1
|
Kozuleva MA, Ivanov BN. Superoxide Anion Radical Generation in Photosynthetic Electron Transport Chain. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1045-1060. [PMID: 37758306 DOI: 10.1134/s0006297923080011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 10/03/2023]
Abstract
This review analyzes data available in the literature on the rates, characteristics, and mechanisms of oxygen reduction to a superoxide anion radical at the sites of photosynthetic electron transport chain where this reduction has been established. The existing assumptions about the role of the components of these sites in this process are critically examined using thermodynamic approaches and results of the recent studies. The process of O2 reduction at the acceptor side of PSI, which is considered the main site of this process taking place in the photosynthetic chain, is described in detail. Evolution of photosynthetic apparatus in the context of controlling the leakage of electrons to O2 is explored. The reasons limiting application of the results obtained with the isolated segments of the photosynthetic chain to estimate the rates of O2 reduction at the corresponding sites in the intact thylakoid membrane are discussed.
Collapse
Affiliation(s)
- Marina A Kozuleva
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
2
|
Kozuleva M, Petrova A, Milrad Y, Semenov A, Ivanov B, Redding KE, Yacoby I. Phylloquinone is the principal Mehler reaction site within photosystem I in high light. PLANT PHYSIOLOGY 2021; 186:1848-1858. [PMID: 34618103 PMCID: PMC8331129 DOI: 10.1093/plphys/kiab221] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 05/04/2023]
Abstract
Photosynthesis is a vital process, responsible for fixing carbon dioxide, and producing most of the organic matter on the planet. However, photosynthesis has some inherent limitations in utilizing solar energy, and a part of the energy absorbed is lost in the reduction of O2 to produce the superoxide radical (O2•-) via the Mehler reaction, which occurs principally within photosystem I (PSI). For decades, O2 reduction within PSI was assumed to take place solely in the distal iron-sulfur clusters rather than within the two asymmetrical cofactor branches. Here, we demonstrate that under high irradiance, O2 photoreduction by PSI primarily takes place at the phylloquinone of one of the branches (the A-branch). This conclusion derives from the light dependency of the O2 photoreduction rate constant in fully mature wild-type PSI from Chlamydomonas reinhardtii, complexes lacking iron-sulfur clusters, and a mutant PSI, in which phyllosemiquinone at the A-branch has a significantly longer lifetime. We suggest that the Mehler reaction at the phylloquinone site serves as a release valve under conditions where both the iron-sulfur clusters of PSI and the mobile ferredoxin pool are highly reduced.
Collapse
Affiliation(s)
- Marina Kozuleva
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Anastasia Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuval Milrad
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexey Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Kevin E Redding
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, USA
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Author for communication:
| |
Collapse
|
3
|
Govindjee G, Shen YK, Zhu XG, Mi H, Ogawa T. Honoring Bacon Ke at 100: a legend among the many luminaries and a highly collaborative scientist in photosynthesis research. PHOTOSYNTHESIS RESEARCH 2021; 147:243-252. [PMID: 33582974 DOI: 10.1007/s11120-021-00820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Bacon Ke, who did pioneering research on the primary photochemistry of photosynthesis, was born in China on July 26, 1920, and currently, he is living in a senior home in San Francisco, California, and is a centenarian. To us, this is a very happy and unique occasion to honor him. After providing a brief account of his life, and a glimpse of his research in photosynthesis, we present here "messages" for Bacon Ke@ 100 from: Robert Alfano (USA), Charles Arntzen (USA), Sandor Demeter (Hungary), Richard A. Dilley (USA), John Golbeck (USA), Isamu Ikegami (Japan), Ting-Yun Kuang (China), Richard Malkin (USA), Hualing Mi (China), Teruo Ogawa (Japan), Yasusi Yamamoto (Japan), and Xin-Guang Zhu (China).
Collapse
Affiliation(s)
- Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana- Champaign, Urbana, IL, 61801, USA.
| | - Yun-Kang Shen
- National Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin-Guang Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hualing Mi
- National Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Teruo Ogawa
- , Kamisaginomiya 3-17-11, Nakano-ku, Tokyo, 165-0031, Japan
| |
Collapse
|
4
|
Szewczyk S, Białek R, Burdziński G, Gibasiewicz K. Photovoltaic activity of electrodes based on intact photosystem I electrodeposited on bare conducting glass. PHOTOSYNTHESIS RESEARCH 2020; 144:1-12. [PMID: 32078102 PMCID: PMC7113217 DOI: 10.1007/s11120-020-00722-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
We demonstrate photovoltaic activity of electrodes composed of fluorine-doped tin oxide (FTO) conducting glass and a multilayer of trimeric photosystem I (PSI) from cyanobacterium Synechocystis sp. PCC 6803 yielding, at open circuit potential (OCP) of + 100 mV (vs. SHE), internal quantum efficiency of (0.37 ± 0.11)% and photocurrent density of up to (0.5 ± 0.1) µA/cm2. The photocurrent measured for OCP is of cathodic nature meaning that preferentially the electrons are injected from the conducting layer of the FTO glass to the photooxidized PSI primary electron donor, P700+, and further transferred from the photoreduced final electron acceptor of PSI, Fb-, via ascorbate electrolyte to the counter electrode. This observation is consistent with preferential donor-side orientation of PSI on FTO imposed by applied electrodeposition. However, by applying high-positive bias (+ 620 mV) to the PSI-FTO electrode, exceeding redox midpoint potential of P700 (+ 450 mV), the photocurrent reverses its orientation and becomes anodic. This is explained by "switching off" the natural photoactivity of PSI particles (by the electrochemical oxidation of P700 to P700+) and "switching on" the anodic photocurrent from PSI antenna Chls prone to photooxidation at high potentials. The efficient control of the P700 redox state (P700 or P700+) by external bias applied to the PSI-FTO electrodes was evidenced by ultrafast transient absorption spectroscopy. The advantage of the presented system is its structural simplicity together with in situ-proven high intactness of the PSI particles.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Gotard Burdziński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
| |
Collapse
|
5
|
Schreiber U. Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. PHOTOSYNTHESIS RESEARCH 2017; 134:343-360. [PMID: 28497192 PMCID: PMC5683063 DOI: 10.1007/s11120-017-0394-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/03/2017] [Indexed: 05/07/2023]
Abstract
Properties and performance of the recently introduced Dual/KLAS-NIR spectrophotometer for simultaneous measurements of ferredoxin (Fd), P700, and plastocyanin (PC) redox changes, together with whole leaf chlorophyll a (Chl) fluorescence (emission >760, 540 nm excitation) are outlined. Spectral information on in vivo Fd, P700, and PC in the near-infrared region (NIR, 780-1000 nm) is presented, on which the new approach is based. Examples of application focus on dark-light and light-dark transitions, where maximal redox changes of Fd occur. After dark-adaptation, Fd reduction induced by moderate light parallels the Kautsky effect of Chl fluorescence induction. Both signals are affected analogously by removal of O2. A rapid type of Fd reoxidation, observed after a short pulse of light before light activation of linear electron transport (LET), is more pronounced in C4 compared to C3 leaves and interpreted to reflect cyclic PS I (CET). Light activation of LET, as assessed via the rate of Fd reoxidation after short light pulses, occurs at very low intensities and is slowly reversed (half-time ca. 20 min). Illumination with strong far-red light (FR, 740 nm) reveals two fractions of PS I, PS I (LET), and PS I (CET), differing in the rates of Fd reoxidation upon FR-off and the apparent equilibrium constants between P700 and PC. Parallel information on oxidation of Fd and reduction of P700 plus PC proves essential for identification of CET. Comparison of maize (C4) with sunflower and ivy (C3) responses leads to the conclusion that segregation of two types of PS I may not only exist in C4 (mesophyll and bundle sheath cells), but also in C3 photosynthesis (grana margins plus end membranes and stroma lamellae).
