1
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
2
|
Hoshino Y, Gaucher EA. Impact of steroid biosynthesis on the aerobic adaptation of eukaryotes. GEOBIOLOGY 2024; 22:e12612. [PMID: 38967402 PMCID: PMC11234327 DOI: 10.1111/gbi.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Steroids are indispensable components of the eukaryotic cellular membrane and the acquisition of steroid biosynthesis was a key factor that enabled the evolution of eukaryotes. The polycyclic carbon structures of steroids can be preserved in sedimentary rocks as chemical fossils for billions of years and thus provide invaluable clues to trace eukaryotic evolution from the distant past. Steroid biosynthesis consists of (1) the production of protosteroids and (2) the subsequent modifications toward "modern-type" steroids such as cholesterol and stigmasterol. While protosteroid biosynthesis requires only two genes for the cyclization of squalene, complete modification of protosteroids involves ~10 additional genes. Eukaryotes universally possess at least some of those additional genes and thus produce modern-type steroids as major final products. The geological biomarker records suggest a prolonged period of solely protosteroid production in the mid-Proterozoic before the advent of modern-type steroids in the Neoproterozoic. It has been proposed that mid-Proterozoic protosteroids were produced by hypothetical stem-group eukaryotes that presumably possessed genes only for protosteroid production, even though in modern environments protosteroid production as a final product is found exclusively in bacteria. The host identity of mid-Proterozoic steroid producers is crucial for understanding the early evolution of eukaryotes. In this perspective, we discuss how geological biomarker data and genetic data complement each other and potentially provide a more coherent scenario for the evolution of steroids and associated early eukaryotes. We further discuss the potential impacts that steroids had on the evolution of aerobic metabolism in eukaryotes, which may have been an important factor for the eventual ecological dominance of eukaryotes in many modern environments.
Collapse
Affiliation(s)
- Yosuke Hoshino
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, Japan
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Quiñonero-Coronel MDM, Devos DP, Garcillán-Barcia MP. Specificities and commonalities of the Planctomycetes plasmidome. Environ Microbiol 2024; 26:e16638. [PMID: 38733104 DOI: 10.1111/1462-2920.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.
Collapse
Affiliation(s)
| | - Damien Paul Devos
- Centro Andaluz de Biología del Desarrollo (CABD, CSIC-Universidad Pablo de Olavide), Sevilla, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, CSIC-Universidad de Cantabria), Cantabria, Spain
| |
Collapse
|
4
|
Zhai L, Bonds AC, Smith CA, Oo H, Chou JCC, Welander PV, Dassama LMK. Novel sterol binding domains in bacteria. eLife 2024; 12:RP90696. [PMID: 38329015 PMCID: PMC10942540 DOI: 10.7554/elife.90696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Sterol lipids are widely present in eukaryotes and play essential roles in signaling and modulating membrane fluidity. Although rare, some bacteria also produce sterols, but their function in bacteria is not known. Moreover, many more species, including pathogens and commensal microbes, acquire or modify sterols from eukaryotic hosts through poorly understood molecular mechanisms. The aerobic methanotroph Methylococcus capsulatus was the first bacterium shown to synthesize sterols, producing a mixture of C-4 methylated sterols that are distinct from those observed in eukaryotes. C-4 methylated sterols are synthesized in the cytosol and localized to the outer membrane, suggesting that a bacterial sterol transport machinery exists. Until now, the identity of such machinery remained a mystery. In this study, we identified three novel proteins that may be the first examples of transporters for bacterial sterol lipids. The proteins, which all belong to well-studied families of bacterial metabolite transporters, are predicted to reside in the inner membrane, periplasm, and outer membrane of M. capsulatus, and may work as a conduit to move modified sterols to the outer membrane. Quantitative analysis of ligand binding revealed their remarkable specificity for 4-methylsterols, and crystallographic structures coupled with docking and molecular dynamics simulations revealed the structural bases for substrate binding by two of the putative transporters. Their striking structural divergence from eukaryotic sterol transporters signals that they form a distinct sterol transport system within the bacterial domain. Finally, bioinformatics revealed the widespread presence of similar transporters in bacterial genomes, including in some pathogens that use host sterol lipids to construct their cell envelopes. The unique folds of these bacterial sterol binding proteins should now guide the discovery of other proteins that handle this essential metabolite.
Collapse
Affiliation(s)
- Liting Zhai
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | - Amber C Bonds
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Clyde A Smith
- Department of Chemistry and Stanford Synchrotron Radiation Lightsource, Stanford UniversityStanfordUnited States
| | - Hannah Oo
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
| | | | - Paula V Welander
- Department of Earth System Science, Stanford UniversityStanfordUnited States
| | - Laura MK Dassama
- Department of Chemistry and Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
5
|
Kenig F. Infancy of sterol biosynthesis hints at extinct eukaryotic species. Nature 2023:10.1038/d41586-023-01816-1. [PMID: 37286675 DOI: 10.1038/d41586-023-01816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
6
|
Lee AK, Wei JH, Welander PV. De novo cholesterol biosynthesis in bacteria. Nat Commun 2023; 14:2904. [PMID: 37217541 PMCID: PMC10202945 DOI: 10.1038/s41467-023-38638-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Eukaryotes produce highly modified sterols, including cholesterol, essential to eukaryotic physiology. Although few bacterial species are known to produce sterols, de novo production of cholesterol or other complex sterols in bacteria has not been reported. Here, we show that the marine myxobacterium Enhygromyxa salina produces cholesterol and provide evidence for further downstream modifications. Through bioinformatic analysis we identify a putative cholesterol biosynthesis pathway in E. salina largely homologous to the eukaryotic pathway. However, experimental evidence indicates that complete demethylation at C-4 occurs through unique bacterial proteins, distinguishing bacterial and eukaryotic cholesterol biosynthesis. Additionally, proteins from the cyanobacterium Calothrix sp. NIES-4105 are also capable of fully demethylating sterols at the C-4 position, suggesting complex sterol biosynthesis may be found in other bacterial phyla. Our results reveal an unappreciated complexity in bacterial sterol production that rivals eukaryotes and highlight the complicated evolutionary relationship between sterol biosynthesis in the bacterial and eukaryotic domains.
Collapse
Affiliation(s)
- Alysha K Lee
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Jeremy H Wei
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Nair IM, Kochupurackal J. Squalene hopene cyclases and oxido squalene cyclases: potential targets for regulating cyclisation reactions. Biotechnol Lett 2023; 45:573-588. [PMID: 37055654 DOI: 10.1007/s10529-023-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Squalene hopene cyclases (SHC) convert squalene, the linear triterpene to fused ring product hopanoid by the cationic cyclization mechanism. The main function of hopanoids, a class of pentacyclic triterpenoids in bacteria involves the maintenance of membrane fluidity and stability. 2, 3-oxido squalene cyclases are functional analogues of SHC in eukaryotes and both these enzymes have fascinated researchers for the high stereo selectivity, complexity, and efficiency they possess. The peculiar property of the enzyme squalene hopene cyclase to accommodate substrates other than its natural substrate can be exploited for the use of these enzymes in an industrial perspective. Here, we present an extensive overview of the enzyme squalene hopene cyclase with emphasis on the cloning and overexpression strategies. An attempt has been made to explore recent research trends around squalene cyclase mediated cyclization reactions of flavour and pharmaceutical significance by using non-natural molecules as substrates.
