway terminates the expression of RAG genes, and a link between this pathway and their transcriptional control is evident from the recent demonstration of their re-expression if the TCR is subsequently lost or down-regulated. Since unstimulated T cells display a steady-state level of "tonic" TCR signaling, i.e. in the absence of any antigenic stimulus, it was uncertain whether this control was exerted through ligand-dependent or ligand-independent TCR signaling. Here we demonstrate for the first time that exogenous TCR α and β chains transferred into the human immature RAG(+) T cell line Sup-T1 by lentiviral transduction inhibit RAG expression through tonic signaling, and that this inhibition could itself be reverted by pharmacological tonic pathway inhibitors. We also suggest that mature T cells already expressing an endogenous TCR on their surface maintain some levels of plasticity at the RAG locus when their basal TCR signaling is interfered with. Lastly, we show that the TCR constructs employed in TCR gene therapy do not possess the same basal signaling transduction capability, a feature that may have therapeutic implications.
Collapse
Affiliation(s)
- Luca Orlando
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hale JS, Wubeshet M, Fink PJ. TCR revision generates functional CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6528-6534. [PMID: 20971922 PMCID: PMC3233755 DOI: 10.4049/jimmunol.1002696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
CD4(+)Vβ5(+) peripheral T cells in C57BL/6 mice respond to encounter with a peripherally expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. Although postrevision CD4(+)Vβ5(-)TCRβ(+) T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli and thus may benefit the host. We demonstrate in this study that postrevision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ, and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, postrevision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of postrevision cells is not driven by the transgene-encoded receptor. Postrevision cells proliferate extensively to commensal bacterial Ags and can generate I-A(b)-restricted responses to Ag by producing IFN-γ following Listeria monocytogenes challenge. These data show that rescued postrevision T cells are responsive to homeostatic signals and recognize self- and foreign peptides in the context of self-MHC and are thus useful to the host.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- CD4-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/physiology
- Immune Tolerance/genetics
- Immunoglobulin Variable Region/genetics
- Listeriosis/genetics
- Listeriosis/immunology
- Listeriosis/pathology
- Lymphopenia/immunology
- Lymphopenia/microbiology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
15
|
Kuklina EM, Lopatina VA, Gorbunova OL, Smirnova EN, Shtain KS, Shchuklina OL, Timganova VP. Activation of antigen receptor genes rearrangement in peripheral blood T lymphocytes as a possible mechanism of autoimmunity induction. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2010; 435:387-389. [PMID: 21221889 DOI: 10.1134/s0012496610060049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Indexed: 05/30/2023]
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, ul. Goleva 13, Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
17
|
Munroe ME. Functional roles for T cell CD40 in infection and autoimmune disease: the role of CD40 in lymphocyte homeostasis. Semin Immunol 2009; 21:283-8. [PMID: 19539498 DOI: 10.1016/j.smim.2009.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
Abstract
CD40 stimulation on monocytes/macrophages, dendritic cells, and B-lymphocytes has been the subject of much study. It is well recognized that activation of CD40 on antigen presenting cells by its ligand, CD154, expressed on T-lymphocytes, contributes to the pro-inflammatory response necessary for eradication of infection, yet pathological in autoimmunity. However, there is evidence that CD40 is also expressed on T-lymphocytes and can act as a costimulatory molecule. While the exact role of CD40 on CD8 T cells remains controversial, it does appear to contribute to the adaptive immune response against infection. CD40 on CD4 T cells, on the other hand, plays a functional role in the autoimmune disease process. Further dissection of the exact nature and role of CD40 in T cell activation could lead the way to more effective vaccines and novel therapeutics for autoimmune diseases.