Collapse
Affiliation(s)
- Ulrich Schreiber
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.
| |
Collapse
|
6
|
Klughammer C, Schreiber U. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. PHOTOSYNTHESIS RESEARCH 2016; 128:195-214. [PMID: 26837213 PMCID: PMC4826414 DOI: 10.1007/s11120-016-0219-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/11/2016] [Indexed: 05/19/2023]
Abstract
A newly developed compact measuring system for assessment of transmittance changes in the near-infrared spectral region is described; it allows deconvolution of redox changes due to ferredoxin (Fd), P700, and plastocyanin (PC) in intact leaves. In addition, it can also simultaneously measure chlorophyll fluorescence. The major opto-electronic components as well as the principles of data acquisition and signal deconvolution are outlined. Four original pulse-modulated dual-wavelength difference signals are measured (785-840 nm, 810-870 nm, 870-970 nm, and 795-970 nm). Deconvolution is based on specific spectral information presented graphically in the form of 'Differential Model Plots' (DMP) of Fd, P700, and PC that are derived empirically from selective changes of these three components under appropriately chosen physiological conditions. Whereas information on maximal changes of Fd is obtained upon illumination after dark-acclimation, maximal changes of P700 and PC can be readily induced by saturating light pulses in the presence of far-red light. Using the information of DMP and maximal changes, the new measuring system enables on-line deconvolution of Fd, P700, and PC. The performance of the new device is demonstrated by some examples of practical applications, including fast measurements of flash relaxation kinetics and of the Fd, P700, and PC changes paralleling the polyphasic fluorescence rise upon application of a 300-ms pulse of saturating light.
Collapse
Affiliation(s)
- Christof Klughammer
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Ulrich Schreiber
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.
| |
Collapse
|
7
|
Klughammer C, Schreiber U. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. PHOTOSYNTHESIS RESEARCH 2016. [PMID: 26837213 DOI: 10.1007/s11120-016-0219-210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A newly developed compact measuring system for assessment of transmittance changes in the near-infrared spectral region is described; it allows deconvolution of redox changes due to ferredoxin (Fd), P700, and plastocyanin (PC) in intact leaves. In addition, it can also simultaneously measure chlorophyll fluorescence. The major opto-electronic components as well as the principles of data acquisition and signal deconvolution are outlined. Four original pulse-modulated dual-wavelength difference signals are measured (785-840 nm, 810-870 nm, 870-970 nm, and 795-970 nm). Deconvolution is based on specific spectral information presented graphically in the form of 'Differential Model Plots' (DMP) of Fd, P700, and PC that are derived empirically from selective changes of these three components under appropriately chosen physiological conditions. Whereas information on maximal changes of Fd is obtained upon illumination after dark-acclimation, maximal changes of P700 and PC can be readily induced by saturating light pulses in the presence of far-red light. Using the information of DMP and maximal changes, the new measuring system enables on-line deconvolution of Fd, P700, and PC. The performance of the new device is demonstrated by some examples of practical applications, including fast measurements of flash relaxation kinetics and of the Fd, P700, and PC changes paralleling the polyphasic fluorescence rise upon application of a 300-ms pulse of saturating light.
Collapse
Affiliation(s)
- Christof Klughammer
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Ulrich Schreiber
- Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.
| |
Collapse
|
8
|
Yamamoto Y. Born in 1949 in postwar Japan. PHOTOSYNTHESIS RESEARCH 2016; 127:25-32. [PMID: 25557391 DOI: 10.1007/s11120-014-0072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
In this article, I would like to look back at my life as a researcher of photosynthesis. I was born in 1949, and grew up and was educated in postwar Japan in the 1950s and 1960s. I have studied photosynthesis, in particular Photosystem II, after research experiences in the USA and UK. My study of Photosystem II has continued over 43 years until now. Through the present retrospection, I would like to suggest that all photosynthesis researchers, including the members of the "49ers", many other established scientists, and young students as well, should not simply stay in the lab working hard on their studies and writing papers; but should also do something for the public. People want to learn from us about many critical social issues such as the environment, food, energy and, most importantly, peace. I believe that our knowledge must form an important basis for people to take action to create a peaceful and harmonious human society.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
9
|
Kozuleva MA, Vetoshkina DV, Petrova AA, Borisova-Mubarakshina MM, Ivanov BN. The study of oxygen reduction in photosystem I of higher plants using electron donors for this photosystem in intact thylakoids. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747814060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Shuvalov VA. My journey in photosynthesis research. PHOTOSYNTHESIS RESEARCH 2015; 125:5-8. [PMID: 25645566 DOI: 10.1007/s11120-015-0077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
At the invitation of Suleyman I. Allakhverdiev, I provide here a brief autobiography for this special issue that recognizes my service and research for the larger international community of photosynthesis research.