Collapse
Affiliation(s)
- Indu Muraleedharan Nair
- School of Biosciences, Mahatma Gandhi University, Athirampuzha, Kottayam, 686560, India
- Department of Physiology, School of Medicine, University College Cork, Cork, T12 XF62, Ireland
| | | |
Collapse
|
8
|
Kataoka K, Suzuki S, Tenno T, Goda N, Hibino E, Oshima A, Hiroaki H. A cryptic phosphate-binding pocket on the SPFH domain of human stomatin that regulates a novel fibril-like self-assembly. Curr Res Struct Biol 2022; 4:158-166. [PMID: 35663930 PMCID: PMC9157467 DOI: 10.1016/j.crstbi.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
Human stomatin (hSTOM) is a component of the membrane skeleton of erythrocytes that maintains the membrane's shape and stiffness through interconnecting spectrin and actin. hSTOM is a member of the protein family that possesses a single stomatin/prohibitin/flotillin/HflK (SPFH) domain at the center of the molecule. Although SPFH domain proteins are widely distributed from archaea to mammals, the detailed function of the domain remains unclear. In this study, we first determined the solution structure of the SPFH domain of hSTOM (hSTOM(SPFH)) via NMR. The solution structure of hSTOM(SPFH) is essentially identical to the already reported crystal structure of the STOM SPFH domain (mSTOM(SPFH)) of mice, except for the existence of a small hydrophilic pocket on the surface. We identified this pocket as a phosphate-binding site by comparing its NMR spectra with and without phosphate ions. Meanwhile, during the conventional process of protein NMR analysis, we eventually discovered that hSTOM(SPFH) formed a unique solid material after lyophilization. This lyophilized hSTOM(SPFH) sample was moderately slowly dissolved in a physiological buffer. Interestingly, it was resistant to dissolution against the phosphate buffer. We then found that the lyophilized hSTOM(SPFH) formed a fibril-like assembly under electron microscopy. Finally, we succeeded in reproducing this fibril-like assembly of hSTOM(SPFH) using a centrifugal ultrafiltration device, thus demonstrating that the increased protein concentration may promote self-assembly of hSTOM(SPFH) into fibril forms. Our observations may help understand the molecular function of the SPFH domain and its involvement in protein oligomerization as a component of the membrane skeleton. (245 words). Solution structure of human stomatin SPFH domain is determined. A cryptic phosphate-binding pocket was identified. Stomatin SPFH domain can form a fibril-like assembly at a high concentration. Phosphate ions promote formation of the fibril-like assembly.
Collapse
|
9
|
Wang W, Zhang F, Zhang S, Xue Z, Xie L, Govers F, Liu X. Phytophthora capsici sterol reductase PcDHCR7 has a role in mycelium development and pathogenicity. Open Biol 2022; 12:210282. [PMID: 35382565 PMCID: PMC8984297 DOI: 10.1098/rsob.210282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The de novo biosynthesis of sterols is critical for the majority of eukaryotes; however, some organisms lack this pathway, including most oomycetes. Phytophthora spp. are sterol auxotrophic but, remarkably, have retained a few genes encoding enzymes in the sterol biosynthesis pathway. Here, we show that PcDHCR7, a gene in Phytophthora capsici predicted to encode Δ7-sterol reductase, displays multiple functions. When expressed in Saccharomyces cerevisiae, PcDHCR7 showed the Δ7-sterol reductase activity. Knocking out PcDHCR7 in P. capsici resulted in loss of the capacity to transform ergosterol into brassicasterol, which means PcDHCR7 has the Δ7-sterol reductase activity in P. capsici itself. This enables P. capsici to transform sterols recruited from the environment for better use. The biological characteristics of ΔPcDHCR7 transformants were compared with those of the wild-type strain and a PcDHCR7 complemented transformant, and the results showed that PcDHCR7 plays a key role in mycelium development and pathogenicity of zoospores. Further analysis of the transcriptome indicated that the expression of many genes changed in the ΔPcDHCR7 transformant, which involve in different biological processes. It is possible that P. capsici compensates for the defects caused by the loss of PcDHCR7 by remodelling its transcriptome.
Collapse
Affiliation(s)
- Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China,Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Fan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Sicong Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Linfang Xie
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
10
|
Zhang S, Song W, Nothias LF, Couvillion SP, Webster N, Thomas T. Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. MICROBIOME 2022; 10:22. [PMID: 35105377 PMCID: PMC8805237 DOI: 10.1186/s40168-021-01220-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species. RESULTS Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3'-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms. CONCLUSIONS This study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts. Video abstract.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| | - Louis-Félix Nothias
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
11
|
Chen Y, Wu J, Yu D, Du X. Advances in steroidal saponins biosynthesis. PLANTA 2021; 254:91. [PMID: 34617240 DOI: 10.1007/s00425-021-03732-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
This work reviews recent advances in the pathways and key enzymes of steroidal saponins biosynthesis and sets the foundation for the biotechnological production of these useful compounds through transformation of microorganisms. Steroidal saponins, due to their specific chemical structures and active effects, have long been important natural products and that are irreplaceable in hormone production and other pharmaceutical industries. This article comprehensively reviewed the previous and current research progress and summarized the biosynthesis pathways and key biosynthetic enzymes of steroidal saponins that have been discovered in plants and microoganisms. On the basis of the general biosynthetic pathway in plants, it was found that the starting components, intermediates and catalysing enzymes were diverse between plants and microorganisms; however, the functions of their related enzymes tended to be similar. The biosynthesis pathways of steroidal saponins in microorganisms and marine organisms have not been revealed as clearly as those in plants and need further investigation. The elucidation of biosynthetic pathways and key enzymes is essential for understanding the synthetic mechanisms of these compounds and provides researchers with important information to further develop and implement the massive production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Junkai Wu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China.
| |
Collapse
|
12
|
Wu S, You F, Boughton B, Liu Y, Nguyen TAH, Wykes J, Southam G, Robertson LM, Chan TS, Lu YR, Lutz A, Yu D, Yi Q, Saha N, Huang L. Chemodiversity of Dissolved Organic Matter and Its Molecular Changes Driven by Rhizosphere Activities in Fe Ore Tailings Undergoing Eco-Engineered Pedogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13045-13060. [PMID: 34565140 DOI: 10.1021/acs.est.1c04527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Berin Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tuan A H Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeremy Wykes
- Australian Synchrotron, Melbourne, Victoria 3168, Australia
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lachlan M Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dingyi Yu
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qing Yi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Narottam Saha
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Lamb DC, Hargrove TY, Zhao B, Wawrzak Z, Goldstone JV, Nes WD, Kelly SL, Waterman MR, Stegeman JJ, Lepesheva GI. Concerning P450 Evolution: Structural Analyses Support Bacterial Origin of Sterol 14α-Demethylases. Mol Biol Evol 2021; 38:952-967. [PMID: 33031537 PMCID: PMC7947880 DOI: 10.1093/molbev/msaa260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sterol biosynthesis, primarily associated with eukaryotic kingdoms of life, occurs as an abbreviated pathway in the bacterium Methylococcus capsulatus. Sterol 14α-demethylation is an essential step in this pathway and is catalyzed by cytochrome P450 51 (CYP51). In M. capsulatus, the enzyme consists of the P450 domain naturally fused to a ferredoxin domain at the C-terminus (CYP51fx). The structure of M. capsulatus CYP51fx was solved to 2.7 Å resolution and is the first structure of a bacterial sterol biosynthetic enzyme. The structure contained one P450 molecule per asymmetric unit with no electron density seen for ferredoxin. We connect this with the requirement of P450 substrate binding in order to activate productive ferredoxin binding. Further, the structure of the P450 domain with bound detergent (which replaced the substrate upon crystallization) was solved to 2.4 Å resolution. Comparison of these two structures to the CYP51s from human, fungi, and protozoa reveals strict conservation of the overall protein architecture. However, the structure of an "orphan" P450 from nonsterol-producing Mycobacterium tuberculosis that also has CYP51 activity reveals marked differences, suggesting that loss of function in vivo might have led to alterations in the structural constraints. Our results are consistent with the idea that eukaryotic and bacterial CYP51s evolved from a common cenancestor and that early eukaryotes may have recruited CYP51 from a bacterial source. The idea is supported by bioinformatic analysis, revealing the presence of CYP51 genes in >1,000 bacteria from nine different phyla, >50 of them being natural CYP51fx fusion proteins.