Collapse
Affiliation(s)
- Melissa E Munroe
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
18
|
Takase M, Kanagawa EM, Kanagawa O. Age-dependent TCR revision mediated by interaction between alphabeta TCR and self-antigens. THE JOURNAL OF IMMUNOLOGY 2007; 179:2163-9. [PMID: 17675475 DOI: 10.4049/jimmunol.179.4.2163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions between TCR and self-peptide/MHC complex play an important role in homeostasis and Ag reactivity of mature peripheral T cells. In this report, we demonstrate that the interactions between mature peripheral T cells and endogenous Ags have a negative impact on the maintenance of foreign Ag-specific T cells in an age-dependent manner. This is mediated by RAG-dependent secondary rearrangement of the TCR alpha-chain (receptor revision). The TCR revision in mature T cells is readily observed in mouse expressing transgenic TCR alpha-chain inserted into the physiological locus (knockin mouse) but not in conventional transgenic mouse with an identical TCR alpha-chain. Thus, our results suggest that under physiological conditions in which all TCR alpha-chains are susceptible to deletion by secondary rearrangement, TCR revision in mature peripheral T cells is an ongoing process in adult animals and contributes to age-dependent changes in T cell function and repertoire.
Collapse
Affiliation(s)
- Mitsuyo Takase
- RIKEN Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan
| | | | | |
Collapse
|
19
|
Lantelme E, Orlando L, Porcedda P, Turinetto V, De Marchi M, Amoroso A, Mantovani S, Giachino C. An in vitro model of T cell receptor revision in mature human CD8+ T cells. Mol Immunol 2007; 45:328-37. [PMID: 17659780 DOI: 10.1016/j.molimm.2007.06.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/07/2007] [Accepted: 06/17/2007] [Indexed: 11/20/2022]
Abstract
V(D)J recombination is a mechanism peculiar to the somatic rearrangement of antigen receptor genes. It requires both expression of the RAG-1 and RAG-2 recombinases and accessibility of the substrate to its recombinase and post-cleavage/DNA repair stage. TCR revision is a genetic correction mechanism that changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. This process is now well described in both normal or pathological murine and human settings. Many of its features, such as the question of whether it occurs in truly mature T cells, remain to be elucidated. Its occurrence in human CD8+ T cells is also an open question. We have therefore established an in vitro model of TCR revision in mature human CD8+ T cells to determine whether down-regulation of the TCR/CD3 complex from the cell surface in the presence of IL7 as a factor favouring chromatin remodelling initiates a TCR revision pathway. Only mature CD8+ T cells carrying already-formed antigen receptors were used. CD8+ T cells treated with anti-CD3 and IL7 showed rearrangement intermediates and expressed new Vbeta-chains on their surface. Investigation of the molecular pathway thus induced disclosed up-regulation of the RAG-2 transcript, but absence of the 'canonical' RAG-1 mRNA. A surprising finding was the demonstration of alternative splice forms of this mRNA, already expressed in untreated CD8+ T cells, encoding for the full-length RAG-1 protein, which was increased three-fold in the treated cells. All the V(D)J requirements were thus fulfilled when mature human CD8+ T cells were stimulated with anti-CD3 and IL7. Induction of TCR revision in vitro in mature T cells is an easily controllable system that could be employed in further studies to elucidate the molecular pathways involved in secondary V(D)J rearrangements in peripheral cells.
