1
|
Hansda B, Mishra S, Ghosh A, Das B, Biswas T, Mondal TK, Srivastava B, Mondal S, Roy D, Mandal B. Chemically Bonded Pepsin via Its Inert Center to Diazo Functionalized Silica Gel through Multipoint Attachment Mode: A Way of Restoring Biocatalytic Sustainability over "Wider pH" Range. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2146-2164. [PMID: 38240266 DOI: 10.1021/acs.langmuir.3c03113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Proteolytic enzymes play a pivotal role in the industry. Still, because of denaturation, the extensive applicability at their level of best catalytic efficiency over a more comprehensive pH range, particularly in alkaline conditions over pH 8, has not been fully developed. On the other hand, enzyme immobilization following a suitable protocol is a long pending issue that determines the conformational stability, specificity, selectivity, enantioselectivity, and activity of the native enzymes at long-range pH. As a bridge between these two findings, in an attempt at a freezing temperature 273-278 K at an alkaline pH, the diazo-functionalized silica gel (SG) surface has been used to rapidly diazo couple pepsin through its inert center, the O-carbon of the phenolic -OH of surface-occupied Tyr residues in a multipoint mode: when all the various protein groups, viz., amino, thiol, phenol, imidazole, carboxy, etc., in the molecular sequence including those belonging to the active sites, remain intact, the inherent inbuilt interactions among themselves remain. Thereby, the macromolecule's global conformation and helicity preserve the status quo. The dimension of the SG-enzyme conjugate confirms as {Si(OSi)4 (H2O)1.03}n {-O-Si(CH3)2-O-C6H4-N═N+}4·{pepsin}·yH2O; where the values of n and y have been determined respectively as 347 and 188. The material performs the catalytic activity much better at 7-8.5 than at pH 2-3.5 and continues for up to six months without any appreciable change.
Collapse
Affiliation(s)
- Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Bhavya Srivastava
- The West Bengal National University of Juridical Sciences, Dr. Ambedkar Bhavan, Kolkata 700098, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal700032, India
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| |
Collapse
|
2
|
Hossain MAA, Islam T, Joy MTR, Kowser Z, Ahmed MZ, Rehman MT, AlAjmi MF, Mahbub S, Goni MA, Hoque MA, Kabir SE. Interaction between gastric enzyme pepsin and tetradecyltrimethylammonium bromide in presence of sodium electrolytes: Exploration of micellization behavior. Int J Biol Macromol 2023; 253:127478. [PMID: 37866567 DOI: 10.1016/j.ijbiomac.2023.127478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Pepsin is a proteolytic enzyme used in the treatment of digestive disorders. In this study, we investigated the physicochemical properties of the tetradecyltrimethylammonium bromide (TTAB) and pepsin protein mixture in various sodium salt media within a temperature range of 300.55-320.55 K with 5 K intervals. The conductometric study of the TTAB+pepsin mixture revealed a reduction in the critical micelle concentration (CMC) in electrolyte media. The micellization of TTAB was delayed in the presence of pepsin. The CMC of the TTAB + pepsin mixture was found to depend on the concentrations of electrolytes and protein, as well as the temperature variations. The aggregation of the TTAB+pepsin mixture was hindered as a function of [pepsin] and increasing temperatures, while micellization was promoted in aqueous electrolyte solutions. The negative free energy changes (∆Gm0) indicated the spontaneous aggregation of the TTAB+pepsin mixture. Changes in enthalpy, entropy, molar heat capacities, transfer properties, and enthalpy-entropy compensation variables were calculated and illustrated rationally. The interaction forces between TTAB and pepsin protein in the experimental solvents were primarily hydrophobic and electrostatic (ion-dipole) in nature. An analysis of molecular docking revealed hydrophobic interactions as the main stabilizing forces in the TTAB-pepsin complex.
Collapse
Affiliation(s)
- Md Al Amin Hossain
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tamanna Islam
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Tuhinur R Joy
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Zannatul Kowser
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shamim Mahbub
- Nuclear Safety, Security & Safeguards Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka 1207, Bangladesh
| | - Md Abdul Goni
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC 29117, USA
| | - Md Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Shariff E Kabir
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| |
Collapse
|
3
|
Osman MM, El-Shaheny R, Ibrahim FA. Perception of the interaction behavior between pepsin and the antimicrobial drug secnidazole with combined experimental spectroscopy and computer-aided techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122336. [PMID: 36680834 DOI: 10.1016/j.saa.2023.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Drug-pepsin interaction possibly affects pepsin activity, leads to undesirable shift of its functionality, and likely induces adverse effects in the gastrointestinal tract. The present study aims at exploring the interaction of pepsin with the antiprotozoal/antibacterial drug secnidazole adopting a combination of experimental spectroscopy and computational techniques. For this purpose, different spectroscopic methods including fluorescence, synchronous fluorescence, UV-Visible absorption, and infrared spectroscopy were adopted and coordinated with in silico analysis via molecular docking. The employed synchronized approaches evidenced that; pepsin interacted with secnidazole via static mechanism at stomach pH inferring some consequent conformational changes in the structure of pepsin. Thermodynamic study of drug-pepsin interaction demonstrated that the interaction is spontaneous via van der Waals and hydrogen bonding interaction and the orientation of ligand within pepsin cavity was illustrated by molecular docking. The synchronous fluorescence study proved that tyrosine amino acid residues were involved in the interaction more than tryptophan amino acid residues. Eventually, the combined experimental and molecular docking approaches suggest that secnidazole interacts with pepsin and alter its structure, that finding correlates to gastrointestinal side effects related to secnidazole oral administration.