Collapse
Affiliation(s)
- David C Lamb
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Tatiana Y Hargrove
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, IL
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA
| | - William David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Steven L Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA
| | - Galina I Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN.,Center for Structural Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
14
|
Abstract
Steroids are one of three major lipid components of the eukaryotic cellular membrane, along with glycerophospolipids and sphingolipids. Steroids have critical roles in eukaryotic endocytosis and thus may have been structural prerequisites for the endocytic acquisition of mitochondria during eukaryogenesis. The evolutionary history of the eukaryotic cellular membrane is poorly understood and, as such, has limited our understanding of eukaryogenesis. We address the evolution of steroid biosynthesis by combining ancestral sequence reconstruction and phylogenetic analyses of steroid biosynthesis genes. Our results indicate that steroid biosynthesis evolved within bacteria in response to the rise of oxygen and was later horizontally transferred to eukaryotes. Membrane properties of early eukaryotes are inferred to have been different than that of modern eukaryotes. Steroids are components of the eukaryotic cellular membrane and have indispensable roles in the process of eukaryotic endocytosis by regulating membrane fluidity and permeability. In particular, steroids may have been a structural prerequisite for the acquisition of mitochondria via endocytosis during eukaryogenesis. While eukaryotes are inferred to have evolved from an archaeal lineage, there is little similarity between the eukaryotic and archaeal cellular membranes. As such, the evolution of eukaryotic cellular membranes has limited our understanding of eukaryogenesis. Despite evolving from archaea, the eukaryotic cellular membrane is essentially a fatty acid bacterial-type membrane, which implies a substantial bacterial contribution to the evolution of the eukaryotic cellular membrane. Here, we address the evolution of steroid biosynthesis in eukaryotes by combining ancestral sequence reconstruction and comprehensive phylogenetic analyses of steroid biosynthesis genes. Contrary to the traditional assumption that eukaryotic steroid biosynthesis evolved within eukaryotes, most steroid biosynthesis genes are inferred to be derived from bacteria. In particular, aerobic deltaproteobacteria (myxobacteria) seem to have mediated the transfer of key genes for steroid biosynthesis to eukaryotes. Analyses of resurrected steroid biosynthesis enzymes suggest that the steroid biosynthesis pathway in early eukaryotes may have been similar to the pathway seen in modern plants and algae. These resurrected proteins also experimentally demonstrate that molecular oxygen was required to establish the modern eukaryotic cellular membrane during eukaryogenesis. Our study provides unique insight into relationships between early eukaryotes and other bacteria in addition to the well-known endosymbiosis with alphaproteobacteria.
Collapse
|
15
|
Liu L, Lu L, Li H, Meng Z, Dong T, Peng C, Xu X. Divergence of Phyllosphere Microbial Communities Between Females and Males of the Dioecious Populus cathayana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:351-361. [PMID: 33290085 DOI: 10.1094/mpmi-07-20-0178-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Females and males of dioecious plants have evolved sex-specific characteristics in terms of their morphological and physiological properties. However, the differentiation of phyllosphere microbiota in dioecious plants remains largely unexplored. Here, the diversity and composition of female and male Populus cathayana phyllosphere bacterial and fungal communities were investigated using 16S rRNA/ITS1 gene-based MiSeq sequencing. The divergences of bacterial and fungal community compositions occurred between females and males. Both females and males had their unique phyllosphere bacterial and fungal microbiota, such as bacterial Gemmata spp. (5.41%) and fungal Pringsheimia spp. (0.03%) in females and bacterial Chitinophaga spp. (0.009%) and fungal Phaeococcomyces spp. (0.02%) in males. Significant differences in the relative abundance of phyla Proteobacteria and Planctomycetes bacteria and phyla Ascomycota and Basidiomycota fungi (P < 0.05) were also found between females and males. Some bacterial species of genera Spirosoma and Amnibacterium and fungal genera Venturia, Suillus, and Elmerina spp. were significantly enriched in males (P < 0.05). In contrast, levels of fungal genera Phoma and Aureobasidium spp. were significantly higher in females than in males (P < 0.05). The mineral, inorganic, and organic nutrients content contributed differently to the divergence of female and male phyllosphere microbial communities, with 87.08 and 45.17% of the variations being explained for bacterial and fungal communities, respectively. These results highlight the sexual discrimination of phyllosphere microbes on the dioecious plants and provide hints on the potential host-associated species in phyllosphere environments.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Liling Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Lu Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Huilin Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Zhensi Meng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| |
Collapse
|
16
|
Ozumchelouei EJ, Hamidian AH, Zhang Y, Yang M. A critical review on the effects of antibiotics on anammox process in wastewater. REV CHEM ENG 2020. [DOI: 10.1515/revce-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Anaerobic ammonium oxidation (anammox) has recently become of significant interest due to its capability for cost-effective nitrogen elimination from wastewater. However, anaerobic ammonia-oxidizing bacteria (AnAOB) are sensitive to environmental changes and toxic substances. In particular, the presence of antibiotics in wastewater, which is considered unfavorable to the anammox process, has become a growing concern. Therefore, it is necessary to evaluate the effects of these inhibitors to acquire information on the applicability of the anammox process. Hence, this review summarizes our knowledge of the effects of commonly detected antibiotics in water matrices, including fluoroquinolone, macrolide, β-lactam, chloramphenicol, tetracycline, sulfonamide, glycopeptide, and aminoglycoside, on the anammox process. According to the literature, the presence of antibiotics in wastewater could partially or completely inhibit anammox reactions, in which antibiotics targeting protein synthesis or DNA replication (excluding aminoglycoside) were the most effective against the AnAOB strains.