Collapse
Affiliation(s)
- Erica Lantelme
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This review considers a crucially new mechanism of T-cell antigen-recognizing repertoire formation. It includes the revision of T-cell antigen receptor (TCR), which implies the secondary rearrangement of TCR genes in peripheral T-lymphocytes and surface expression of a new antigen receptor with altered specificity. Factors and mechanisms involved in the induction of this process have been analyzed. Certain attention is paid to a possible role of TCR revision in the formation of peripheral tolerance in the processes of "avidity maturation" of T-lymphocytes during immune response and also negative consequences related to appearance of potentially autoreactive clones in the periphery.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
21
|
Patra AK, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, Serfling E, Bommhardt UH. PKB Rescues Calcineurin/NFAT-Induced Arrest of Rag Expression and Pre-T Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2006; 177:4567-76. [PMID: 16982894 DOI: 10.4049/jimmunol.177.7.4567] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase B (PKB), an Ag receptor activated serine-threonine kinase, controls various cellular processes including proliferation and survival. However, PKB function in thymocyte development is still unclear. We report PKB as an important negative regulator of the calcineurin (CN)-regulated transcription factor NFAT in early T cell differentiation. Expression of a hyperactive version of CN induces a profound block at the CD25+CD44- double-negative (DN) 3 stage of T cell development. We correlate this arrest with up-regulation of Bcl-2, CD2, CD5, and CD27 proteins and constitutive activation of NFAT but a severe impairment of Rag1, Rag2, and intracellular TCR-beta as well as intracellular TCR-gammadelta protein expression. Intriguingly, simultaneous expression of active myristoylated PKB inhibits nuclear NFAT activity, restores Rag activity, and enables DN3 cells to undergo normal differentiation and expansion. A correlation between the loss of NFAT activity and Rag1 and Rag2 expression is also found in myristoylated PKB-induced CD4+ lymphoma cells. Furthermore, ectopic expression of NFAT inhibits Rag2 promoter activity in EL4 cells, and in vivo binding of NFATc1 to the Rag1 and Rag2 promoter and cis-acting transcription regulatory elements is verified by chromatin immunoprecipitation analysis. The regulation of CN/NFAT signaling by PKB may thus control receptor regulated changes in Rag expression and constitute a signaling pathway important for differentiation processes in the thymus and periphery.
Collapse
Affiliation(s)
- Amiya K Patra
- Institute of Virology and Immunobiology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rückert C, Fiorillo MT, Loll B, Moretti R, Biesiadka J, Saenger W, Ziegler A, Sorrentino R, Uchanska-Ziegler B. Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype. J Biol Chem 2005; 281:2306-16. [PMID: 16221670 DOI: 10.1074/jbc.m508528200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An interesting property of certain peptides presented by major histocompatibility complex (MHC) molecules is their acquisition of a dual binding mode within the peptide binding groove. Using x-ray crystallography at 1.4 A resolution, we show here that the glucagon receptor-derived self-peptide pGR ((412)RRRWHRWRL(420)) is presented by the disease-associated human MHC class I subtype HLA-B*2705 in a dual conformation as well, with the middle of the peptide bent toward the floor of the peptide binding groove of the molecule in both binding modes. The conformations of pGR are compared here with those of another self-peptide (pVIPR, RRKWRRWHL) that is also displayed in two binding modes by HLA-B*2705 antigens and with that of the viral peptide pLMP2 (RRRWRRLTV). Conserved structural features suggest that the N-terminal halves of the peptides are crucial in allowing cytotoxic T lymphocyte (CTL) cross-reactivity. In addition, an analysis of T cell receptors (TCRs) from pGR- or pVIPR-directed, HLA-B27-restricted CTL clones demonstrates that TCR from distinct clones but with comparable reactivity may share CDR3alpha but not CDR3beta regions. Therefore, the cross-reactivity of these CTLs depends on TCR-CDR3alpha, is modulated by TCR-CDR3beta sequences, and is ultimately a consequence of the conformational dimorphism that characterizes binding of the self-peptides to HLA-B*2705. These results lend support to the concept that conformational dimorphisms of MHC class I-bound peptides might be connected with the occurrence of self-reactive CTL.