Collapse
Affiliation(s)
- Mohamed M Osman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Fawzia A Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Yang XG, Zhang JR, Tian XK, Qin JH, Zhang XY, Ma LF. Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIF-8 Modified by Ni 2+ Ions. Angew Chem Int Ed Engl 2023; 62:e202216699. [PMID: 36536412 DOI: 10.1002/anie.202216699] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The development of efficient enzyme immobilization to promote their recyclability and activity is highly desirable. Zeolitic imidazolate framework-8 (ZIF-8) has been proved to be an effective platform for enzyme immobilization due to its easy preparation and biocompatibility. However, the intrinsic hydrophobic characteristic hinders its further development in this filed. Herein, a facile synthesis approach was developed to immobilize pepsin (PEP) on the ZIF-8 carrier by using Ni2+ ions as anchor (ZIF-8@PEP-Ni). By contrast, the direct coating of PEP on the surface of ZIF-8 (ZIF-8@PEP) generated significant conformational changes. Electrochemical oxygen evolution reaction (OER) was employed to study the catalytic activity of immobilized PEP. The ZIF-8@PEP-Ni composite attains remarkable OER performance with an ultralow overpotential of only 127 mV at 10 mA cm-2 , which is much lower than the 690 and 919 mV overpotential values of ZIF-8@PEP and PEP, respectively.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Ji-Rui Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xu-Ke Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Jian-Hua Qin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xin-Ya Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| |
Collapse
|
5
|
Akram M, Osama M, Hashmi MA, Kabir-Ud-Din. Molecular interaction of di-ester bonded cationic Gemini surfactants with pepsin: in vitro and in silico perspectives. J Biomol Struct Dyn 2023; 41:12276-12291. [PMID: 36695086 DOI: 10.1080/07391102.2023.2168759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
The implications of surfactant-enzyme/protein interactions in a variety of fields, including biotechnology, cosmetics, paints and pharmaceuticals, have attracted a lot of attention in contemporary studies. Herein, we have employed several in vitro and in silico techniques such as excitation and absorption spectroscopies, circular dichroism and FT-IR spectroscopies, density functional and molecular dynamics simulations to understand the interaction behavior of oxy-diester-based green cationic Gemini surfactants, N1,N1,N14,N14-tetramethyl-2,13-dioxo-N1,N14-dialkyl-3,6,12-tetraoxateradecane-1,14-diaminiumdichloride (abbreviated as Cm-E2O2-Cm, where 'm' stands for alkyl chain length, m = 12 and 14) with one of the main digestive proteins, pepsin. The spectroscopic techniques confirm the static quenching effect of surfactants on pepsin. The calculated physical parameters (Ksv, Kb and ΔG) and their order reveal the distinguished implications for the surfactants' chain lengths. The spontaneity of interaction was also confirmed by negative Gibbs free energy change values. The extrinsic spectroscopic study with pyrene as fluorescence probe, FT-IR and CD techniques indicated a potential conformational change in pepsin induced by the Gemini surfactants. DFT, docking and MD simulations provided the theoretical understanding regarding the quantum mechanical environment, location of binding and stability of the protein-surfactant complexation in energy terms. We believe this study will be a humble addition to our existing knowledge in the field of protein-surfactant interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Mohammad Osama
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Kabir-Ud-Din
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Oda K, Dunn BM, Wlodawer A. Serine-Carboxyl Peptidases, Sedolisins: From Discovery to Evolution. Biochemistry 2022; 61:1643-1664. [PMID: 35862020 DOI: 10.1021/acs.biochem.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sedolisin is a proteolytic enzyme, listed in the peptidase database MEROPS as a founding member of clan SB, family S53. This enzyme, although active at low pH, was originally shown not to be inhibited by an aspartic peptidase specific inhibitor, S-PI (pepstatin Ac). In this Perspective, the S53 family is described from the moment of original identification to evolution. The representative enzymes of the family are sedolisin, kumamolisin, and TPP-1. They exhibit the following unique features. (1) The fold of the molecule is similar to that of subtilisin, but the catalytic residues consist of a triad, Ser/Glu/Asp, that is unlike the Ser/His/Asp triad of subtilisin. (2) The molecule is expressed as a pro-form composed of the amino-terminal prosegment and the active domain. Additionally, some members of this family have an additional, carboxy-terminal prosegment. (3) Their optimum pH for activity is in the acidic region, not in the neutral to alkaline region where subtilisin is active. (4) Their distribution in nature is very broad across the three kingdoms of life. (5) Some of these enzymes from fungi and bacteria are pathogens to plants. (6) Some of them have significant potential applications for industry. (7) The lack of a TPP-1 gene in human brain is the cause of incurable juvenile neuronal ceroid lipofuscinosis (Batten's disease).
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, United States
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
7
|
Figueiredo L, Santos RB, Figueiredo A. Defense and Offense Strategies: The Role of Aspartic Proteases in Plant-Pathogen Interactions. BIOLOGY 2021; 10:75. [PMID: 33494266 PMCID: PMC7909840 DOI: 10.3390/biology10020075] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Plant aspartic proteases (APs; E.C.3.4.23) are a group of proteolytic enzymes widely distributed among different species characterized by the conserved sequence Asp-Gly-Thr at the active site. With a broad spectrum of biological roles, plant APs are suggested to undergo functional specialization and to be crucial in developmental processes, such as in both biotic and abiotic stress responses. Over the last decade, an increasing number of publications highlighted the APs' involvement in plant defense responses against a diversity of stresses. In contrast, few studies regarding pathogen-secreted APs and AP inhibitors have been published so far. In this review, we provide a comprehensive picture of aspartic proteases from plant and pathogenic origins, focusing on their relevance and participation in defense and offense strategies in plant-pathogen interactions.