Collapse
Affiliation(s)
- Elnaz Jafari Ozumchelouei
- School of Chemical Engineering , University College of Engineering, University of Tehran , Tehran , Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources , University of Tehran , Karaj , Iran
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Min Yang
- Department of Environmental Science and Engineering, Faculty of Natural Resources , University of Tehran , Karaj , Iran
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| |
Collapse
|
17
|
|
18
|
Rivas-Marin E, Wiegand S, Kallscheuer N, Jogler M, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rohde M, Devos DP, Jogler C. Maioricimonas rarisocia gen. nov., sp. nov., a novel planctomycete isolated from marine sediments close to Mallorca Island. Antonie Van Leeuwenhoek 2020; 113:1901-1913. [PMID: 32583192 PMCID: PMC7716917 DOI: 10.1007/s10482-020-01436-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes are ubiquitous bacteria with environmental and biotechnological relevance. Axenic cultures of planctomycetal strains are the basis to analyse their unusual biology and largely uncharacterised metabolism in more detail. Here, we describe strain Mal4T isolated from marine sediments close to Palma de Mallorca, Spain. Strain Mal4T displays common planctomycetal features, such as division by polar budding and the presence of fimbriae and crateriform structures on the cell surface. Cell growth was observed at ranges of 10-39 °C (optimum at 31 °C) and pH 6.5-9.0 (optimum at 7.5). The novel strain shows as pear-shaped cells of 2.0 ± 0.2 × 1.4 ± 0.1 µm and is one of the rare examples of orange colony-forming Planctomycetes. Its genome has a size of 7.7 Mb with a G+C content of 63.4%. Phylogenetically, we conclude that strain Mal4T (= DSM 100296T = LMG 29133T) is the type strain representing the type species of a novel genus, for which we propose the name Maioricimonas rarisocia gen. nov., sp. nov.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
19
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
20
|
Kulichevskaya IS, Ivanova AA, Naumoff DG, Beletsky AV, Rijpstra WIC, Sinninghe Damsté JS, Mardanov AV, Ravin NV, Dedysh SN. Frigoriglobus tundricola gen. nov., sp. nov., a psychrotolerant cellulolytic planctomycete of the family Gemmataceae from a littoral tundra wetland. Syst Appl Microbiol 2020; 43:126129. [PMID: 32847778 PMCID: PMC7534041 DOI: 10.1016/j.syapm.2020.126129] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022]
Abstract
Planctomycetes of the family Gemmataceae are characterized by large genome sizes and cosmopolitan distribution in freshwater and terrestrial environments but their ecological functions remain poorly understood. In this study, we characterized a novel representative of this family, strain PL17T, which was isolated from a littoral tundra wetland and was capable of growth on xylan and cellulose. Cells of this isolate were represented by pink-pigmented spheres that multiplied by budding and occurred singly or in short chains and aggregates. Strain PL17T was obligately aerobic, mildly acidophilic chemoorganotrophic bacterium, which displayed good tolerance of low temperatures. The major fatty acids were C18:0, C16:1ω5, and βOH-C16:1; the major polar lipid was trimethylornithine. The genome of strain PL17T consisted of a 9.83 Mb chromosome and a 24.69kb plasmid. The G+C contents of the chromosomal and plasmid DNA were 67.4 and 62.3mol%, respectively. Over 8900 potential protein-coding genes were identified in the genome including a putative cellulase that contains a domain from the GH5 family of glycoside hydrolases. The genome of strain PL17T contained one linked and one unlinked rRNA operons with 16S rRNA gene sequences displaying 94.5% similarity to that in Gemmata obscuriglobus UQM2246T. Based on the results of comparative phenotypic, chemotaxonomic and phylogenomic analyses, we propose to classify strain PL17T (= CECT 9407T=VKM B-3467T) as representing a novel genus and species of the family Gemmataceae, Frigoriglobus tundricola gen. nov., sp. nov.
Collapse
Affiliation(s)
- Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Daniil G Naumoff
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - W Irene C Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Geochemistry, Utrecht, The Netherlands
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
21
|
Ogbughalu OT, Vasileiadis S, Schumann RC, Gerson AR, Li J, Smart RSC, Short MD. Role of microbial diversity for sustainable pyrite oxidation control in acid and metalliferous drainage prevention. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122338. [PMID: 32120208 DOI: 10.1016/j.jhazmat.2020.122338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Acid and metalliferous drainage (AMD) remains a challenging issue for the mining sector. AMD management strategies have attempted to shift from treatment of acid leachates post-generation to more sustainable at-source prevention. Here, the efficacy of microbial-geochemical at-source control approach was investigated over a period of 84 weeks. Diverse microbial communities were stimulated using organic carbon amendment in a simulated silicate-containing sulfidic mine waste rock environment. Mineral waste in the unamended leach system generated AMD quickly and throughout the study, with known lithotrophic iron- and sulfur-oxidising microbes dominating column communities. The organic-amended mineral waste column showed suppressed metal dissolution and AMD generation. Molecular DNA-based next generation sequencing confirmed a less diverse lithotrophic community in the acid-producing control, with a more diverse microbial community under organic amendment comprising organotrophic iron/sulfur-reducers, autotrophs, hydrogenotrophs and heterotrophs. Time-series multivariate statistical analyses displayed distinct ecological patterns in microbial diversity between AMD- and non-AMD-environments. Focused ion beam-TEM micrographs and elemental mapping showed that silicate-stabilised passivation layers were successfully established across pyrite surfaces in organic-amended treatments, with these layers absent in unamended controls. Organic amendment and resulting increases in microbial abundance and diversity played an important role in sustaining these passivating layers in the long-term.
Collapse
Affiliation(s)
- Omy T Ogbughalu
- School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41500, Greece
| | - Russell C Schumann
- School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia; Levay and Co. Environmental Services, Edinburgh, SA, 5111, Australia
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, TAS 7109, Australia
| | - Jun Li
- School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | | | - Michael D Short
- School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, 5095, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| |
Collapse
|
22
|
Santana-Molina C, Rivas-Marin E, Rojas AM, Devos DP. Origin and Evolution of Polycyclic Triterpene Synthesis. Mol Biol Evol 2020; 37:1925-1941. [PMID: 32125435 PMCID: PMC7306690 DOI: 10.1093/molbev/msaa054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycyclic triterpenes are members of the terpene family produced by the cyclization of squalene. The most representative polycyclic triterpenes are hopanoids and sterols, the former are mostly found in bacteria, whereas the latter are largely limited to eukaryotes, albeit with a growing number of bacterial exceptions. Given their important role and omnipresence in most eukaryotes, contrasting with their scant representation in bacteria, sterol biosynthesis was long thought to be a eukaryotic innovation. Thus, their presence in some bacteria was deemed to be the result of lateral gene transfer from eukaryotes. Elucidating the origin and evolution of the polycyclic triterpene synthetic pathways is important to understand the role of these compounds in eukaryogenesis and their geobiological value as biomarkers in fossil records. Here, we have revisited the phylogenies of the main enzymes involved in triterpene synthesis, performing gene neighborhood analysis and phylogenetic profiling. Squalene can be biosynthesized by two different pathways containing the HpnCDE or Sqs proteins. Our results suggest that the HpnCDE enzymes are derived from carotenoid biosynthesis ones and that they assembled in an ancestral squalene pathway in bacteria, while remaining metabolically versatile. Conversely, the Sqs enzyme is prone to be involved in lateral gene transfer, and its emergence is possibly related to the specialization of squalene biosynthesis. The biosynthesis of hopanoids seems to be ancestral in the Bacteria domain. Moreover, no triterpene cyclases are found in Archaea, invoking a potential scenario in which eukaryotic genes for sterol biosynthesis assembled from ancestral bacterial contributions in early eukaryotic lineages.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Ana M Rojas
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
23
|
Anaerobic bacteria need their vitamin B 12 to digest estrogen. Proc Natl Acad Sci U S A 2020; 117:1833-1835. [PMID: 31919281 DOI: 10.1073/pnas.1921340117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
24
|
Shiratori T, Suzuki S, Kakizawa Y, Ishida KI. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019; 10:5529. [PMID: 31827088 PMCID: PMC6906331 DOI: 10.1038/s41467-019-13499-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Phagocytosis is a key eukaryotic feature, conserved from unicellular protists to animals, that enabled eukaryotes to feed on other organisms. It could also be a driving force behind endosymbiosis, a process by which α-proteobacteria and cyanobacteria evolved into mitochondria and plastids, respectively. Here we describe a planctomycete bacterium, 'Candidatus Uab amorphum', which is able to engulf other bacteria and small eukaryotic cells through a phagocytosis-like mechanism. Observations via light and electron microscopy suggest that this bacterium digests prey cells in specific compartments. With the possible exception of a gene encoding an actin-like protein, analysis of the 'Ca. Uab amorphum' genomic sequence does not reveal any genes homologous to eukaryotic phagocytosis genes, suggesting that cell engulfment in this microorganism is probably not homologous to eukaryotic phagocytosis. The discovery of this "phagotrophic" bacterium expands our understanding of the cellular complexity of prokaryotes, and may be relevant to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan.