Collapse
MESH Headings
- Antigens/chemistry
- Cell Line, Tumor
- Chromium/chemistry
- Crystallography, X-Ray
- Electrons
- Female
- HLA-B Antigens/chemistry
- HLA-B27 Antigen/chemistry
- HLA-B27 Antigen/metabolism
- Histocompatibility Antigens Class I/chemistry
- Humans
- Hydrogen Bonding
- Leukocytes, Mononuclear/cytology
- Major Histocompatibility Complex
- Male
- Models, Molecular
- Molecular Mimicry
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Glucagon/chemistry
- Spondylitis, Ankylosing/immunology
- Spondylitis, Ankylosing/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/metabolism
- Viral Matrix Proteins/chemistry
Collapse
Affiliation(s)
- Christine Rückert
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Humboldt-Universität zu Berlin, Spandauer Damm 130, 14050 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jackson AM, Krangel MS. Allele-Specific Regulation of TCRβ Variable Gene Segment Chromatin Structure. THE JOURNAL OF IMMUNOLOGY 2005; 175:5186-91. [PMID: 16210623 DOI: 10.4049/jimmunol.175.8.5186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allelic exclusion of the murine Tcrb locus is imposed at the level of recombination and restricts each cell to produce one functional VDJbeta rearrangement. Allelic exclusion is achieved through asynchronous Vbeta to DJbeta recombination as well as feedback inhibition that terminates recombination once a functional rearrangement has occurred. Because the accessibility of Vbeta gene segment chromatin is diminished as thymocytes undergo allelic exclusion at the CD4(-)CD8(-) (double-negative) to CD4(+)CD8(+) (double-positive) transition, chromatin regulation was thought to be an important component of the feedback inhibition process. However, previous studies of chromatin regulation addressed the status of Tcrb alleles using genetic models in which both alleles remained in a germline configuration. Under physiological conditions, developing thymocytes would undergo Vbeta to DJbeta recombination on one or both alleles before the enforcement of feedback. On rearranged alleles, Vbeta gene segments that in germline configuration are regulated independently of the Tcrb enhancer are now brought into its proximity. We show in this study that in contrast to Vbeta segments on a nonrearranged allele, those situated upstream of a functionally rearranged Vbeta segment are contained in active chromatin as judged by histone H3 acetylation, histone H3 lysine 4 (K4) methylation, and germline transcription. Nevertheless, these Vbeta gene segments remain refractory to recombination in double-positive thymocytes. These results suggest that a unique feedback mechanism may operate independent of chromatin structure to inhibit Vbeta to DJbeta recombination after the double-negative stage of thymocyte development.
Collapse
Affiliation(s)
- Annette M Jackson
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
24
|
DiLorenzo TP, Serreze DV. The good turned ugly: immunopathogenic basis for diabetogenic CD8+ T cells in NOD mice. Immunol Rev 2005; 204:250-63. [PMID: 15790363 DOI: 10.1111/j.0105-2896.2005.00244.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is a T-cell-mediated autoimmune disease in which the insulin-producing pancreatic islet beta-cells are selectively eliminated. As a result, glucose metabolism cannot be regulated unless exogenous insulin is administered. Both the CD4(+) and the CD8(+) T-cell subsets are required for T1D development. Approximately 20 years ago, an association between certain class II major histocompatibility complex (MHC) alleles and susceptibility to T1D was reported. This finding led to enormous interest in the CD4(+) T cells participating in the development of T1D, while the CD8(+) subset was relatively ignored. However, the isolation of beta-cell-autoreactive CD8(+) T-cell clones from the islets of NOD mice helped to generate interest in the pathogenic role of this subset, as has accumulating evidence that certain class I MHC alleles are additional risk factors for T1D development in humans. Three distinct diabetogenic CD8(+) T-cell populations have now been characterized in NOD mice. Here, we review recent investigations exploring their selection, activation, trafficking, and antigenic specificities. As CD8(+) T cells are suspected contributors to beta-cell demise in humans, continued exploration of these critical areas could very possibly lead to tangible benefits for T1D patients and at-risk individuals.