Collapse
Affiliation(s)
- Vladimir A Shuvalov
- Institute of Basic Biological Problems, RAS, 142290, Pushchino, Moscow Region, Russia,
| |
Collapse
|
11
|
Kozuleva MA, Petrova AA, Mamedov MD, Semenov AY, Ivanov BN. O2 reduction by photosystem I involves phylloquinone under steady-state illumination. FEBS Lett 2014; 588:4364-8. [PMID: 25311539 DOI: 10.1016/j.febslet.2014.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/13/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
Abstract
O2 reduction was investigated in photosystem I (PSI) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PSI complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PSI.
Collapse
Affiliation(s)
- Marina A Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia.
| | - Anastasia A Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mahir D Mamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
12
|
Islam MR, Watanabe K, Kashino Y, Satoh K, Koike H. Spectral properties of a divinyl chlorophyll a harboring mutant of Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2013; 117:245-255. [PMID: 23812785 DOI: 10.1007/s11120-013-9877-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023]
Abstract
A divinyl chlorophyll (DV-Chl) a harboring mutant of Synechocystis sp. PCC 6803, in which chlorophyll species is replaced from monovinyl(normal)-Chl a to DV-Chl a, was characterized. The efficiency of light utilization for photosynthesis was decreased in the mutant. Absorption spectra at 77 K and their fourth derivative analyses revealed that peaks of each chlorophyll forms were blue-shifted by 1-2 nm, suggesting lowered stability of chlorophylls at their binding sites. This was also true both in PSI and PSII complexes. On the other hand, fluorescence emission spectra measured at 77 K were not different between wild type and the mutant. This indicates that the mode of interaction between chlorophyll and its binding pockets responsible for emitting fluorescence at 77 K is not altered in the mutant. P700 difference spectra of thylakoid membranes and PSI complexes showed that the spectrum in Soret region was red-shifted by 7 nm in the mutant. This is a characteristic feature of DV-Chl a. Microenvironments of iron-sulfur center of a terminal electron acceptor of PSI complex, P430, were practically the same as that of wild type.
Collapse
Affiliation(s)
- Md Rafiqul Islam
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako, Hyogo, 678-1297, Japan
| | | | | | | | | |
Collapse
|
13
|
Philipps G, Happe T, Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. PLANTA 2012; 235:729-45. [PMID: 22020754 DOI: 10.1007/s00425-011-1537-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/06/2011] [Indexed: 05/10/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is able to use photosynthetically provided electrons for the production of molecular hydrogen by an [FeFe]-hydrogenase HYD1 accepting electrons from ferredoxin PetF. Despite the severe sensitivity of HYD1 towards oxygen, a sustained and relatively high photosynthetic hydrogen evolution capacity is established in C. reinhardtii cultures when deprived of sulfur. One of the major electron sources for proton reduction under this condition is the oxidation of starch and subsequent non-photochemical transfer of electrons to the plastoquinone pool. Here we report on the induction of photosynthetic hydrogen production by Chlamydomonas upon nitrogen starvation, a nutritional condition known to trigger the accumulation of large deposits of starch and lipids in the green alga. Photochemistry of photosystem II initially remained on a higher level in nitrogen-starved cells, resulting in a 2-day delay of the onset of hydrogen production compared with sulfur-deprived cells. Furthermore, though nitrogen-depleted cells accumulated large amounts of starch, both hydrogen yields and the extent of starch degradation were significantly lower than upon sulfur deficiency. Starch breakdown rates in nitrogen or sulfur-starved cultures transferred to darkness were comparable in both nutritional conditions. Methyl viologen treatment of illuminated cells significantly enhanced the efficiency of photosystem II photochemistry in sulfur-depleted cells, but had a minor effect on nitrogen-starved algae. Both the degradation of the cytochrome b₆ f complex which occurs in C. reinhardtii upon nitrogen starvation and lower ferredoxin amounts might create a bottleneck impeding the conversion of carbohydrate reserves into hydrogen evolution.
Collapse
Affiliation(s)
- Gabriele Philipps
- AG Photobiotechnologie, Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | |
Collapse
|
14
|
Shuvalov VA, Dolan E, Ke B. Spectral and kinetic evidence for two early electron acceptors in photosystem I. Proc Natl Acad Sci U S A 2010; 76:770-3. [PMID: 16592621 PMCID: PMC383046 DOI: 10.1073/pnas.76.2.770] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Triton-fractionated photosystem-I particles poised at -625 mV, where the two bound iron-sulfur proteins are reduced, have been studied by optical and electron paramagnetic resonance spectroscopies from 293 to 5 K. At 5-9 K, these particles exhibit two decay components with lifetimes of 1.3 and 130 msec in the laser pulse-induced absorption and electron paramagnetic resonance signal changes. Spectral properties of the 130-msec decay component reflect the charge separation between P-700 and some iron-sulfur center having a broad optical absorbance in the 400- to 550-nm region and a previously reported electron paramagnetic resonance signal with g = 1.78, 1.88, and 2.08. Spectral properties of the 1-msec decay component indicate photoinduced charge separation between P-700 and a chlorophyll a dimer having absorption bands at 420, 450, and 700 nm. It is assumed that these two acceptors participate in the electron transfer from P-700(*) to the bound iron-sulfur proteins.