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Shigekatsu Suzuki
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-0053, Japan
| | - Yukako Kakizawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| |
Collapse
|
25
|
Kaboré OD, Aghnatios R, Godreuil S, Drancourt M. Escherichia coli Culture Filtrate Enhances the Growth of Gemmata spp. Front Microbiol 2019; 10:2552. [PMID: 31781064 PMCID: PMC6851166 DOI: 10.3389/fmicb.2019.02552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/22/2019] [Indexed: 12/05/2022] Open
Abstract
Background Planctomycetes bacteria are known to be difficult to isolate, we hypothesized this may be due to missing iron compounds known to be important for other bacteria. We tested the growth-enhancement effect of complementing two standard media with Escherichia coli culture filtrate on two cultured strains of Gemmata spp. Also, the acquisition of iron by Gemmata spp. was evaluated by measuring various molecules involved in iron metabolism. Materials and Methods Gemmata obscuriglobus and Gemmata massiliana were cultured in Caulobacter and Staley’s medium supplemented or not with E. coli culture filtrate, likely containing siderophores and extracellular ferrireductases. We performed iron metabolism studies with FeSO4, FeCl3 and deferoxamine in the cultures with the E. coli filtrate and the controls. Results and Discussion The numbers of G. obscuriglobus and G. massiliana colonies on Caulobacter medium or Staley’s medium supplemented with E. coli culture filtrate were significantly higher than those on the standard medium (p < 0.0001). Agar plate assays revealed that the Gemmata colonies near E. coli colonies were larger than the more distant colonies, suggesting the diffusion of unknown growth promoting molecules. The inclusion of 10–4 to 10–3 M FeSO4 resulted in rapid Gemmata spp. growth (4–5 days compared with 8–9 days for the controls), suggesting that both species can utilize FeSO4 to boost their growth. In contrast, deferoxamine slowed down and prevented Gemmata spp. growth. Further studies revealed that the complementation of Caulobacter medium with E. coli culture filtrate and 10–4 M FeSO4 exerted a significant growth-enhancement effect compared with that obtained with Caulobacter medium supplemented with E. coli culture filtrate alone (p < 0.0122). Moreover, the intracellular iron concentrations in G. obscuriglobus and G. massiliana cultures in iron-depleted broth supplemented with the E. coli filtrate were 0.63 ± 0.16 and 0.78 ± 0.12 μmol/L, respectively, whereas concentrations of 1.72 ± 0.13 and 1.56± 0.11 μmol/L were found in the G. obscuriglobus and G. massiliana cultures grown in broth supplemented with the E. coli filtrate and FeSO4. The data reported here indicated that both E. coli culture filtrate and FeSO4 act as growth factors for Gemmata spp. via a potentiation mechanism.
Collapse
Affiliation(s)
- Odilon D Kaboré
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rita Aghnatios
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Département de Bactériologie-Virologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
26
|
Brenac L, Baidoo EEK, Keasling JD, Budin I. Distinct functional roles for hopanoid composition in the chemical tolerance of Zymomonas mobilis. Mol Microbiol 2019; 112:1564-1575. [PMID: 31468587 DOI: 10.1111/mmi.14380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 11/29/2022]
Abstract
Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenter Zymomonas mobilis features the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) of Z. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set of hpn transposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial-derived liposomes showed that hopanoids protect against several ethanol-driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter-lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.
Collapse
Affiliation(s)
- Léa Brenac
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA.,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,QB3 Institute, University of California, Berkeley, CA, 94270, USA.,Biological Systems & Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,The Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark.,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Itay Budin
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA.,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
27
|
Welander PV. Deciphering the evolutionary history of microbial cyclic triterpenoids. Free Radic Biol Med 2019; 140:270-278. [PMID: 31071437 DOI: 10.1016/j.freeradbiomed.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022]
Abstract
Cyclic triterpenoids are a class of lipids that have fascinated chemists, biologist, and geologist alike for many years. These molecules have diverse physiological roles in a variety of bacterial and eukaryotic organisms and a shared evolutionary ancestry that is reflected in the elegant biochemistry required for their synthesis. Cyclic triterpenoids are also quite recalcitrant and are preserved in sedimentary rocks where they are utilized as "molecular fossils" or biomarkers that can physically link microbial taxa and their metabolisms to a specific time or event in Earth's history. However, a proper interpretation of cyclic triterpenoid biosignatures requires a robust understanding of their function in extant organisms and in the evolutionary history of their biosynthetic pathways. Here, I review two potential cyclic triterpenoid evolutionary scenarios and the recent genetic and biochemical studies that are providing experimental evidence to distinguish between these hypotheses. The study of cyclic triterpenoids will continue to provide a wealth of information that can significantly impact the interpretation of lipid biosignatures in the rock record and provides a compelling model of how two natural repositories of evolutionary history available on Earth, the geologic record in sedimentary rocks and the molecular record in living organisms, can be linked.
Collapse
Affiliation(s)
- Paula V Welander
- Department of Earth System Science, Stanford University, 473 Via Ortega, Rm 140, Stanford, CA, 94305, USA.
| |
Collapse
|
28
|
|
29
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
30
|
Rivas-Marin E, Stettner S, Gottshall EY, Santana-Molina C, Helling M, Basile F, Ward NL, Devos DP. Essentiality of sterol synthesis genes in the planctomycete bacterium Gemmata obscuriglobus. Nat Commun 2019; 10:2916. [PMID: 31266954 PMCID: PMC6606645 DOI: 10.1038/s41467-019-10983-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/10/2019] [Indexed: 12/27/2022] Open
Abstract
Sterols and hopanoids are chemically and structurally related lipids mostly found in eukaryotic and bacterial cell membranes. Few bacterial species have been reported to produce sterols and this anomaly had originally been ascribed to lateral gene transfer (LGT) from eukaryotes. In addition, the functions of sterols in these bacteria are unknown and the functional overlap between sterols and hopanoids is still unclear. Gemmata obscuriglobus is a bacterium from the Planctomycetes phylum that synthesizes sterols, in contrast to its hopanoid-producing relatives. Here we show that sterols are essential for growth of G. obscuriglobus, and that sterol depletion leads to aberrant membrane structures and defects in budding cell division. This report of sterol essentiality in a prokaryotic species advances our understanding of sterol distribution and function, and provides a foundation to pursue fundamental questions in evolutionary cell biology.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, 41013, Spain
| | - Sean Stettner
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Ekaterina Y Gottshall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, 41013, Spain
| | - Mitch Helling
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071-2000, USA
| | - Naomi L Ward
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-2000, USA.