Collapse
Affiliation(s)
- Teresa P DiLorenzo
- Department of Microbiology, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
25
|
Han B, Serra P, Yamanouchi J, Amrani A, Elliott JF, Dickie P, Dilorenzo TP, Santamaria P. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J Clin Invest 2005; 115:1879-87. [PMID: 15937548 PMCID: PMC1142112 DOI: 10.1172/jci24219] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 04/26/2005] [Indexed: 11/17/2022] Open
Abstract
The progression of immune responses is generally associated with an increase in the overall avidity of antigen-specific T cell populations for peptide-MHC. This is thought to result from preferential expansion of high-avidity clonotypes at the expense of their low-avidity counterparts. Since T cell antigen-receptor genes do not mutate, it is puzzling that high-avidity clonotypes do not predominate from the outset. Here we provide a developmental basis for this phenomenon in the context of autoimmunity. We have carried out comprehensive studies of the diabetogenic CD8 T cell population that targets residues 206-214 of the beta cell antigen islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)) and undergoes avidity maturation as disease progresses. We find that the succession of IGRP(206-214)-specific clonotypes with increasing avidities during the progression of islet inflammation to overt diabetes in nonobese diabetic mice is fueled by autoimmune inflammation but opposed by systemic tolerance. As expected, naive high-avidity IGRP(206-214)-specific T cells respond more efficiently to antigen and are significantly more diabetogenic than their intermediate- or low-avidity counterparts. However, central and peripheral tolerance selectively limit the contribution of these high-avidity T cells to the earliest stages of disease without abrogating their ability to progressively accumulate in inflamed islets and kill beta cells. These results illustrate the way in which incomplete deletion of autoreactive T cell populations of relatively high avidity can contribute to the development of pathogenic autoimmunity in the periphery.
Collapse
Affiliation(s)
- Bingye Han
- Department of Microbiology and Infectious Diseases, Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cooper CJ, Turk GL, Sun M, Farr AG, Fink PJ. Cutting edge: TCR revision occurs in germinal centers. THE JOURNAL OF IMMUNOLOGY 2005; 173:6532-6. [PMID: 15557142 DOI: 10.4049/jimmunol.173.11.6532] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse CD4(+)Vbeta5(+) T cells recognize a peripherally expressed superantigen encoded by an endogenous retrovirus. Ag encounter tolerizes the mature CD4 T cell compartment, either by deletion of autoreactive cells or by TCR revision. This latter process is driven by TCRbeta rearrangement through RAG activity and results in the rescue of cells expressing novel TCRs that no longer recognize the tolerogen. Consistent with the notion that revising T cells represent a distinct peripheral T cell population, we now show that these lymphocyte blasts express a hybrid effector/memory phenotype and are not undergoing cell division. A population of revising T cells is CD40(+), expresses the germinal center (GC) marker CXCR5, and is Vbeta5(low)Thy-1(low). Histology reveals that, consistent with their surface Ag phenotype, T cells undergoing TCR revision are enriched in splenic GCs. These data demonstrate that TCR revision is a multistep tolerance pathway supported by the unique microenvironment provided by GCs.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Division/genetics
- Cell Division/immunology
- DNA-Binding Proteins/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Green Fluorescent Proteins/genetics
- Immunologic Memory/genetics
- Immunophenotyping
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Self Tolerance/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymectomy
Collapse
Affiliation(s)
- Cristine J Cooper
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
27
|
Maryanski JL, Aublin A, Attuil-Audenis V, Hamrouni A. Multiple T-cell clones specific for the same foreign pMHC ligand can be generated from a single, ancestral TCR-VDJbeta precursor. Immunol Res 2004; 30:231-40. [PMID: 15477663 DOI: 10.1385/ir:30:2:231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Owing to ordered, stage-specific T-cell receptor (TCR) gene rearrangements and cell division during T-cell development, small cohorts of "half-sibling" T cells sharing an ancestral TCR VDJbeta rearrangement but expressing different TCR alpha-locus rearrangements may be selected into the mature T-cell repertoire. We wondered whether different alphabetaTCRs expressed by T cells from the same ancestral VDJbeta cohort might be capable of recognizing the same foreign peptide-major histocompatibility complex complex (pMHC). By a combined flow cytometric and single-cell polymerase chain reaction (PCR) approach to analyze TCRs selected by the previously defined foreign antigen, pCW3170-179/H-2Kd, we were able to identify cohorts of half-sibling antigen-specific CD8 T cells after their expansion in immunized mice. We amplified residual DJbeta rearrangements as clonal markers to confirm that the shared VDJbeta sequences represent ancestral rearrangements rather than identical but independent ones. An intriguing explanation of our findings would be that only a very limited repertoire of TCR alpha-chains is selected to pair with a given TCR beta-chain during T-cell development.