Collapse
|
8
|
A Personal History of Using Crystals and Crystallography to Understand Biology and Advanced Drug Discovery. CRYSTALS 2020. [DOI: 10.3390/cryst10080676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 60 years, the use of crystals to define structures of complexes using X-ray analysis has contributed to the discovery of new medicines in a very significant way. This has been in understanding not only small-molecule inhibitors of proteins, such as enzymes, but also protein or peptide hormones or growth factors that bind to cell surface receptors. Experimental structures from crystallography have also been exploited in software to allow prediction of structures of important targets based on knowledge of homologues. Crystals and crystallography continue to contribute to drug design and provide a successful example of academia–industry collaboration.
Collapse
|
9
|
Dinc M, Basan H, Hummel T, Müller M, Sobek H, Rapp I, Diemant T, Behm RJ, Lindén M, Mizaikoff B. Selective Binding of Inhibitor-Assisted Surface-Imprinted Core/Shell Microbeads in Protein Mixtures. ChemistrySelect 2018. [DOI: 10.1002/slct.201800129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mehmet Dinc
- Institute of Analytical and Bioanalytical Chemistry; Ulm University, D-; 89081 Ulm Germany
| | - Hasan Basan
- Department of Analytical Chemistry, Faculty of Pharmacy; Gazi University, TR-; 06330 Etiler-Ankara Turkey
| | - Tim Hummel
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Marlen Müller
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Ingrid Rapp
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Thomas Diemant
- Institute of Surface Chemistry and Catalysis; Ulm University, D-; 89081 Ulm Germany
| | - Rolf Jürgen Behm
- Institute of Surface Chemistry and Catalysis; Ulm University, D-; 89081 Ulm Germany
| | - Mika Lindén
- Institute of Inorganic Chemistry II; Ulm University, D-; 89081 Ulm Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; Ulm University, D-; 89081 Ulm Germany
| |
Collapse
|
10
|
Tabata E, Kashimura A, Wakita S, Ohno M, Sakaguchi M, Sugahara Y, Imamura Y, Seki S, Ueda H, Matoska V, Bauer PO, Oyama F. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci Rep 2017; 7:12963. [PMID: 29021549 PMCID: PMC5636921 DOI: 10.1038/s41598-017-13526-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), is a major structural component in chitin-containing organism including crustaceans, insects and fungi. Mammals express two chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Here, we report that pig AMCase is stable in the presence of other digestive proteases and functions as chitinolytic enzyme under the gastrointestinal conditions. Quantification of chitinases expression in pig tissues using quantitative real-time PCR showed that Chit1 mRNA was highly expressed in eyes, whereas the AMCase mRNA was predominantly expressed in stomach at even higher levels than the housekeeping genes. AMCase purified from pig stomach has highest activity at pH of around 2–4 and remains active at up to pH 7.0. It was resistant to robust proteolytic activities of pepsin at pH 2.0 and trypsin and chymotrypsin at pH 7.6. AMCase degraded polymeric chitin substrates including mealworm shells to GlcNAc dimers. Furthermore, we visualized chitin digestion of fly wings by endogenous AMCase and pepsin in stomach extract. Thus, pig AMCase can function as a protease resistant chitin digestive enzyme at broad pH range present in stomach as well as in the intestine. These results indicate that chitin-containing organisms may be a sustainable feed ingredient in pig diet.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasutada Imamura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Shiro Seki
- Department of Environmental Chemistry, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Hitoshi Ueda
- Department of Integrative Biology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic.,Bioinova Ltd., Videnska 1083, Prague, 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
11
|
Liu S, Horak J, Höldrich M, Lämmerhofer M. Accurate and reliable quantification of the protein surface coverage on protein-functionalized nanoparticles. Anal Chim Acta 2017; 989:29-37. [DOI: 10.1016/j.aca.2017.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023]
|
12
|
Venerando A, Cesaro L, Pinna LA. From phosphoproteins to phosphoproteomes: a historical account. FEBS J 2017; 284:1936-1951. [PMID: 28079298 DOI: 10.1111/febs.14014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
The first phosphoprotein (casein) was discovered in 1883, yet the enzyme responsible for its phosphorylation was identified only 130 years later, in 2012. In the intervening time, especially in the last decades of the 1900s, it became evident that, far from being an oddity, phosphorylation affects the majority of eukaryotic proteins during their lifespan, and that this reaction is catalysed by the members of a large family of protein kinases, susceptible to a variety of stimuli controlling nearly every aspect of life and death. The aim of this review is to present a historical account of the main steps of this spectacular revolution, which transformed our conception of a biochemical reaction originally held as a sporadic curiosity into the master mechanism governing cell regulation, and, if it is perturbed, causing cell dysregulation.
Collapse
Affiliation(s)
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Italy.,CNR Neuroscience Institute, Padova, Italy
| |
Collapse
|
13
|
Ghosh S, Dolai S, Patra T, Dey J. Solution Behavior and Interaction of Pepsin with Carnitine Based Cationic Surfactant: Fluorescence, Circular Dichroism, and Calorimetric Studies. J Phys Chem B 2015; 119:12632-43. [DOI: 10.1021/acs.jpcb.5b07072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subhajit Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| | - Subhrajyoti Dolai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| | - Trilochan Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| |
Collapse
|
14
|
Pluhar B, Ziener U, Mizaikoff B. Binding performance of pepsin surface-imprinted polymer particles in protein mixtures. J Mater Chem B 2015; 3:6248-6254. [PMID: 32262743 DOI: 10.1039/c5tb00657k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-imprinted polymer particles facilitate the accessibility of synthetic selective binding sites for proteins. Given their volume-to-surface ratio, submicron particles offer a potentially large surface area facilitating fast rebinding kinetics and high binding capacities, as investigated herein by batch rebinding experiments. Polymer particles were prepared with (3-acrylamidopropyl)trimethylammonium chloride as functional monomer, and ethylene glycol dimethacrylate as cross-linker in the presence of pepsin as template molecule via miniemulsion polymerization. The obtained polymer particles had an average particle diameter of 623 nm, and a specific surface area of 50 m2 g-1. The dissociation constant and maximum binding capacity were obtained by fitting the Langmuir equation to the corresponding binding isotherm. The dissociation constant was 7.94 μM, thereby indicating a high affinity; the binding capacity was 0.72 μmol m-2. The binding process was remarkably fast, as equilibrium binding was observed after just 1 min of incubation. The previously determined selectivity of the molecularly imprinted polymer for pepsin was for the first time confirmed during competitive binding studies with pepsin, bovine serum albumin, and β-lactoglobulin. Since pepsin has an exceptionally high content in acidic amino acids enabling strong interactions with positively charged quaternary ammonium groups of the functional monomers, another competitive protein, i.e., α1-acid glycoprotein, was furthermore introduced. This protein has a similarly high content in acidic amino acids, and was used for demonstrating the implications of ionic interactions on the achieved selectivity.