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, 41013, Spain.
| |
Collapse
|
31
|
Antibiotic susceptibility of marine Planctomycetes. Antonie van Leeuwenhoek 2019; 112:1273-1280. [DOI: 10.1007/s10482-019-01259-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
32
|
Forestier E, Romero-Segura C, Pateraki I, Centeno E, Compagnon V, Preiss M, Berna A, Boronat A, Bach TJ, Darnet S, Schaller H. Distinct triterpene synthases in the laticifers of Euphorbia lathyris. Sci Rep 2019; 9:4840. [PMID: 30886213 PMCID: PMC6423090 DOI: 10.1038/s41598-019-40905-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
Euphorbia lathyris was proposed about fifty years ago as a potential agroenergetic crop. The tremendous amounts of triterpenes present in its latex has driven investigations for transforming this particular biological fluid into an industrial hydrocarbon source. The huge accumulation of terpenes in the latex of many plant species represent a challenging question regarding cellular homeostasis. In fact, the enzymes, the mechanisms and the controllers that tune the amount of products accumulated in specialized compartments (to fulfill ecological roles) or deposited at important sites (as essential factors) are not known. Here, we have isolated oxidosqualene cyclases highly expressed in the latex of Euphorbia lathyris. This triterpene biosynthetic machinery is made of distinct paralogous enzymes responsible for the massive accumulation of steroidal and non-steroidal tetracyclic triterpenes. More than eighty years after the isolation of butyrospermol from shea butter (Heilbronn IM, Moffet GL, and Spring FS J. Chem. Soc. 1934, 1583), a butyrospermol synthase is characterized in this work using yeast and in folia heterologous expression assays.
Collapse
Affiliation(s)
- Edith Forestier
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Carmen Romero-Segura
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Irini Pateraki
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Emilio Centeno
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Vincent Compagnon
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Myriam Preiss
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Anne Berna
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Albert Boronat
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Thomas J Bach
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Pará, Brazil
| | - Hubert Schaller
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France.
| |
Collapse
|
33
|
Muley VY, Akhter Y, Galande S. PDZ Domains Across the Microbial World: Molecular Link to the Proteases, Stress Response, and Protein Synthesis. Genome Biol Evol 2019; 11:644-659. [PMID: 30698789 PMCID: PMC6411480 DOI: 10.1093/gbe/evz023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
The PSD-95/Dlg-A/ZO-1 (PDZ) domain is highly expanded, diversified, and well distributed across metazoa where it assembles diverse signaling components by virtue of interactions with other proteins in a sequence-specific manner. In contrast, in the microbial world they are reported to be involved in protein quality control during stress response. The distribution, functions, and origins of PDZ domain-containing proteins in the prokaryotic organisms remain largely unexplored. We analyzed 7,852 PDZ domain-containing proteins in 1,474 microbial genomes in this context. PDZ domain-containing proteins from planctomycetes, myxobacteria, and other eubacteria occupying terrestrial and aquatic niches are found to be in multiple copies within their genomes. Over 93% of the 7,852 PDZ domain-containing proteins were classified into 12 families including six novel families based on additional structural and functional domains present in these proteins. The higher PDZ domain encoding capacity of the investigated organisms was observed to be associated with adaptation to the ecological niche where multicellular life might have originated and flourished. Predicted subcellular localization of PDZ domain-containing proteins and their genomic context argue in favor of crucial roles in translation and membrane remodeling during stress response. Based on rigorous sequence, structure, and phylogenetic analyses, we propose that the highly diverse PDZ domain of the uncharacterized Fe-S oxidoreductase superfamily, exclusively found in gladobacteria and several anaerobes and acetogens, might represent the most ancient form among all the existing PDZ domains.
Collapse
Affiliation(s)
- Vijaykumar Yogesh Muley
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
34
|
Gudde LR, Hulce M, Largen AH, Franke JD. Sterol synthesis is essential for viability in the planctomycete bacterium Gemmata obscuriglobus. FEMS Microbiol Lett 2019; 366:5304612. [DOI: 10.1093/femsle/fnz019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luke R Gudde
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| | - Martin Hulce
- Department of Chemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Alexander H Largen
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| | - Josef D Franke
- Department of Biology, Creighton University, Hixson-Leid Science Building Room 403, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
35
|
Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
The slow rise of complex life as revealed through biomarker genetics. Emerg Top Life Sci 2018; 2:191-199. [PMID: 32412622 DOI: 10.1042/etls20170150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 01/26/2023]
Abstract
Organic molecules preserved in ancient rocks can function as 'biomarkers', providing a unique window into the evolution of life. While biomarkers demonstrate intriguing patterns through the Neoproterozoic, it can be difficult to constrain particular biomarkers to specific organisms. The goal of the present paper is to demonstrate the utility of biomarkers when we focus less on which organisms produce them, and more on how their underlying genetic pathways evolved. Using this approach, it becomes clear that there are discrepancies between the biomarker, fossil, and molecular records. However, these discrepancies probably represent long time periods between the diversification of eukaryotic groups through the Neoproterozoic and their eventual rise to ecological significance. This 'long fuse' hypothesis contrasts with the adaptive radiations often associated with the development of complex life.
Collapse
|
37
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
38
|
C-4 sterol demethylation enzymes distinguish bacterial and eukaryotic sterol synthesis. Proc Natl Acad Sci U S A 2018; 115:5884-5889. [PMID: 29784781 DOI: 10.1073/pnas.1802930115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sterols are essential eukaryotic lipids that are required for a variety of physiological roles. The diagenetic products of sterol lipids, sterane hydrocarbons, are preserved in ancient sedimentary rocks and are utilized as geological biomarkers, indicating the presence of both eukaryotes and oxic environments throughout Earth's history. However, a few bacterial species are also known to produce sterols, bringing into question the significance of bacterial sterol synthesis for our interpretation of sterane biomarkers. Recent studies suggest that bacterial sterol synthesis may be distinct from what is observed in eukaryotes. In particular, phylogenomic analyses of sterol-producing bacteria have failed to identify homologs of several key eukaryotic sterol synthesis enzymes, most notably those required for demethylation at the C-4 position. In this study, we identified two genes of previously unknown function in the aerobic methanotrophic γ-Proteobacterium Methylococcus capsulatus that encode sterol demethylase proteins (Sdm). We show that a Rieske-type oxygenase (SdmA) and an NAD(P)-dependent reductase (SdmB) are responsible for converting 4,4-dimethylsterols to 4α-methylsterols. Identification of intermediate products synthesized during heterologous expression of SdmA-SdmB along with 13C-labeling studies support a sterol C-4 demethylation mechanism distinct from that of eukaryotes. SdmA-SdmB homologs were identified in several other sterol-producing bacterial genomes but not in any eukaryotic genomes, indicating that these proteins are unrelated to the eukaryotic C-4 sterol demethylase enzymes. These findings reveal a separate pathway for sterol synthesis exclusive to bacteria and show that demethylation of sterols evolved at least twice-once in bacteria and once in eukaryotes.