Collapse
Affiliation(s)
- Janet L Maryanski
- INSERM U503, IFR 128 BioSciences Lyon-Gerland, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France.
| | | | | | | |
Collapse
|
28
|
Abstract
During lymphocyte development, both B and T cells assemble antigen receptor variable region genes from germline gene segments, allowing the expression of unique receptors in each clonally derived lymphocyte. Previously, it was shown that in certain cases, progenitor and immature B cells are capable of editing their receptors to a new specificity on encounter with self-antigens. Although the existence of such a process in T cells remains controversial, recent studies suggest that mature T cells are able to similarly revise their receptors in the periphery.
Collapse
Affiliation(s)
- Raul Mostoslavsky
- Howard Hughes Medical Institute, The Children's Hospital, The Center for Blood Research, and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Ogasawara K, Hamerman JA, Ehrlich LR, Bour-Jordan H, Santamaria P, Bluestone JA, Lanier LL. NKG2D Blockade Prevents Autoimmune Diabetes in NOD Mice. Immunity 2004; 20:757-67. [PMID: 15189740 DOI: 10.1016/j.immuni.2004.05.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 04/15/2004] [Accepted: 04/21/2004] [Indexed: 02/07/2023]
Abstract
NKG2D is an activating receptor on CD8(+) T cells and NK cells that has been implicated in immunity against tumors and microbial pathogens. Here we show that RAE-1 is present in prediabetic pancreas islets of NOD mice and that autoreactive CD8(+) T cells infiltrating the pancreas express NKG2D. Treatment with a nondepleting anti-NKG2D monoclonal antibody (mAb) during the prediabetic stage completely prevented disease by impairing the expansion and function of autoreactive CD8(+) T cells. These findings demonstrate that NKG2D is essential for disease progression and suggest a new therapeutic target for autoimmune type I diabetes.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- Antibodies/therapeutic use
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Division
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Flow Cytometry
- Islets of Langerhans/cytology
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Membrane Proteins/genetics
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily K
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
Collapse
Affiliation(s)
- Kouetsu Ogasawara
- Department of Microbiology and Immunology and The Cancer Research Institute, HSE 1001, Box 0414, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Ali M, Weinreich M, Balcaitis S, Cooper CJ, Fink PJ. Differential regulation of peripheral CD4+ T cell tolerance induced by deletion and TCR revision. THE JOURNAL OF IMMUNOLOGY 2004; 171:6290-6. [PMID: 14634147 DOI: 10.4049/jimmunol.171.11.6290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In Vbeta5 transgenic mice, mature Vbeta5(+)CD4(+) T cells are tolerized upon recognition of a self Ag, encoded by a defective endogenous retrovirus, whose expression is confined to the lymphoid periphery. Cells are driven by the tolerogen to enter one of two tolerance pathways, deletion or TCR revision. CD4(+) T cells entering the former pathway are rendered anergic and then eliminated. In contrast, TCR revision drives gene rearrangement at the endogenous TCR beta locus and results in the appearance of Vbeta5(-), endogenous Vbeta(+), CD4(+) T cells that are both self-tolerant and functional. An analysis of the molecules that influence each of these pathways was conducted to understand better the nature of the interactions that control tolerance induction in the lymphoid periphery. These studies reveal that deletion is efficient in reconstituted radiation chimeras and is B cell, CD28, inducible costimulatory molecule, Fas, CD4, and CD8 independent. In contrast, TCR revision is radiosensitive, B cell, CD28, and inducible costimulatory molecule dependent, Fas and CD4 influenced, and CD8 independent. Our data demonstrate the differential regulation of these two divergent tolerance pathways, despite the fact that they are both driven by the same tolerogen and restricted to mature CD4(+) T cells.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/physiology
- Bone Marrow Transplantation/immunology
- CD4 Antigens/biosynthesis
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8 Antigens/biosynthesis
- Cell Aggregation/genetics
- Cell Aggregation/immunology
- Cell Death/genetics
- Cell Death/immunology
- Cell Division/genetics
- Cell Division/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Clonal Deletion/genetics