Collapse
Affiliation(s)
- B Pluhar
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | | | | |
Collapse
|
15
|
Pluhar B, Mizaikoff B. Advanced Evaluation Strategies for Protein-Imprinted Polymer Nanobeads. Macromol Biosci 2015; 15:1507-11. [PMID: 26114950 DOI: 10.1002/mabi.201500106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/20/2015] [Indexed: 11/06/2022]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic affinity matrices capable of selective binding a specific target molecule. A strategy for competitive selectivity studies is developed providing information on the selective binding properties of MIPs in complex matrices. Batch rebinding experiments entail the target protease, two other proteins, and MIP nanobeads. The protease is inhibited by addition of pepstatin thus quenching the degradation of the other proteins. The proteins are analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The relevance of competitive selectivity studies for the evaluation of MIP performance is further emphasized by comparison to single protein rebinding experiments.
Collapse
Affiliation(s)
- Bettina Pluhar
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| |
Collapse
|
16
|
Jityuti B, Buranaprapuk A, Liwporncharoenvong T. Artificial metallopeptidases: Protein cleavage by molybdenum(VI) peroxo α-amino acid complexes. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
The Secretion and Action of Brush Border Enzymes in the Mammalian Small Intestine. Rev Physiol Biochem Pharmacol 2015; 168:59-118. [PMID: 26345415 DOI: 10.1007/112_2015_24] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Microvilli are conventionally regarded as an extension of the small intestinal absorptive surface, but they are also, as latterly discovered, a launching pad for brush border digestive enzymes. Recent work has demonstrated that motor elements of the microvillus cytoskeleton operate to displace the apical membrane toward the apex of the microvillus, where it vesiculates and is shed into the periapical space. Catalytically active brush border digestive enzymes remain incorporated within the membranes of these vesicles, which shifts the site of BB digestion from the surface of the enterocyte to the periapical space. This process enables nutrient hydrolysis to occur adjacent to the membrane in a pre-absorptive step. The characterization of BB digestive enzymes is influenced by the way in which these enzymes are anchored to the apical membranes of microvilli, their subsequent shedding in membrane vesicles, and their differing susceptibilities to cleavage from the component membranes. In addition, the presence of active intracellular components of these enzymes complicates their quantitative assay and the elucidation of their dynamics. This review summarizes the ontogeny and regulation of BB digestive enzymes and what is known of their kinetics and their action in the peripheral and axial regions of the small intestinal lumen.
Collapse
|
18
|
Humer E, Schwarz C, Schedle K. Phytate in pig and poultry nutrition. J Anim Physiol Anim Nutr (Berl) 2014; 99:605-25. [PMID: 25405653 DOI: 10.1111/jpn.12258] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Phosphorus (P) is primarily stored in the form of phytates in plant seeds, thus being poorly available for monogastric livestock, such as pigs and poultry. As phytate is a polyanionic molecule, it has the capacity to chelate positively charged cations, especially calcium, iron and zinc. Furthermore, it probably compromises the utilization of other dietary nutrients, including protein, starch and lipids. Reduced efficiency of utilization implies both higher levels of supplementation and increased discharge of the undigested nutrients to the environment. The enzyme phytase catalyses the stepwise hydrolysis of phytate. In respect to livestock nutrition, there are four possible sources of this enzyme available for the animals: endogenous mucosal phytase, gut microfloral phytase, plant phytase and exogenous microbial phytase. As the endogenous mucosal phytase in monogastric organisms appears incapable of hydrolysing sufficient amounts of phytate-bound P, supplementation of exogenous microbial phytase in diets is a common method to increase mineral and nutrient absorption. Plant phytase activity varies greatly among species of plants, resulting in differing gastrointestinal phytate hydrolysis in monogastric animals. Besides the supplementation of microbial phytase, processing techniques are alternative approaches to reduce phytate contents. Thus, techniques such as germination, soaking and fermentation enable activation of naturally occurring plant phytase among others. However, further research is needed to tap the potential of these technologies. The main focus herein is to review the available literature on the role of phytate in pig and poultry nutrition, its degradation throughout the gut and opportunities to enhance the utilization of P as well as other minerals and nutrients which might be complexed by phytates.
