1
|
Iobbi V, Lanteri AP, Minuto A, Santoro V, Ferrea G, Fossa P, Bisio A. Autoxidation Products of the Methanolic Extract of the Leaves of Combretum micranthum Exert Antiviral Activity against Tomato Brown Rugose Fruit Virus (ToBRFV). Molecules 2022; 27:760. [PMID: 35164024 PMCID: PMC8838289 DOI: 10.3390/molecules27030760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4-hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Anna Paola Lanteri
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Andrea Minuto
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Giuseppe Ferrea
- Azienda Sanitaria Locale 1, Regione Liguria, Via Aurelia 97, Bussana, 18038 Sanremo, Italy;
| | - Paola Fossa
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| |
Collapse
|
2
|
|
3
|
Parvez MK. Geometric architecture of viruses. World J Virol 2020; 9:5-18. [PMID: 32923381 PMCID: PMC7459239 DOI: 10.5501/wjv.v9.i2.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the current SARS-CoV-2 disease (COVID-19) pandemic, the structural understanding of new emerging viruses in relation to developing effective treatment and interventions are very necessary. Viruses present remarkable differences in geometric shapes, sizes, molecular compositions and organizations. A detailed structural knowledge of a virion is essential for understanding the mechanisms of capsid assembly/disassembly, antigenicity, cell-receptor interaction, and designing therapeutic strategies. X-ray crystallography, cryo-electron microscopy and molecular simulations have elucidated atomic-level structure of several viruses. In view of this, a recently determined crystal structure of SARS-CoV-2 nucleocapsid has revealed its architecture and self-assembly very similar to that of the SARS-CoV-1 and the Middle-East respiratory syndrome virus (MERS-CoV). In structure determination, capsid symmetry is an important factor greatly contributing to its stability and balance between the packaged genome and envelope. Since the capsid protein subunits are asymmetrical, the maximum number of inter-subunit interactions can be established only when they are arranged symmetrically. Therefore, a stable capsid must be in a perfect symmetry and lowest possible free-energy. Isometric virions are spherical but geometrically icosahedrons as compared to complex virions that are both isometric and helical. Enveloped icosahedral or helical viruses are very common in animals but rare in plants and bacteria. Icosahedral capsids are defined by triangulation number (T = 1, 3, 4, 13, etc.), i.e., the identical equilateral-triangles formed of subunits. Biologically significant defective capsids with or without nucleic acids are common in enveloped alpha-, flavi- and hepadnaviruses. The self-assembling, stable and non-infectious virus-like particles have been widely exploited as vaccine candidates and therapeutic molecules delivery vehicles.
Collapse
Affiliation(s)
- Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 22451, Saudi Arabia
| |
Collapse
|
4
|
Lam P, Gulati NM, Stewart PL, Keri RA, Steinmetz NF. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays. Sci Rep 2016; 6:23803. [PMID: 27030058 PMCID: PMC4814824 DOI: 10.1038/srep23803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 01/09/2023] Open
Abstract
The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.
Collapse
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, USA
| | - Neetu M. Gulati
- Department of Pharmacology, Case Western Reserve University, Cleveland, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, 44106, USA
| | - Phoebe L. Stewart
- Department of Pharmacology, Case Western Reserve University, Cleveland, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, 44106, USA
| | - Ruth A. Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, 44106, USA
- Department of Genetics, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, 44106, USA
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, 44106, USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, 44106, USA
| |
Collapse
|
5
|
Abstract
This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.
Collapse
|
6
|
Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C. TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. NANOSCALE 2013; 5:3808-16. [PMID: 23519401 DOI: 10.1039/c3nr33724c] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spacing of functional nanoscopic elements may play a fundamental role in nanotechnological and biomedical applications, but is so far rarely achieved on this scale. In this study we show that tobacco mosaic virus (TMV) and the RNA-guided self-assembly process of its coat protein (CP) can be used to establish new nanorod scaffolds that can be loaded not only with homogeneously distributed functionalities, but with distinct molecule species grouped and ordered along the longitudinal axis. The arrangement of the resulting domains and final carrier rod length both were governed by RNA-templated two-step in vitro assembly. Two selectively addressable TMV CP mutants carrying either thiol (TMVCys) or amino (TMVLys) groups on the exposed surface were engineered and shown to retain reactivity towards maleimides or NHS esters, respectively, after acetic acid-based purification and re-assembly to novel carrier rod types. Stepwise combination of CP(Cys) and CP(Lys) with RNA allowed fabrication of TMV-like nanorods with a controlled total length of 300 or 330 nm, respectively, consisting of adjacent longitudinal 100-to-200 nm domains of differently addressable CP species. This technology paves the way towards rod-shaped scaffolds with pre-defined, selectively reactive barcode patterns on the nanometer scale.