- Immune Tolerance/genetics
- Inducible T-Cell Co-Stimulator Protein
- Lymphocyte Depletion/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Radiation Chimera/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- fas Receptor/biosynthesis
- fas Receptor/metabolism
- fas Receptor/physiology
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
31
|
Yang Y, Santamaria P. T-cell receptor-transgenic NOD mice: a reductionist approach to understand autoimmune diabetes. J Autoimmun 2004; 22:121-9. [PMID: 14987740 DOI: 10.1016/j.jaut.2003.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada
| | | |
Collapse
|
32
|
Serreze DV, Holl TM, Marron MP, Graser RT, Johnson EA, Choisy-Rossi C, Slattery RM, Lieberman SM, DiLorenzo TP. MHC Class II Molecules Play a Role in the Selection of Autoreactive Class I-Restricted CD8 T Cells That Are Essential Contributors to Type 1 Diabetes Development in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:871-9. [PMID: 14707058 DOI: 10.4049/jimmunol.172.2.871] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1D development. However, it was unknown whether the development of diabetogenic CD8 T cells could also be dominantly inhibited by particular MHC variants. We addressed this issue by crossing NOD mice transgenically expressing the TCR from the diabetogenic CD8 T cell clone AI4 with NOD stocks congenic for MHC haplotypes that dominantly inhibit T1D. High numbers of functional AI4 T cells only developed in controls homozygously expressing NOD-derived H2(g7) molecules. In contrast, heterozygous expression of some MHC haplotypes conferring T1D resistance anergized AI4 T cells through decreased TCR (H2(b)) or CD8 expression (H2(q)). Most interestingly, while AI4 T cells exert a class I-restricted effector function, H2(nb1) MHC class II molecules can contribute to their negative selection. These findings provide insights to how particular MHC class I and class II variants interactively regulate the development of diabetogenic T cells and the TCR promiscuity of such autoreactive effectors.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Autoantigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clonal Anergy/genetics
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Female
- Genetic Carrier Screening
- Genetic Variation/immunology
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Haplotypes
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Histocompatibility Antigens Class II/biosynthesis
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Histocompatibility Testing
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- David V Serreze
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang Y, Santamaria P. Dissecting autoimmune diabetes through genetic manipulation of non-obese diabetic mice. Diabetologia 2003; 46:1447-64. [PMID: 14586501 DOI: 10.1007/s00125-003-1218-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 07/10/2003] [Indexed: 11/29/2022]
Abstract
Type 1 diabetes results from a genetically and immunologically complex autoimmune process that is specifically directed against the pancreatic beta cells. Non-obese diabetic mice spontaneously develop a form of autoimmune diabetes closely resembling the disease in humans. This happens because, like human diabetic patients, non-obese diabetic mice have an unfortunate combination of apparently normal alleles at numerous loci associated with Type 1 diabetes. In isolation, each of these allelic variants affords a small degree of susceptibility to diabetes. In combination, however, they set in motion a series of immunological events that lead to islet inflammation and overt diabetes. Type 1 diabetes is associated with defects in self-tolerance and immunoregulation. It involves presentation of beta cell antigens to autoreactive T lymphocytes by professional antigen-presenting cells, the recruitment of antigen-activated T cells into pancreatic islets, and the differentiation of these antigen-activated lymphocytes into beta cell killers. Understanding the precise sequence of events in the pathogenesis of Type 1 diabetes has been, and remains, a challenging task. Much of our understanding of the immunology of the disease stems from studies of genetically engineered, non-obese diabetic mice. These mice provide reductionist systems, with which the contribution of individual cellular elements, molecules or genes to the disease process can be dissected. This review focuses on the lessons that have been learned through studies of these mice.