Collapse
Affiliation(s)
- E Humer
- Institute of Animal Nutrition, Products and Nutrition Physiology, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - C Schwarz
- Institute of Animal Nutrition, Products and Nutrition Physiology, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - K Schedle
- Institute of Animal Nutrition, Products and Nutrition Physiology, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
19
|
Huang T, Cao C, Liu ZL, Li Y, Du FP. Interaction of pepsin-[C16mim]Br system: interfacial dilational rheology and conformational studies. SOFT MATTER 2014; 10:6810-6819. [PMID: 25079107 DOI: 10.1039/c4sm00950a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interfacial rheological property is closely related to the stabilities of foams and emulsions, yet there have been limited studies on the interaction between proteins with ionic liquid-type imidazolium surfactants at the decane-water interface as well as in the bulk. Herein, we investigated the interfacial and bulk properties of pepsin (PEP) and an ionic liquid (IL), 1-hexadecyl-3-methylimidazolium bromide, [C(16)mim]Br. The interfacial pressure and dilational rheology studies were performed to describe the formation of [C(16)mim]Br-pepsin complexes. The influence of the oscillating frequency and the bulk concentration of [C(16)mim]Br on the dilational properties were explored. The conformational changes were studied by monitoring the fluorescence and far UV-CD spectra. The results reveal that the globular structure of pepsin is one of the decisive factors controlling the nature of the interfacial film. The monotonous increase in the dilational elastic modulus of pepsin-[C(16)mim]Br solutions with the surface age indicates that no loops and tails had formed. Interestingly, with an increase in the concentration of [C(16)mim]Br, the εd-c curve first passes through a plateau value due to steric hindrance and the electrostatic barrier of already absorbed tenacious pepsin-[C(16)mim]Br complexes. With the further addition of [C(16)mim]Br, the remarkable decrease in dilational elastic modulus indicates that the compact structure is destroyed gradually. The results of the fluorescence spectra and far UV-CD spectra confirm that [C(16)mim]Br did not produce perceptible changes in pepsin at the concentrations studied in the dilational experiment. Possible schematic programs of the pepsin-[C(16)mim]Br interaction model at the interface and in bulk phase are proposed.
Collapse
Affiliation(s)
- Tian Huang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Shobha MS, Gowda LR, Tharanathan RN. A novel catalysis by porcine pepsin in debranching guar galactomannan. Carbohydr Polym 2013; 102:615-21. [PMID: 24507326 DOI: 10.1016/j.carbpol.2013.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/16/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pepsin (porcine stomach mucosa, E.C. 3.4.23.1), an acid protease catalyzes the hydrolysis (debranching) of guar galactomannan (GG), a co-polymer of mannose and galactose residues thereby showing its non-specific catalysis towards glycosidic substrates. RESULTS AND CONCLUSIONS Use of non-specific inhibitors, chemical modification agents and peptide mapping of native and GG--bound pepsin upon proteolytic digestion with Staphylococcus aureus V8 protease revealed the involvement of Asp(138) residue in the catalysis, which was confirmed by computational modelling studies. GENERAL SIGNIFICANCE Here we show a novel mode of catalysis (other than proteolysis) by porcine pepsin with a different active site residue.
Collapse
Affiliation(s)
- Mysore S Shobha
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore 570 020, India
| | - Lalitha R Gowda
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore 570 020, India
| | - Rudrapatam N Tharanathan
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Council of Scientific and Industrial Research, Mysore 570 020, India.
| |
Collapse
|
21
|
Jityuti B, Liwporncharoenvong T, Buranaprapuk A. Use of a molybdenum(VI) complex as artificial protease in protein photocleavage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2013; 126:55-59. [PMID: 23895865 DOI: 10.1016/j.jphotobiol.2013.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/05/2013] [Accepted: 07/02/2013] [Indexed: 06/02/2023]
Abstract
In this study, a molybdenum(VI) peroxo α-amino acid complex, MoO(O2)2(α-leucine) (H2O), was prepared and used as an artificial protease for site-specific cleavage of porcine pepsin, a model protein. Cleavage of pepsin by MoO(O2)2(α-leucine) (H2O) was achieved under photochemical conditions at room temperature and pH 7.0. The reaction was activated by irradiation of the MoO(O2)2(α-leucine) (H2O)-protein mixture by UV light (320 and 340nm) for up to 30min. No cleavage was observed in the absence of MoO(O2)2(α-leucine) (H2O) or the light. The photocleavage yield increased with irradiation time. The cleaved fragments were sequencable, and the cleavage site was assigned to Leu(112)-Tyr(113). The cleavage reaction was quenched by ethanol. Therefore, hydroxyl radicals may be involved in the reaction and responsible for the cleavage of the protein. This is the first demonstration of the successful photocleavage of proteins by a molybdenum complex. This observation can provide a new approach for the photochemical footprinting of metal binding sites on proteins.
Collapse
Affiliation(s)
- Benchawan Jityuti
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
| | | | | |
Collapse
|
22
|
Coughlan K, Huang X, He X, Chung CHY, Li G, Tang J. Expression and processing of fluorescent fusion proteins of amyloid precursor protein (APP). BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:1562-71. [PMID: 23517619 PMCID: PMC3753662 DOI: 10.1016/j.bbamcr.2013.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
Abstract
Processing of β-amyloid precursor protein (APP) by β- and γ-secretases in neurons produces amyloid-β (Aβ), whose excess accumulation leads to Alzheimer's disease (AD). Knowledge on subcellular trafficking pathways of APP and its fragments is important for the understanding of AD pathogenesis. We designed fusion proteins comprising a C-terminal fragment of APP (app) and fluorescent proteins GFP (G) and DsRed (D) to permit the tracking of the fusion proteins and fragments in cells. CAD cells expressing these proteins emitted colocalized green and red fluorescence and produce ectodomains, sGapp and sRapp, and Aβ, whose level was reduced by inhibitors of β- and γ-secretases. The presence of GappR in endosomes was observed via colocalization with Rab5. These observations indicated that the fusion proteins were membrane inserted, transported in vesicles and proteolytically processed by the same mechanism for APP. By attenuating fusion protein synthesis with cycloheximide, individual fluorescent colors from the C-terminus of the fusion proteins appeared in the cytosol which was strongly suppressed by β-secretase inhibitor, suggesting that the ectodomains exit the cell rapidly (t1/2 about 20min) while the C-terminal fragments were retained longer in cells. In live cells, we observed the fluorescence of the ectodomains located between parental fusion proteins and plasma membrane, suggesting that these ectodomain positions are part of their secretion pathway. Our results indicate that the native ectodomain does not play a decisive role for the key features of APP trafficking and processing and the new fusion proteins may lead to novel insights in intracellular activities of APP.