Collapse
|
39
|
Franke JD, Blomberg WR, Todd RT, Thomas RW, Selmecki AM. Assembly of a complete genome sequence for Gemmata obscuriglobus reveals a novel prokaryotic rRNA operon gene architecture. Antonie van Leeuwenhoek 2018; 111:2095-2105. [DOI: 10.1007/s10482-018-1102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
|
40
|
Fernández-Cabezón L, Galán B, García JL. New Insights on Steroid Biotechnology. Front Microbiol 2018; 9:958. [PMID: 29867863 PMCID: PMC5962712 DOI: 10.3389/fmicb.2018.00958] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Nowadays steroid manufacturing occupies a prominent place in the pharmaceutical industry with an annual global market over $10 billion. The synthesis of steroidal active pharmaceutical ingredients (APIs) such as sex hormones (estrogens, androgens, and progestogens) and corticosteroids is currently performed by a combination of microbiological and chemical processes. Several mycobacterial strains capable of naturally metabolizing sterols (e.g., cholesterol, phytosterols) are used as biocatalysts to transform phytosterols into steroidal intermediates (synthons), which are subsequently used as key precursors to produce steroidal APIs in chemical processes. These synthons can also be modified by other microbial strains capable of introducing regio- and/or stereospecific modifications (functionalization) into steroidal molecules. Most of the industrial microbial strains currently available have been improved through traditional technologies based on physicochemical mutagenesis and selection processes. Surprisingly, Synthetic Biology and Systems Biology approaches have hardly been applied for this purpose. This review attempts to highlight the most relevant research on Steroid Biotechnology carried out in last decades, focusing specially on those works based on recombinant DNA technologies, as well as outlining trends and future perspectives. In addition, the need to construct new microbial cell factories (MCF) to design more robust and bio-sustainable bioprocesses with the ultimate aim of producing steroids à la carte is discussed.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
41
|
Bairagi PK, Verma N. Electrochemically deposited dendritic poly (methyl orange) nanofilm on metal-carbon-polymer nanocomposite: A novel non-enzymatic electrochemical biosensor for cholesterol. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Cirmena G, Franceschelli P, Isnaldi E, Ferrando L, De Mariano M, Ballestrero A, Zoppoli G. Squalene epoxidase as a promising metabolic target in cancer treatment. Cancer Lett 2018; 425:13-20. [PMID: 29596888 DOI: 10.1016/j.canlet.2018.03.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Oncogenic alteration of the cholesterol synthesis pathway is a recognized mechanism of metabolic adaptation. In the present review, we focus on squalene epoxidase (SE), one of the two rate-limiting enzymes in cholesterol synthesis, retracing its history since its discovery as an antimycotic target to its description as an emerging metabolic oncogene by amplification with clinical relevance in cancer. We review the published literature assessing the association between SE over-expression and poor prognosis in this disease. We assess the works demonstrating how SE promotes tumor cell proliferation and migration, and displaying evidence of cancer cell demise in presence of human SE inhibitors in in vitro and in vivo models. Taken together, robust scientific evidence has by now accumulated pointing out SE as a promising novel therapeutic target in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| | - Gabriele Zoppoli
- Department of Internal Medicine, University of Genoa, Italy; Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
43
|
Development of a chemically-defined minimal medium for studies on growth and protein uptake of Gemmata obscuriglobus. J Microbiol Methods 2017; 145:40-46. [PMID: 29292201 DOI: 10.1016/j.mimet.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/21/2022]
Abstract
We experimentally determined minimal media requirements for Gemmata obscuriglobus, a Gram-negative Planctomycete bacteria with several unusual physiological features. We find that supplementing media with the usual vitamins solution does not improve viability, but does result in an increased growth rate in liquid cultures and a larger colony size on agar plates. By systematically including individual vitamins, or omitting individual vitamins, from media we find that the addition of only two vitamins, biotin and cyanocobalamin, are sufficient to restore colony growth to comparable rates as other commonly used media. Overall, our findings define minimal media requirements for the culturing of this low-nutrient organism. One of G. obscuriglobus unusual physiological features is the ability to internalize fully-folded proteins. Using fluorescence microscopy and flow cytometery we show that this physiological behavior is dependent on media state and composition. The percentage of cells exhibiting internalization of GFP when grown on a particular, solid minimal medium is far greater than cells grown in liquid medium of similar composition or other solid media with different compositions.
Collapse
|
44
|
Marinho MC, Lage OM, Catita J, Antunes SC. Adequacy of planctomycetes as supplementary food source for Daphnia magna. Antonie van Leeuwenhoek 2017; 111:825-840. [PMID: 29222603 DOI: 10.1007/s10482-017-0997-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
The nutritional quality of daphnids diet can influence their growth, reproduction and survival. In aquatic ecosystems, bacteria can contribute significantly to Daphnia diet by supporting, for instances, their high needs for phosphorus. The laboratory feeding of the model organisms Daphnia spp. is algal based, but should be improved to allow their better performance. The aim of this study was to evaluate the potential of two planctomycetes, Gemmata obscuriglobus and Rhodopirellula rubra, from exponential and stationary growth phases as alternative or supplementary food source for Daphnia magna. The actinobacterium Arthrobacter sp. was used for comparison. The feeding with only bacteria showed the inefficacy of both planctomycetes and actinobacteria as the only food source. However, when used in supplement to Raphidocelis subcapitata, a decrease in the age of first reproduction, a significant increase in reproductive output, in somatic growth and in rate of population increase was found for the highest cell densities of bacteria tested. The typical pink coloration of these bacteria present in daphnids body and eggs confirmed bacterial absorption and metabolization of their pigment. Planctomycetes yielded better results than the actinobacteria Arthrobacter but G. obscuriglobus that possesses sterols did not induce a better performance comparatively to R. rubra. No relation could be established between the feeding treatments that allowed improvement of Daphnia performance and the different kind of Daphnia' Fatty Acid Methyl Esters. The use of sonication to separate planctomycetal cells before feeding the daphnids proved to be efficient. We confirmed that R. subcapitata supplemented by bacteria allows a better growth performance of D. magna.