Collapse
Affiliation(s)
- Y Yang
- Julia McFarlane Diabetes Research Centre, The University of Calgary, Faculty of Medicine, Calgary, Alberta, Canada
| | | |
Collapse
|
34
|
Cooper CJ, Orr MT, McMahan CJ, Fink PJ. T cell receptor revision does not solely target recent thymic emigrants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:226-33. [PMID: 12817002 DOI: 10.4049/jimmunol.171.1.226] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CD4(+)Vbeta5(+) T cells enter one of two tolerance pathways after recognizing a peripherally expressed superantigen encoded by an endogenous retrovirus. One pathway leads to deletion, while the other, termed TCR revision, results in cellular rescue upon expression of an alternate TCR that no longer recognizes the tolerogen. TCR revision requires the rearrangement of novel TCR beta-chain genes and depends on recombinase-activating gene (RAG) expression in peripheral T cells. In line with recent findings that RAG(+) splenic B cells are immature cells that have maintained RAG expression, it has been hypothesized that TCR revision is limited to recent thymic emigrants that have maintained RAG expression and TCR loci in a recombination-permissive configuration. Using mice in which the expression of green fluorescent protein is driven by the RAG2 promoter, we now show that in vitro stimulation can drive reporter expression in noncycling, mature, peripheral CD4(+) T cells. In addition, thymectomized Vbeta5 transgenic RAG reporter mice are used to demonstrate that TCR revision can target peripheral T cells up to 2 mo after thymectomy. Both sets of experiments strongly suggest that reinduction of RAG genes triggers TCR revision. Approximately 3% of CD4(+)Vbeta5(+) T cells in thymectomized Vbeta5 transgenic reporter mice have undergone TCR revision within the previous 4-5 days. TCR revision can also occur in Vbeta5(+) T cells from nontransgenic mice, illustrating the relevance of this novel tolerance mechanism in unmanipulated animals.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Silencing/immunology
- Genes, Reporter/immunology
- Green Fluorescent Proteins
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Immune Tolerance/genetics
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Lymphocyte Count
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombination, Genetic
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Thymectomy
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/virology
- Transgenes/immunology
Collapse
Affiliation(s)
- Cristine J Cooper
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
35
|
Nemazee D, Hogquist KA. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol 2003; 15:182-9. [PMID: 12633668 DOI: 10.1016/s0952-7915(03)00008-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clonal selection is central to immune function, but it is complemented by "receptor selection", which regulates the immune repertoire not by cell death or proliferation but through the control of antigen receptor gene recombination. Inappropriate receptors, such as those that are autoreactive, underexpressed, or that fail to promote positive selection of thymocytes or B cells, stimulate secondary V-to-J recombinations that destroy and replace receptor genes. These processes play a central role in lymphocyte repertoire development. Recent work on the role of receptor selection in B and T cells has uncovered evidence for and against antigen-induced editing in thymocytes. Many studies suggest that editing plays a central role in B and T lymphocyte repertoire development. Important recent evidence has been uncovered addressing the role of tolerance-induced editing in thymocytes.
Collapse
MESH Headings
- Animals
- Down-Regulation/immunology
- Gene Rearrangement/immunology
- Genes, Immunoglobulin/genetics
- Humans
- Models, Biological
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop IM-29, La Jolla, CA 92037, USA.
| | | |
Collapse
|