Collapse
|
23
|
Takahashi K. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:201-25. [PMID: 23759941 PMCID: PMC3749792 DOI: 10.2183/pjab.89.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases.
Collapse
|
24
|
Pluhar B, Ziener U, Mizaikoff B. Surface imprinting of pepsin via miniemulsion polymerization. J Mater Chem B 2013; 1:5489-5495. [DOI: 10.1039/c3tb20773k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Tagliabracci VS, Pinna LA, Dixon JE. Secreted protein kinases. Trends Biochem Sci 2012; 38:121-30. [PMID: 23276407 DOI: 10.1016/j.tibs.2012.11.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 11/28/2022]
Abstract
Protein kinases constitute one of the largest gene families and control many aspects of cellular life. In retrospect, the first indication for their existence was reported 130 years ago when the secreted protein, casein, was shown to contain phosphate. Despite its identification as the first phosphoprotein, the responsible kinase has remained obscure. This conundrum was solved with the discovery of a novel family of atypical protein kinases that are secreted and appear to phosphorylate numerous extracellular proteins, including casein. Fam20C, the archetypical member, phosphorylates secreted proteins within Ser-x-Glu/pSer motifs. This discovery has solved a 130-year-old mystery and has shed light on several human disorders of biomineralization.
Collapse
|
26
|
Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, Xiao J, Grishin NV, Dixon JE. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 2012; 336:1150-3. [PMID: 22582013 PMCID: PMC3754843 DOI: 10.1126/science.1217817] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.
Collapse
Affiliation(s)
- Vincent S. Tagliabracci
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - James L. Engel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Jianzhong Wen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Sandra E. Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Carolyn A. Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Lisa N. Kinch
- University of Texas, Southwestern Medical Center, Dallas, TX 75390–9050, USA
| | - Junyu Xiao
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
| | - Nick V. Grishin
- University of Texas, Southwestern Medical Center, Dallas, TX 75390–9050, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815–6789, USA
| | - Jack E. Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093–0721, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815–6789, USA
| |
Collapse
|
27
|
A strategy for high-throughput screening of ligands suitable for molecular imprinting of proteins. Biosens Bioelectron 2012; 35:27-32. [DOI: 10.1016/j.bios.2012.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/06/2012] [Indexed: 11/21/2022]
|
28
|
Eskandari MH, Hosseini A, Alasvand Zarasvand S, Aminlari M. Cloning, Expression, Purification and Refolding of Caprine Prochymosin. FOOD BIOTECHNOL 2012. [DOI: 10.1080/08905436.2012.670829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Yenjai S, Malaikaew P, Liwporncharoenvong T, Buranaprapuk A. Selective cleavage of pepsin by molybdenum metallopeptidase. Biochem Biophys Res Commun 2012; 419:126-9. [PMID: 22330807 DOI: 10.1016/j.bbrc.2012.01.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
Abstract
In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of ∼23, ∼19 and ∼16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH(4))(6)Mo(7)O(24)·4H(2)O) was incubated at 37°C for 24h. No self cleavage of pepsin occurs at 37 °C, 24h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH(4))(6)Mo(7)O(24)·4H(2)O) only for 2h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein backbone.
Collapse
Affiliation(s)
- Sudarat Yenjai
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand
| | | | | | | |
Collapse
|
30
|
Oda K. New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem 2011; 151:13-25. [PMID: 22016395 DOI: 10.1093/jb/mvr129] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptidases or proteinases are now classified into seven families based on the nature of the catalytic residues [MEROPS-the peptidase database (http://merops.sanger.ac.uk/)]. They are aspartic- (first described in 1993), cysteine- (1993), serine- (1993) metallo- (1993), threonine- (1997), glutamic- (2004) and asparagine-peptidase (2010). By using an S-PI (pepstatin Ac) as a probe, a new subfamily of serine peptidase, serine-carboxyl peptidase (sedolisin) was discovered in 2001. In addition, the sixth family of peptidase, glutamic peptidase (eqolisin) was also discovered in 2004. The former peptidase is widely distributed in nature from archea to mammals, including humans. One of these enzymes is related to a human fatal hereditable disease, Batten disease. In contrast, the distribution of the latter peptidases is limited, with most of them found in human or plant pathogenic fungi. One such enzyme was isolated from a fungal infection in an HIV-infected patient. In this review, the background of the findings, and crystal structures, catalytic mechanisms, substrates specificities and distribution of the new peptidase families are described.