Collapse
Affiliation(s)
- V A Shuvalov
- Charles F. Kettering Research Laboratory, Yellow Springs, Ohio 45387
| | | | | |
Collapse
|
15
|
Ke B, Hansen RE, Beinert H. Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. Proc Natl Acad Sci U S A 2010; 70:2941-5. [PMID: 16592113 PMCID: PMC427143 DOI: 10.1073/pnas.70.10.2941] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Digitonin - fractionated photosystem - I subchloroplasts were titrated potentiometrically between -450 and -610 mV at pH 10. Examination of the titrated subchloroplasts by low-temperature (13 degrees K) electron paramagnetic resonance spectroscopy revealed resonances centered at values of 2.05, 1.94, 1.92, 1.89, and 1.86 on the g-factor scale. The peak heights depended on the potentials at which the chloroplasts were poised. The resonances of at least three iron-sulfur centers can be recognized: one with lines at g = 2.05 and 1.94; one with lines at g = 2.05, 1.92, and 1.89; and one for which only a line at g = 1.86 has been resolved. The midpoint potentials of the iron-sulfur species fall into two distinctly separate regions: the titration profile of the g = 1.94 signal, the first segment of the g = 2.05 plot, and the rise phase of the g = 1.86 signal had a value of -530 +/- 5 mV; the upper segment of the g = 2.05 plot, the decrease phase of the g = 1.86 signal, and the g = 1.89 profile had a midpoint potential estimated to be [unk] -580 mV. The oxidation-reduction reaction of each of the bound iron-sulfur species, as represented by the changes of the electron paramagnetic resonance spectra, was reversible and apparently involved a two-electron change.Titration at pH 9 could only be carried to -560 mV, and essentially only the first half of the titration behavior as found at pH 10 was seen. At any given potential more positive than -560 mV, the part of the iron-sulfur protein that was not reduced electrochemically could be reduced photochemically, but only to the maximum extent reduced electrochemically at -560 mV. Whereas, chloroplasts illuminated at room temperature and then frozen while still being illuminated developed a signal similar to that produced by electrochemical reduction at -610 mV, illumination at 77 degrees K did not bring about photoreduction beyond that accomplished electrochemically at about -560 mV.Dithionite alone in the dark and under anaerobic conditions brought about a partial reduction to the extent of the first electrochemical reduction step. Dithionite plus illumination at room temperature or dithionite plus methyl viologen in the dark produced the maximum signal. Electron paramagnetic resonance spectra due to either light or electrochemically reduced iron-sulfur proteins showed no detectable decay for at least 3 days when samples were stored in the dark at 77 degrees K.
Collapse
Affiliation(s)
- B Ke
- Charles F. Kettering Research Laboratory, Yellow Springs, Ohio, 45387
| | | | | |
Collapse
|
16
|
Niklas J, Gopta O, Epel B, Lubitz W, Antonkine ML. Investigation of the Stationary and Transient A(1) Radical in Trp --> Phe Mutants of Photosystem I. APPLIED MAGNETIC RESONANCE 2010; 38:187-203. [PMID: 20495604 PMCID: PMC2860100 DOI: 10.1007/s00723-009-0112-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/25/2009] [Indexed: 05/29/2023]
Abstract
Photosystem I (PS I) contains two symmetric branches of electron transfer cofactors. In both the A- and B-branches, the phylloquinone in the A(1) site is pi-stacked with a tryptophan residue and is H-bonded to the backbone nitrogen of a leucine residue. In this work, we use optical and electron paramagnetic resonance (EPR) spectroscopies to investigate cyanobacterial PS I complexes, where these tryptophan residues are changed to phenylalanine. The time-resolved optical data show that backward electron transfer from the terminal electron acceptors to P(700) (.+) is affected in the A- and B-branch mutants, both at ambient and cryogenic temperatures. These results suggest that the quinones in both branches take part in electron transport at all temperatures. The electron-nuclear double resonance (ENDOR) spectra of the spin-correlated radical pair P(700) (.+)A(1) (.-) and the photoaccumulated radical anion A(1) (.-), recorded at cryogenic temperature, allowed the identification of characteristic resonances belonging to protons of the methyl group, some of the ring protons and the proton hydrogen-bonded to phylloquinone in the wild type and both mutants. Significant changes in PS I isolated from the A-branch mutant are detected, while PS I isolated from the B-branch mutant shows the spectral characteristics of wild-type PS I. A possible short-lived B-branch radical pair cannot be detected by EPR due to the available time resolution; therefore, only the A-branch quinone is observed under conditions typically employed for EPR and ENDOR spectroscopies.
Collapse
Affiliation(s)
- Jens Niklas
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Oxana Gopta
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorob’evi Gori, 119899 Moscow, Russia
| | - Boris Epel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Mikhail L. Antonkine
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Santabarbara S, Redding KE, Rappaport F. Temperature Dependence of the Reduction of P700+ by Tightly Bound Plastocyanin in Vivo. Biochemistry 2009; 48:10457-66. [DOI: 10.1021/bi901052c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefano Santabarbara
- Department of Chemistry and Biochemistry, Arizona State University, 1711 South Rural Road, Tempe, Arizona 85287
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-Universite Paris 6, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Kevin E. Redding
- Department of Chemistry and Biochemistry, Arizona State University, 1711 South Rural Road, Tempe, Arizona 85287
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-Universite Paris 6, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
18
|
Antonkine ML, Koay MS, Epel B, Breitenstein C, Gopta O, Gärtner W, Bill E, Lubitz W. Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe–4S] clusters in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:995-1008. [DOI: 10.1016/j.bbabio.2009.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/23/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
19
|
Detection by EPR spectrometry of a new intermediate in the primary photochemistry of photosystem I particles isolated using Triton X-100. FEBS Lett 2008. [DOI: 10.1016/s0014-5793(79)80007-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Holub O, Seufferheld MJ, Gohlke C, Heiss GJ, Clegg RM. Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 2007; 226:90-120. [PMID: 17444940 DOI: 10.1111/j.1365-2818.2007.01763.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence lifetime-resolved images of chlorophyll fluorescence were acquired at the maximum P-level and during the slower transient (up to 250 s, including P-S-M-T) in the green photosynthetic alga Chlamydomonas reinhardtii. At the P-level, wild type and the violaxanthin-accumulating mutant npq1 show similar fluorescence intensity and fluorescence lifetime-resolved images. The zeaxanthin-accumulating mutant npq2 displays reduced fluorescence intensity at the P-level (about 25-35% less) and corresponding lifetime-resolved frequency domain phase and modulation values compared to wild type/npq1. A two-component analysis of possible lifetime compositions shows that the reduction of the fluorescence intensity can be interpreted as an increase in the fraction of a short lifetime component. This supports the important photoprotection function of zeaxanthin in photosynthetic samples, and is consistent with the notion of a 'dimmer switch'. Similar, but quantitatively different, behaviour was observed in the intensity and fluorescence lifetime-resolved imaging measurements for cells that were treated with the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, the efficient PSI electron acceptor methyl viologen and the protonophore nigericin and. Lower fluorescence intensities and lifetimes were observed for all npq2 mutant samples at the P-level and during the slow fluorescence transient, compared to wild type and the npq1 mutant. The fluorescence lifetime-resolved measurements during the slow fluorescence changes after the P level up to 250 s for the wild type and the two mutants, in the presence and absence of the above inhibitors, were analyzed with a graphical procedure (polar plots) to determine lifetime compositions. At higher illumination intensity, wild type and npq1 cells show a rise in fluorescence intensity and corresponding rise in the species concentration of the slow lifetime component after the initial decrease following the P level. This reversal is absent in the npq2 mutant, and for all samples in the presence of the inhibitors. Lifetime heterogeneities were observed in experiments averaged over multiple cells as well as within single cells, and these were followed over time. Cells in the resting state (induced by several hours of darkness), instead of the normal swimming state, show shortened lifetimes. The above results are discussed in terms of a superposition of effects on electron transfer and protonation rates, on the so-called 'State Transitions', and on non-photochemical quenching. Our data indicate two major populations of chlorophyll a molecules, defined by two 'lifetime pools' centred on slower and faster fluorescence lifetimes.