Collapse
Affiliation(s)
- Fania C Geiger
- Department of New Materials and Biosystems, Max-Planck-Institute for Intelligent Systems, University of Heidelberg, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Nguyen TT, Bruinsma RF, Gelbart WM. Elasticity theory and shape transitions of viral shells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:051923. [PMID: 16383661 DOI: 10.1103/physreve.72.051923] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Indexed: 05/05/2023]
Abstract
Recently, continuum elasticity theory has been applied to explain the shape transition of icosahedral viral capsids--single-protein-thick crystalline shells--from spherical to "buckled" or faceted as their radius increases through a critical value determined by the competition between stretching and bending energies of a closed two-dimensional (2D) elastic network. In the present work we generalize this approach to capsids with nonicosahedral symmetries, e.g., spherocylindrical and conical shells. One key additional physical ingredient is the role played by nonzero spontaneous curvature. Another is associated with the special way in which the energy of the 12 topologically required fivefold sites depends on the "background" local curvature of the shell in which they are embedded. Systematic evaluation of these contributions leads to a shape "phase" diagram in which transitions are observed from icosahedral to spherocylindrical capsids as a function of the ratio of stretching to bending energies and of the spontaneous curvature of the 2D protein network. We find that the transition from icosahedral to spherocylindrical symmetry is continuous or weakly first order near the onset of buckling, leading to extensive shape degeneracy. These results are discussed in the context of experimentally observed variations in the shapes of a variety of viral capsids.
Collapse
Affiliation(s)
- T T Nguyen
- Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California 90049, USA
| | | | | |
Collapse
|
8
|
Abstract
Assembly of tobacco mosaic virus is initiated by the binding of a specific loop of the RNA into the central hole of the disk aggregate of protein subunits. Since the nucleation loop is located about five-sixths along the RNA molecule, subsequent elongation must be bidirectional. We have now measured the rates of elongation in the two directions by determining the lengths of RNA protected from nuclease digestion at different times and using either intact TMV rNA, or RNA with most of the longer tail removed. Comparison of the rates with the protein supplied as either a mixture of disks with A-protein (a mixture of less aggregated states) or just A-protein, shows that different mechanisms and protein aggregates are used for the most rapid growth. When disks are present, they add more rapidly along the longer RNA tail but do not appear to add directly on the shorter tail. In contrast, smaller aggregates (A-protein) can add at both ends of the rod, but do so more slowly. Mechanisms for these processes are discussed. Preliminary results on the binding of the specific hexanucleotide AAGAAG to the disk are given and compared with the known changes on binding nonspecific hexanucleotides or the trinucleotide AAG.
Collapse
|
9
|
Fukuda M, Ohno T, Okada Y, Otsuki Y, Takebe I. Kinetics of biphasic reconstitution of tobacco mosaic virus in vitro. Proc Natl Acad Sci U S A 1978; 75:1727-30. [PMID: 273903 PMCID: PMC392412 DOI: 10.1073/pnas.75.4.1727] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The kinetics of the in vitro reconstitution of tobacco mosaic virus from its RNA and protein were studied by measuring the increase in turbidity, the development of ribonuclease-resistant infectivity, the emcapsidation of the terminal ends of the RNA, and the growth of rod length. The results showed that the reconstitution reaction consists of two processes in which the direction, timing, and rate of assembly are different. Rapid elongation of particles toward the 5' end of the RNA proceeds in the first 5-7 min to give intermediate particles of 260 nm in length in which only the 5' terminus of the RNA is encapsidated. The subsequent process requires 30-50 min, is accompanied by a slow increase in turbidity, and gives rise to rods of the full length, 300 nm. The 3' terminus becomes RNase resistant by this process with concomitant development of ribonuclease-resistant infectivity, showing that the 3'-distal portion of the RNA is encapsidated in the direction of 5' to 3'. The rate of rod elongation by the second process is less than 1/10 of that by the first process.
Collapse
|
10
|
Vogel D, Durham AC, de Marcillac GD. Metastable aggregates in the polymerisation of tobacco-mosaic-virus protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 79:161-71. [PMID: 21087 DOI: 10.1111/j.1432-1033.1977.tb11794.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Jonathan P, Butler G, Durham AC. Tobacco mosaic virus protein aggregation and the virus assembly. ADVANCES IN PROTEIN CHEMISTRY 1977; 31:187-251. [PMID: 337776 DOI: 10.1016/s0065-3233(08)60219-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Champness JN, Bloomer AC, Bricogne G, Butler PG, Klug A. The structure of the protein disk of tobacco mosaic virus to 5A resolution. Nature 1976; 259:20-4. [PMID: 1250335 DOI: 10.1038/259020a0] [Citation(s) in RCA: 167] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An electron density map of the TMV disk at 5A resolution has been obtained using isomorphous replacement and non-crystallographic symmetry. The polypeptide chain can be traced with little ambiguity. The axial contacts between protein subunits are unlike those in the virus, the disk being a more open structure apparently designed for rapid interaction with the RNA.
Collapse
|
13
|
Dodds JA, Hamilton RI. Structural interactions between viruses as a consequence of mixed infections. Adv Virus Res 1976; 20:33-86. [PMID: 818891 DOI: 10.1016/s0065-3527(08)60501-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Vogel D, Jaenicke R. Conformational changes and proton uptake in the reversible aggregation of tobacco-mosaic-virus protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1974; 41:607-15. [PMID: 4817563 DOI: 10.1111/j.1432-1033.1974.tb03303.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
|
16
|
Butler PJ, Klug A. Effect of state of polymerisation of the protein component on the assembly of tobacco mosaic virus. MOLECULAR & GENERAL GENETICS : MGG 1973; 120:91-3. [PMID: 4686212 DOI: 10.1007/bf00332986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|