Collapse
Affiliation(s)
- Kohei Oda
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
31
|
Foltmann B. Chymosin: A short review on foetal and neonatal gastric proteases. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365519209104656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Dunn BM. Introduction to the Aspartic Proteinase Family. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2010:1-21. [DOI: 10.1002/9783527630943.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Telugu BPVL, Palmier MO, Van Doren SR, Green JA. An examination of the proteolytic activity for bovine pregnancy-associated glycoproteins 2 and 12. Biol Chem 2010; 391:259-270. [PMID: 20030586 DOI: 10.1515/bc.2010.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pregnancy-associated glycoproteins (PAGs) represent a complex group of putative aspartic peptidases expressed exclusively in the placentas of species in the Artiodactyla order. The ruminant PAGs segregate into two classes: the 'ancient' and 'modern' PAGs. Some of the modern PAGs possess alterations in the catalytic center that are predicted to preclude their ability to act as peptidases. The ancient ruminant PAGs in contrast are thought to be peptidases, although no proteolytic activity has been described for these members. The aim of the present study was to investigate (1) if the ancient bovine PAGs (PAG-2 and PAG-12) have proteolytic activity, and (2) if there are any differences in activity between these two closely related members. Recombinant bovine PAG-2 and PAG-12 were expressed in a baculovirus expression system and the purified proteins were analyzed for proteolytic activity against a synthetic fluorescent cathepsin D/E substrate. Both proteins exhibited proteolytic activity with acidic pH optima. The k(cat)/K(m) for bovine PAG-2 was 2.7x10(5) m(-1) s(-1) and for boPAG-12 it was 6.8x10(4) m(-1) s(-1). The enzymes were inhibited by pepstatin A with a K(i) of 0.56 and 7.5 nm for boPAG-2 and boPAG-12, respectively. This is the first report describing proteolytic activity in PAGs from ruminant ungulates.
Collapse
Affiliation(s)
- Bhanu Prakash V L Telugu
- Division of Animal Sciences, University of Missouri, 163 ASRC, Columbia, MO 65211, USA.,Current address: Christopher S. Bond Life Sciences Center, University of Missouri, 245 LSC, Columbia, MO 65211, USA
| | - Mark O Palmier
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Jonathan A Green
- Division of Animal Sciences, University of Missouri, 163 ASRC, Columbia, MO 65211, USA
| |
Collapse
|
34
|
Salvi M, Cesaro L, Tibaldi E, Pinna LA. Motif Analysis of Phosphosites Discloses a Potential Prominent Role of the Golgi Casein Kinase (GCK) in the Generation of Human Plasma Phospho-Proteome. J Proteome Res 2010; 9:3335-8. [DOI: 10.1021/pr100058r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mauro Salvi
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Luca Cesaro
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Elena Tibaldi
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Lorenzo A. Pinna
- Department of Biological Chemistry, University of Padova, V.le G. Colombo 3, 35131 Padova, Italy, and Venetian Institute for Molecular Medicine, via Orus 2, 35129 Padova, Italy
| |
Collapse
|
35
|
Narita Y, Oda SI, Takenaka O, Kageyama T. Lineage-specific duplication and loss of pepsinogen genes in hominoid evolution. J Mol Evol 2010; 70:313-24. [PMID: 20349055 DOI: 10.1007/s00239-010-9320-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 01/08/2010] [Indexed: 11/24/2022]
Abstract
Fourteen different pepsinogen-A cDNAs and one pepsinogen-C cDNA have been cloned from gastric mucosa of the orangutan, Pongo pygmaeus. Encoded pepsinogens A were classified into two groups, i.e., types A1 and A2, which are different in acidic character. The occurrence of 9 and 5 alleles of A1 and A2 genes (at least 5 and 3 loci), respectively was anticipated. Respective orthologous genes are present in the chimpanzee genome although their copy numbers are much smaller than those of the orangutan genes. Only A1 genes are present in the human probably due to the loss of the A2 gene. Molecular phylogenetic analyses showed that A1 and A2 genes diverged before the speciation of great hominoids. Further reduplications of respective genes occurred several times in the orangutan lineage, with much higher frequencies than those occurred in the chimpanzee and human lineages. The rates of non-synonymous substitutions were higher than those of synonymous ones in the lineage of A2 genes, implying the contribution of the positive selection on the encoded enzymes. Several sites of pepsin moieties were indeed found to be under positive selection, and most of them locate on the surface of the molecule, being involved in the conformational flexibility. Deduced from the known genomic structures of pepsinogen-A genes of primates and other mammals, the duplication/loss were frequent during their evolution. The extreme multiplication in the orangutan might be advantageous for digestion of herbaceous foods due to the increase in the level of enzymes in stomach and the diversification of enzyme specificity.
Collapse
Affiliation(s)
- Yuichi Narita
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan.
| | | | | | | |
Collapse
|
36
|
Hassan MI, Toor A, Ahmad F. Progastriscin: structure, function, and its role in tumor progression. J Mol Cell Biol 2010; 2:118-27. [PMID: 20231168 DOI: 10.1093/jmcb/mjq001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Progastricsin (PGC) is a major seminal plasma protein having aspartyl proteinases-like activity and showing close sequence similarity to pepsins. PGC is also present as zymogen in gastric mucosa. In this article, we have reviewed all important features of PGC. Furthermore, we have compared all features of PGC with those of different aspartyl proteinases. The complete amino acid sequence of PGC reveals that it is composed of 374 residues (gastricsin moiety of 331 residues and the activation segment of 43 residues). The gene of human PGC is located at single locus on chromosome 6, whereas the human pepsinogen genetic locus is polymorphic and codes for at least three distinct polypeptide sequences on chromosome 11. The major useful function of PGC includes production of pro-antimicrobial substance in seminal plasma. The crystal structure of human PGC is known, which shows that it is quite similar to that of porcine pepsinogen. The tertiary structure of PGC is comprised of commonly bilobal structure with a large active-site cleft between the lobes. Two aspartate residues in the center of the cleft, namely Asp32 and Asp215, function as catalytic residues. The sequence and structural features of PGC indicate that it is diverged from its pepsinogen ancestor in the early phase of the evolution of gastric aspartyl proteinases. Our detailed review of PGC structure, function and activation mechanism will also be of interest to cancer biologists as well as gastroenterologists.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | | |
Collapse
|
37
|
Acetonitrile-induced unfolding of porcine pepsin A. Int J Biol Macromol 2009; 45:213-20. [DOI: 10.1016/j.ijbiomac.2009.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 11/20/2022]
|
38
|
|
39
|
|
40
|
Black JA, Harkins RN, Stenzel P. Non-random relationships among amino acids in protein sequences. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 2009; 8:125-30. [PMID: 1270187 DOI: 10.1111/j.1399-3011.1976.tb02488.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have computed the observed distribution of amino acid pairs n, n+1 up to n, n+10 within 100 unrelated protein sequences containing a total of 14,034 amino acids. The expected distribution of the same amino acid pairs was calculated assuming that the amino acids within each sequence are arranged in random order. Statistical analysis of the data shows that amino acids in the n, n+1 and n, n+3 relationship deviate from random expectation at the 1% level of significance. These relationships are consistent with known secondary structures; however, there are no amino acid pairs which obviously contribute to the non-random result.