Collapse
Affiliation(s)
- M C Marinho
- Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - O M Lage
- Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal. .,Centro Interdisciplinar de Investigação Marinha e A8 Ambiental (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| | - José Catita
- Paralab, SA, Valbom, Portugal.,CEBIMED - Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - S C Antunes
- Departamento de Biologia da Faculdade de Ciências da, Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.,Centro Interdisciplinar de Investigação Marinha e A8 Ambiental (CIIMAR/CIMAR), Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
45
|
Rivas-Marín E, Devos DP. The Paradigms They Are a-Changin': past, present and future of PVC bacteria research. Antonie van Leeuwenhoek 2017; 111:785-799. [PMID: 29058138 PMCID: PMC5945725 DOI: 10.1007/s10482-017-0962-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 11/22/2022]
Abstract
These are exciting times for PVC researchers! The PVC superphylum is composed of the bacterial phyla Planctomycetes, Verrucomicrobia, Chlamydiae (those three founders giving it its name), Lentisphaerae and Kirimatiellaeota as well as some uncultured candidate phyla, such as the Candidatus Omnitrophica (previously known as OP3). Despite early debates, most of the disagreements that surround this group of bacteria have been recently resolved. In this article, we review the history of the study of PVC bacteria, with a particular focus on the misinterpretations that emerged early in the field and their resolution. We begin with a historical perspective that describes the relevant facts of PVC research from the early times when they were not yet termed PVC. Those were controversial times and we refer to them as the “discovery age” of the field. We continue by describing new discoveries due to novel techniques and data that combined with the reinterpretations of old ones have contributed to solve most of the discordances and we refer to these times as the “illumination age” of PVC research. We follow by arguing that we are just entering the “golden age” of PVC research and that the future of this growing community is looking bright. We finish by suggesting a few of the directions that PVC researches might take in the future.
Collapse
Affiliation(s)
- Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, University Pablo de Olavide, Carretera Utrera, km 1, 41013, Seville, Spain.
| |
Collapse
|
46
|
Takishita K, Takaki Y, Chikaraishi Y, Ikuta T, Ozawa G, Yoshida T, Ohkouchi N, Fujikura K. Genomic Evidence that Methanotrophic Endosymbionts Likely Provide Deep-Sea Bathymodiolus Mussels with a Sterol Intermediate in Cholesterol Biosynthesis. Genome Biol Evol 2017; 9:1148-1160. [PMID: 28453654 PMCID: PMC5421315 DOI: 10.1093/gbe/evx082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Sterols are key cyclic triterpenoid lipid components of eukaryotic cellular membranes, which are synthesized through complex multi-enzyme pathways. Similar to most animals, Bathymodiolus mussels, which inhabit deep-sea chemosynthetic ecosystems and harbor methanotrophic and/or thiotrophic bacterial endosymbionts, possess cholesterol as their main sterol. Based on the stable carbon isotope analyses, it has been suggested that host Bathymodiolus mussels synthesize cholesterol using a sterol intermediate derived from the methanotrophic endosymbionts. To test this hypothesis, we sequenced the genome of the methanotrophic endosymbiont in Bathymodiolus platifrons. The genome sequence data demonstrated that the endosymbiont potentially generates up to 4,4-dimethyl-cholesta-8,14,24-trienol, a sterol intermediate in cholesterol biosynthesis, from methane. In addition, transcripts for a subset of the enzymes of the biosynthetic pathway to cholesterol downstream from a sterol intermediate derived from methanotroph endosymbionts were detected in our transcriptome data for B. platifrons. These findings suggest that this mussel can de novo synthesize cholesterol from methane in cooperation with the symbionts. By in situ hybridization analyses, we showed that genes associated with cholesterol biosynthesis from both host and endosymbionts were expressed exclusively in the gill epithelial bacteriocytes containing endosymbionts. Thus, cholesterol production is probably localized within these specialized cells of the gill. Considering that the host mussel cannot de novo synthesize cholesterol and depends largely on endosymbionts for nutrition, the capacity of endosymbionts to synthesize sterols may be important in establishing symbiont–host relationships in these chemosynthetic mussels.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshito Chikaraishi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.,Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Genki Ozawa
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.,Department of Marine Biosciences, School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Takao Yoshida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Naohiko Ohkouchi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
47
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 2017; 101:5591-5602. [PMID: 28664324 DOI: 10.1007/s00253-017-8381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Abstract
The classic genome organization of the bacterial chromosome is normally envisaged with all its genetic markers linked, thus forming a closed genetic circle of duplex stranded DNA (dsDNA) and several proteins in what it is called as "the bacterial nucleoid." This structure may be more or less corrugated depending on the physiological state of the bacterium (i.e., resting state or active growth) and is not surrounded by a double membrane as in eukayotic cells. The universality of the closed circle model in bacteria is however slowly changing, as new data emerge in different bacterial groups such as in Planctomycetes and related microorganisms, species of Borrelia, Streptomyces, Agrobacterium, or Phytoplasma. In these and possibly other microorganisms, the existence of complex formations of intracellular membranes or linear chromosomes is typical; all of these situations contributing to weakening the current cellular organization paradigm, i.e., prokaryotic vs eukaryotic cells.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Angeles Sánchez-Pérez
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
48
|
Guo M, Yang R, Huang C, Liao Q, Fan G, Sun C, Lee SMY. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae. BMC Microbiol 2017; 17:86. [PMID: 28376722 PMCID: PMC5381049 DOI: 10.1186/s12866-017-0981-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. RESULTS In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. CONCLUSION The results of this study reveal that Planctomycetaceae separates slightly from the members of non-planctomycete bacteria but still has substantial differences from fungi, based on the NLS-like motifs and NLS-bearing protein analysis.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen Huang
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiwen Liao
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
49
|
Paleoproterozoic sterol biosynthesis and the rise of oxygen. Nature 2017; 543:420-423. [PMID: 28264195 DOI: 10.1038/nature21412] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
Natural products preserved in the geological record can function as 'molecular fossils', providing insight into organisms and physiologies that existed in the deep past. One important group of molecular fossils is the steroidal hydrocarbons (steranes), which are the diagenetic remains of sterol lipids. Complex sterols with modified side chains are unique to eukaryotes, although simpler sterols can also be synthesized by a few bacteria. Sterol biosynthesis is an oxygen-intensive process; thus, the presence of complex steranes in ancient rocks not only signals the presence of eukaryotes, but also aerobic metabolic processes. In 1999, steranes were reported in 2.7 billion year (Gyr)-old rocks from the Pilbara Craton in Australia, suggesting a long delay between photosynthetic oxygen production and its accumulation in the atmosphere (also known as the Great Oxidation Event) 2.45-2.32 Gyr ago. However, the recent reappraisal and rejection of these steranes as contaminants pushes the oldest reported steranes forward to around 1.64 Gyr ago (ref. 6). Here we use a molecular clock approach to improve constraints on the evolution of sterol biosynthesis. We infer that stem eukaryotes shared functionally modern sterol biosynthesis genes with bacteria via horizontal gene transfer. Comparing multiple molecular clock analyses, we find that the maximum marginal probability for the divergence time of bacterial and eukaryal sterol biosynthesis genes is around 2.31 Gyr ago, concurrent with the most recent geochemical evidence for the Great Oxidation Event. Our results therefore indicate that simple sterol biosynthesis existed well before the diversification of living eukaryotes, substantially predating the oldest detected sterane biomarkers (approximately 1.64 Gyr ago), and furthermore, that the evolutionary history of sterol biosynthesis is tied to the first widespread availability of molecular oxygen in the ocean-atmosphere system.
Collapse
|
50
|
Vega-Cabrera LA, Pardo-López L. Membrane remodeling and organization: Elements common to prokaryotes and eukaryotes. IUBMB Life 2017; 69:55-62. [DOI: 10.1002/iub.1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Luz A. Vega-Cabrera
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| | - Liliana Pardo-López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México; Apdo. Postal 510-3 Cuernavaca Morelos México
| |
Collapse
|