Collapse
Affiliation(s)
- O Holub
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
21
|
Krogmann D. Discoveries in oxygenic photosynthesis (1727-2003): a perspective. PHOTOSYNTHESIS RESEARCH 2004; 80:15-57. [PMID: 16328809 DOI: 10.1023/b:pres.0000030443.63979.e6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present historic discoveries and important observations, related to oxygenic photosynthesis, from 1727 to 2003. The decision to include certain discoveries while omitting others has been difficult. We are aware that ours is an incomplete timeline. In part, this is because the function of this list is to complement, not duplicate, the listing of discoveries in the other papers in these history issues of Photosynthesis Research. In addition, no one can know everything that is in the extensive literature in the field. Furthermore, any judgement about significance presupposes a point of view. This history begins with the observation of the English clergyman Stephen Hales (1677-1761) that plants derive nourishment from the air; it includes the definitive experiments in the 1960-1965 period establishing the two-photosystem and two-light reaction scheme of oxygenic photosynthesis; and includes the near-atomic resolution of the structures of the reaction centers of these two Photosystems, I and II, obtained in 2001-2002 by a team in Berlin, Germany, coordinated by Horst Witt and Wolfgang Saenger. Readers are directed to historical papers in Govindjee and Gest [(2002a) Photosynth Res 73: 1-308], in Govindjee, J. Thomas Beatty and Howard Gest [(2003a) Photosynth Res 76: 1-462], and to other papers in this issue for a more complete picture. Several photographs are provided here. Their selection is based partly on their availability to the authors (see Figures 1-15). Readers may view other photographs in Part 1 (Volume 73, Photosynth Res, 2002), Part 2 (Volume 76, Photosynth Res, 2003) and Part 3 (Volume 80 Photosynth Res, 2004) of the history issues of Photosynthesis Research. Photographs of most of the Nobel-laureates are included in Govindjee, Thomas Beatty and John Allen, this issue. For a complementary time line of anoxygenic photosynthesis, see H. Gest and R. Blankenship (this issue).
Collapse
|
22
|
Fromme P, Mathis P. Unraveling the photosystem I reaction center: a history, or the sum of many efforts. PHOTOSYNTHESIS RESEARCH 2004; 80:109-24. [PMID: 16328814 DOI: 10.1023/b:pres.0000030657.88242.e1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article describes some aspects of the history of the discovery of the structure and function of Photosystem I (PS I). PS I is the largest and most complex membrane protein for which detailed structural and functional information is now available. This short historical review cannot cover all the work that has been carried out over more than 50 years, nor provide a deep insight into the structure and function of this protein complex. Instead, this review focuses on more personal views of some of the key discoveries, starting in the 1950s with the discovery of the existence of two photoreactions in oxygenic photosynthesis, and ending with the race towards an atomic structure of PS I.
Collapse
Affiliation(s)
- Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Main Campus Room PSC-307, PO Box 871604, Tempe, AZ, 85287-1604, USA
| | | |
Collapse
|
23
|
Vernon LP. Photosynthesis and the charles f. Kettering research laboratory. PHOTOSYNTHESIS RESEARCH 2003; 76:379-88. [PMID: 16228594 DOI: 10.1023/a:1024902906251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A review of the establishment and subsequent demise of the Charles F. Kettering Research Laboratory (in Yellow Springs, Ohio) is presented here.
Collapse
Affiliation(s)
- Leo P Vernon
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA,
| |
Collapse
|
24
|
Nelson N, Ben-Shem A. Photosystem I reaction center: past and future. PHOTOSYNTHESIS RESEARCH 2002; 73:193-206. [PMID: 16245122 DOI: 10.1023/a:1020403231100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Science has always been drawn to uncover fundamental life processes. Photosynthesis is one, if not the most fascinating, of them. Within it, the protein complexes that catalyze light-induced electron transport and photophosphorylation are enchanting creations of evolution. Plant Photosystem I (PS I) is not the largest protein complex in nature but it is the most elaborate in the number of prosthetic groups involved in its fabric. Thirty years ago, one of us (NN) developed a fascination for this complex and, despite the apparent neglect (lack of publications in the last few years), never let it go. Only a crystal structure at 2 A resolution will satiate our curiosity. In this minireview, we trace the past, and end the article with a comment on future prospects. For the present situation, see Parag Chitnis (2001).
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel,
| | | |
Collapse
|
25
|
Bukhov NG, Rajagopal S, Carpentier R. Characterization of P700 as a photochemical quencher in isolated Photosystem I particles using simultaneous measurements of absorbance changes at 830 nm and photoacoustic signal. PHOTOSYNTHESIS RESEARCH 2002; 74:295-302. [PMID: 16245140 DOI: 10.1023/a:1021237026500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The relationship between the redox state of P700, the primary donor of PS I, monitored using absorbance changes at 830 nm and photochemical energy storage in PS I reaction centers assayed with the photoacoustic method (PA) was studied in isolated PS I submembrane particles aspirated onto nitrocellulose filters. Several donors have been used to support the electron transport through PS I. NADPH and NADH demonstrated low rates of electron donation to PS I, while ascorbate and ascorbate plus 2,6-dichlorophenolindophenol (DCIP) couple have been found more effective in both P700(+) reduction and stimulation of the variable component of the PA signal. A linear relationship was found in isolated PS I particles between the (A(830,max) - A(830,steady))/A(830,max) and (PA(max) - PA(steady))/PA(max) ratios, which characterized the relative amount of P700 in the reduced state and the relative magnitude of the variable PA component, respectively. That linear relationship was obtained independently from the nature of electron donor used for the reduction of P700(+). Such linear relationship was also obtained at various wavelengths of modulated light in the range of 660 to 720 nm, only the slope of the linear fits varied with wavelength. It is concluded that reduced P700 act as a photochemical quencher of absorbed energy. Variable thermal dissipation in PS I reaction centers of isolated submembrane particles linearly depends on the amount of reduced P700 and thus constitutes an appropriate indicator of the redox pressure applied to PS I.
Collapse
Affiliation(s)
- Nikolai G Bukhov
- Groupe de Recherche en Energie et Information Biomoléculaires, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7,
| | | | | |
Collapse
|
26
|
Abstract
The spectral species P430 and its spectral and kinetic properties are briefly reviewed. Currently available evidence shows P430 to be the optic-spectral representation of FeS-A/B, the electron acceptor(s) of Photosystem I (PS I).
Collapse
Affiliation(s)
- Bacon Ke
- , 6100 Horsemans Canyon Drive, Walnut Creek, CA, 94595, USA,
| |
Collapse
|
27
|
|
28
|
Vassiliev IR, Antonkine ML, Golbeck JH. Iron-sulfur clusters in type I reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1507:139-60. [PMID: 11687212 DOI: 10.1016/s0005-2728(01)00197-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type I reaction centers (RCs) are multisubunit chlorophyll-protein complexes that function in photosynthetic organisms to convert photons to Gibbs free energy. The unique feature of Type I RCs is the presence of iron-sulfur clusters as electron transfer cofactors. Photosystem I (PS I) of oxygenic phototrophs is the best-studied Type I RC. It is comprised of an interpolypeptide [4Fe-4S] cluster, F(X), that bridges the PsaA and PsaB subunits, and two terminal [4Fe-4S] clusters, F(A) and F(B), that are bound to the PsaC subunit. In this review, we provide an update on the structure and function of the bound iron-sulfur clusters in Type I RCs. The first new development in this area is the identification of F(A) as the cluster proximal to F(X) and the resolution of the electron transfer sequence as F(X)-->F(A)-->F(B)-->soluble ferredoxin. The second new development is the determination of the three-dimensional NMR solution structure of unbound PsaC and localization of the equal- and mixed-valence pairs in F(A)(-) and F(B)(-). We provide a survey of the EPR properties and spectra of the iron-sulfur clusters in Type I RCs of cyanobacteria, green sulfur bacteria, and heliobacteria, and we summarize new information about the kinetics of back-reactions involving the iron-sulfur clusters.
Collapse
Affiliation(s)
- I R Vassiliev
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 310 South Frear Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
29
|
Kusumoto N, Inoue K, Sakurai H. Spectroscopic studies of bound cytochrome c and an iron-sulfur center in a purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. PHOTOSYNTHESIS RESEARCH 1995; 43:107-112. [PMID: 24306743 DOI: 10.1007/bf00042967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/1994] [Accepted: 12/07/1994] [Indexed: 06/02/2023]
Abstract
Flash-induced optical kinetics at room temperature of cytochrome (Cyt) c 551 and an Fe-S center (CFA/CFB) bound to a purified reaction center (RC) complex from the green sulfur photosynthetic bacterium Chlorobium tepidum were studied. At 551 nm, the flash-induced absorbance change decayed with a t 1/2 of several hundred ms, and the decay was accelerated by 1-methoxy-5-methylphenazinium methyl sulfate (mPMS). In the blue region, the absorbance change was composed of mPMS-dependent (Cyt) and mPMS-independent component (CFA/CFB) which decayed with a t 1/2 of ∼400-650 ms. Decay of the latter was effectively accelerated by benzyl viologen (Em -360 mV) and methyl viologen (-440 mV), and less effectively by triquat (-540 mV). The difference spectrum of Cyt c had negative peaks at 551, ∼520 and ∼420 nm, with a positive rise at ∼440 to ∼500 nm. The difference spectrum of CFA/CFB resembled P430 of PSI, and had a broad negative peak at 430∼435 nm.
Collapse
Affiliation(s)
- N Kusumoto
- Department of Biology, School of Education, Waseda University, 169-50, Tokyo, Japan
| | | | | |
Collapse
|
30
|
Huzisige H, Ke B. Dynamics of the history of photosynthesis research. PHOTOSYNTHESIS RESEARCH 1993; 38:185-209. [PMID: 24317915 DOI: 10.1007/bf00146418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A personal view of the history of progress in photosynthesis research beginning in the seventeenth century and ending in 1992 is presented in a chart form. The 350-year time span is divided arbitrarily into seven periods by the "development junctures", which are likened to bamboo joints. The tempo of progress is reflected in the duration of the periods, starting from over 200 years for Period I, which progressively shortens in subsequent periods. This brief introduction highlights some of the events to show the dynamic nature of the progress in photosynthesis research.
Collapse
|
31
|
Sakurai H, Inoue K, Fujii T, Mathis P. Effects of selective destruction of iron-sulfur center B on electron transfer and charge recombination in Photosystem I. PHOTOSYNTHESIS RESEARCH 1991; 27:65-71. [PMID: 24414446 DOI: 10.1007/bf00029977] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/1990] [Accepted: 08/02/1990] [Indexed: 06/03/2023]
Abstract
Incubation of spinach thylakoids with HgCl2 selectively destroys Fe-S center B (FB). The function of electron acceptors in FB-less PS I particles was studied by following the decay kinetics of P700(+) at room temperature after multiple flash excitation in the absence of a terminal electron acceptor. In untreated particles, the decay kinetics of the signal after the first and the second flashes were very similar (t 1/2∼2.5 ms), and were principally determined by the concentration of the artificial electron donor added. The decay after the third flash was fast (t 1/2∼0.25 ms). In FB-less particles, although the decay after the first flash was slow, fast decay was observed already after the second flash. We conclude that in FB-less particles, electron transfer can proceed normally at room temperature from FX to FA and that the charge recombination between P700(+) and FX (-)/A1 (-) predominated after the second excitation. The rate of this recombination process is not significantly affected by the destruction of FB. Even in the presence of 60% glycerol, FB-less particles can transfer electrons to FA at room temperature as efficiently as untreated particles.
Collapse
Affiliation(s)
- H Sakurai
- Service de Biophysique, Département de Biologie, CEN Saclay, 91191, Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
32
|
Koike H, Ikeuchi M, Hiyama T, Inoue Y. Identification of photosystem I components from the cyanobacterium, Synechococcus vulcanus by N-terminal sequencing. FEBS Lett 1989; 253:257-63. [PMID: 2503399 DOI: 10.1016/0014-5793(89)80971-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The photosystem I core complex isolated from a thermophilic cyanobacterium, Synechococcus vulcanus, is composed of eight low-molecular-mass proteins of 18, 14, 12, 9.5, 9, 6.5, 5 and 4.1 kDa in addition to the PS I chlorophyll protein. N-terminal amino acid sequences of all these components were determined and compared with those of higher plants. Clearly, the 9.5 kDa component corresponds to the protein which carries the non-heme iron-sulfur centers A and B. This protein is so poorly visualized by staining that it has probably been overlooked in gel electrophoresis analyses. The 18, 14, 12 and 9 kDa components show appreciable homology with respective subunits of higher plant PS I. In contrast, the 6.5, 5 and 4.1 kDa components do not correspond to any known proteins except that the sequence of the 4.1 kDa component matches an unidentified open reading frame (ORF) 42 (liverwort) or ORF44 (tobacco) of chloroplast DNA.
Collapse
Affiliation(s)
- H Koike
- Solar Energy Research Group, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | |
Collapse
|
33
|
Golbeck JH. Light-induced charge separation across the photosynthetic membrane: a proposed structure for the photosystem I reaction center. J Memb Sci 1987. [DOI: 10.1016/s0376-7388(00)80374-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Abstract
Comparative quantitative analysis of phylloquinone content and photochemically competent P-700 has been performed on photosystem I particles subjected to photolysis with ultraviolet irradiation. Nonirradiated control particles exhibit a phylloquinone/P-700 stoichiometry of 1.9 +/- 0.2. Photolysis of the photosystem I particles induces a progressive depletion of phylloquinone, however, photochemistry as assayed at room temperature by the photooxidation of P-700 is unaffected. These data are not consistent with the assignment of phylloquinone as a functional intermediate at room temperature between P-700 and the iron-sulfur clusters, center A and center B.
Collapse
|
35
|
Takahashi Y, Katoh S. Effect of heptane-extraction on the stability of subunit organization of photosystem I reaction center complexes. PHOTOSYNTHESIS RESEARCH 1987; 11:29-36. [PMID: 24435460 DOI: 10.1007/bf00117671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/1985] [Revised: 12/03/1985] [Indexed: 06/03/2023]
Abstract
Treatment of lyophilized thylakoid membranes of the thermophilic cyanobacterium Synechococcus sp. with n-heptane for 6 h resulted in marked changes in the pattern of photosystem I reaction center complexes resolved by sodium dodecylsulfate-polyacrylamide gel electrophoresis. CP1-a, which consists of two large subunits and three small subunits, was a major chlorophyll-containing band resolved from the lyophilized thylakoid membranes, whereas the heptane-extracted membranes produced mainly CP1-e which totally lacks the small subunits. Electron transport from the primary donor P700 to the secondary acceptor P430 was not affected by the heptane-extraction of the membranes. The heptane-treatment removed 97% of β-carotene present in the membranes, whereas all chlorophyll a, a major part of xanthophylls, more than a half of phylloquinone and one third of plastoquinone remained unextracted. The data suggest that β-carotene has an important structural effect to stabilize the subunit organization of photosystem I reaction center complexes but is not essential for the early photochemical events of photosystem I.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, 153, Tokyo, Japan
| | | |
Collapse
|
36
|
|
37
|
Rutherford AW, Heathcote P. Primary photochemistry in photosystem-I. PHOTOSYNTHESIS RESEARCH 1985; 6:295-316. [PMID: 24442951 DOI: 10.1007/bf00054105] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/1984] [Accepted: 01/31/1985] [Indexed: 06/03/2023]
Abstract
In this review, the main research developments that have led to the current simplified picture of photosystem I are presented. This is followed by a discussion of some conflicting reports and unresolved questions in the literature. The following points are made: (1) the evidence is contradictory on whether P700, the primary donor, is a monomer or dimer of chlorophyll although at this time the balacnce of the evidence points towards a monomeric structure for P700 when in the triplet state; (2) there is little evidence that the iron sulfur centers FA and FB act in series as tertiary acceptors and it is as likely that they act in parallel under physiological conditions; (3) a role for FX, probably another iron sulfur centrer, as an obligatory electron carrier in forward electron transfer has not been proven. Some evidence indicates that its reduction could represent a pathway different to that involving FA and FB; (4) the decay of the acceptor 'A2 (-)' as defined by optical spectroscopy corresponds with 700(+) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa% aaleaadaqdaaqaaiaadIfaaaaabeaaaaa!37D1!\[F_{\overline X } \] recombination under some circumstances but under other conditions it probably corresponds with P700(+) A1 (-) recombination; (5) P700(+) A1 (-) recombination as originally observed by optical spectroscopy is probably due to the decay of the P700 triplet state; (6) the acceptor A1 (-) as defined by EPR may be a special semiquinone molecule; (7) A0 is probably a chlorophyll a molecule which acts as the primary acceptor. Recombination of P700(+) A0 (-) gives rise to the P700 triplet state.A working model for electron transfer in photosystem I is presented, its general features are discussed and comparisons with other photosystems are made.
Collapse
Affiliation(s)
- A W Rutherford
- Service de Biophysique, Department de Biologie, CEN Saclay, BP2, 91190, Gif sur Yvette, France
| | | |
Collapse
|
38
|
Glick RE, McCauley SW, Melis A. Effect of light quality on chloroplast-membrane organization and function in pea. PLANTA 1985; 164:487-494. [PMID: 24248221 DOI: 10.1007/bf00395964] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/1984] [Accepted: 01/15/1985] [Indexed: 06/02/2023]
Abstract
The effect of light quality during plant growth of chloroplast membrane organization and function in peas (Pisum sativum L. cv. Alaska) was investigated. In plants grown under photosystem (PS) I-enriched (far-red enriched) illumination both the PSII/PSI stoichiometry and the electrontransport capacity ratios were high, about 1.9. In plants grown under PSII-enriched (far-red depleted) illumination both the PSII/PSI stoichiometry and the electron-transport capacity ratios were significantly lower, about 1.3. In agreement, steady-state electron-transport measurements under synchronous illumination of PSII and PSI demonstrated an excess of PSII in plants grown under far-red-enriched light. Sodium dodecylsulfate polyacrylamide gel electrophoretic analysis of chlorophyll-containing complexes showed greater relative amounts of the PSII reaction center chlorophyll-protein complex in plants grown under farred-enriched light. Additional changes were observed in the ratio of light-harvesting chlorophyll a/b protein to PSII reaction center chlorophyll-protein under the two different light-quality regimes. The results demonstrate the dynamic nature of chloroplast structure and support the notion that light quality is an important factor in the regulation of chloroplast membrane organization and-function.
Collapse
Affiliation(s)
- R E Glick
- Division of Molecular Plant Biology, University of California, 313 Hilgard Hall, 94720, Berkeley, CA, USA
| | | | | |
Collapse
|
39
|
|
40
|
Ono TA, Inoue Y. Photoactivation of the Water-Oxidation System in Isolated Intact Chloroplasts Prepared from Wheat Leaves Grown under Intermittent Flash Illumination. PLANT PHYSIOLOGY 1982; 69:1418-22. [PMID: 16662415 PMCID: PMC426430 DOI: 10.1104/pp.69.6.1418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Photoactivation of the latent oxygen-evolving system in intact chloroplasts isolated from wheat (Triticum aestivum L.) leaves grown under intermittent flash illumination was investigated, and the following results were obtained: (a) The water-oxidation activity generated on illuminating the isolated intact chloroplasts was as high as that generated in intact leaves, indicating that all the machinery necessary for the activity generation is assembled within intact chloroplasts. (b) The generation of water-oxidation activity was accompanied by enhancement of the activity of diphenylcarbazide-oxidation, and both processes share the same photochemical reaction but with respective rate-limiting dark reactions of different efficiencies. (c) A23187, an ionophore for divalent cations, strongly inhibited the generation of water-oxidation activity but did not affect the activity once generated, which suggested that Mn atoms in the chloroplasts are susceptible to the ionophore before photoactivation but turn immune after photoactivation. (d) The generation of water-oxidation activity was not affected by the inhibitors of ATP formation and CO(2) fixation, but was inhibited by nitrite, methylviologen and phenylmercuric acetate which suppress or inhibit the reduction of ferredoxin in intact chloroplasts. It was inferred that some factor(s) probably present in stroma to be reduced by PSI photoreaction is involved in the process of photoactivation.
Collapse
Affiliation(s)
- T A Ono
- Solar Energy Research Group, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351, Japan
| | | |
Collapse
|
41
|
Pan RL, Bhardwaj R, Gross EL. A PHOTOSYNTHETIC PHOTOELECTROCHEMICAL CELL USING FLAVIN MONONUCLEOTIDE AS THE ELECTRON ACCEPTOR. Photochem Photobiol 1982. [DOI: 10.1111/j.1751-1097.1982.tb02625.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
Shuvalov VA, Klevanik AV, Sharkov AV, Kryukov PG, Ke B. Picosecond spectroscopy of photosystem I reaction centers. FEBS Lett 1979; 107:313-6. [PMID: 510541 DOI: 10.1016/0014-5793(79)80397-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Hiyama T, Tsujimoto HY, Arnon DI. Photoreduction of membrane-bound paramagnetic component X by water as electron donor. FEBS Lett 1979; 98:381-5. [PMID: 217739 DOI: 10.1016/0014-5793(79)80222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Steenkamp DJ, Singer TP. Participation of the iron-sulphur cluster and of the covalently bound coenzyme of trimethylamine dehydrogenase in catalysis. Biochem J 1978; 169:361-9. [PMID: 204297 PMCID: PMC1184175 DOI: 10.1042/bj1690361] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial trimethylamine dehydrogenase contains a novel type of covalently bound flavin mononucleotide and a tetrameric iron-sulphur centre. The dehydrogenase takes up 1.5mol of dithionite/mol of enzyme and is thereby converted into the flavin quinol-reduced (4Fe-4S) form, with the expected bleaching of the visible absorption band of the flavin and the emergence of signals of typical reduced ferredoxin in the electronparamagnetic-resonance spectrum. On reduction with a slight excess of substrate, however, unusual absorption and electron-paramagnetic-resonance spectra appear quite rapidly. The latter is attributed to extensive interaction between the reduced (4Fe-4S) centre and the flavin semiquinone. The species of enzyme arising during the catalytic cycle were studied by a combination of rapid-freeze e.p.r. and stopped-flow spectophotometry. The initial reduction of the flavin to the quinol form is far too rapid to be rate-limiting in catalysis, as is the reoxidation of the substrate-reduced enzyme by phenazine methosulphate. Formation of the spin-spin-interacting species from the dihydroflavin is considerably slower, however, and it may be the rate-limiting step in the catalytic cycle, since its rate of formation agrees reasonably well with the catalytic-centre activity determined in steady-state kinetic assays. In addition to the interacting form, a second form of the enzyme was noted during reduction by trimethylamine, differing in absorption spectrum, the structure of which remains to be determined.
Collapse
|
49
|
|
50
|
|