Collapse
|
41
|
Kay J. Complete enzymic digestion of acidic proteins. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 2009; 8:379-83. [PMID: 8400 DOI: 10.1111/j.1399-3011.1976.tb02517.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acidic proteins are usually resistant to complete enzymic hydrolysis. The increasing number of "unusual" amino acids, which are unstable to acid hydrolysis, makes it necessary to have a method of enzymic hydrolysis applicable to all proteins. The complete hydrolysis of four acidic proteins by subtilisin plus leucine amino-peptidase plus prolidase followed by carboxypeptidase C, is described. Recoveries of amino acids were in excellent agreement with the expected content from the known sequences.
Collapse
|
42
|
Cowieson AJ, Ravindran V, Selle PH. Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acid flows in broiler chickens. Poult Sci 2008; 87:2287-99. [PMID: 18931180 DOI: 10.3382/ps.2008-00096] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of phytic acid and 2 sources of exogenous phytase (bacterial vs. fungal) on the flow of endogenous amino acids at the terminal ileum of broilers were assessed using the enzyme-hydrolyzed casein method. Phytic acid (as the sodium salt) was included in a purified diet at 8.5 and 14.5 g/kg, and each diet was fed without or with a fungal (Aspergillus niger-derived) or a bacterial (Escherichia coli-derived) microbial phytase at 500 phytase units/kg of diet. Increasing the concentration of phytic acid in the diet from 8.5 to 14.5 g/kg increased (P < 0.001) the flow of all measured amino acids by an average of 68%, with a range from 17% for proline to 145% for phenylalanine. The flow of endogenous aspartic acid, serine, glutamic acid, glycine, leucine, tyrosine, phenylalanine, and histidine were increased by more than the mean, indicating changes in the composition of endogenous protein in response to the presence of higher concentrations of phytic acid. Supplementation of both phytases reduced (P < 0.001) the flow of endogenous amino acids, but the reduction (P = 0.06) was greater for the bacterial phytase compared with the fungal phytase. These data suggest that a substantial part of the amino acid and energy responses observed following phytase supplementation in broiler chickens stems from reduced endogenous amino acid flows and that the capacity of different phytases to counteract the antinutritive properties of phytic acid vary.
Collapse
Affiliation(s)
- A J Cowieson
- Danisco Animal Nutrition, Marlborough, Wiltshire, SN8 1XN, UK
| | | | | |
Collapse
|
43
|
Liu ZY, Wang Z, Zhang J. An acidic protease from the grass carp intestine (Ctenopharyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:83-90. [PMID: 17889581 DOI: 10.1016/j.cbpb.2007.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 11/24/2022]
Abstract
The acidic Protease was extracted from the intestine of the grass carp (Ctenopharyngodon idellus) by 0.1 M sodium phosphate buffer, pH 7.0 at 4 degrees C after neat intestine was defatted with acetone, and partially purified by ammonium sulfate precipitation, gel filtration chromatography and ionic exchange chromatography. SDS-PAGE electrophoresis showed that the enzyme was homogeneous with a relative molecular mass of 28,500. Substrate-PAGE at pH7.0 showed that the purified acidic protease has only an active component. Specificity and inhibiting assays showed that it should be a cathepsin D. The optimal pH and optimal temperature of the enzyme were pH2.5 and 37 degrees C, respectively. It retained only 20% of its initial activity after incubating at 50 degrees C for 30 min. The enzyme lost 81% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride (PMSF). Its V(max) and K(m) values were determined to be 3.57 mg/mL and 0.75 min(-1), respectively.
Collapse
Affiliation(s)
- Zhong-yi Liu
- Department of Food and Biological Technology, Xiangtan University, Xiangtan, Hunan, 411105, China.
| | | | | |
Collapse
|
44
|
Hulko M, Lupas AN, Martin J. Inherent chaperone-like activity of aspartic proteases reveals a distant evolutionary relation to double-psi barrel domains of AAA-ATPases. Protein Sci 2007; 16:644-53. [PMID: 17384229 PMCID: PMC2203342 DOI: 10.1110/ps.062478607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chaperones and proteases share the ability to interact with unfolded proteins. Here we show that enzymatically inactive forms of the aspartic proteases HIV-1 protease and pepsin have inherent chaperone-like activity and can prevent the aggregation of denatured substrate proteins. In contrast to proteolysis, which requires dimeric enzymes, chaperone-like activity could be observed also with monomeric domains. The involvement of the active site cleft in the chaperone-like function was demonstrated by the inhibitory effect of peptide substrate inhibitors. The high structural similarity between aspartic proteases and the N-terminal double-psi barrels of Cdc48-like proteins, which are involved in the unfolding and dissociation of proteins, suggests that they share a common ancestor. The latent chaperone-like activity in aspartic proteases can be seen as a relic that has further evolved to serve substrate binding in the context of proteolytic activity.
Collapse
Affiliation(s)
- Michael Hulko
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
45
|
Chakraborty T, Chakraborty I, Moulik SP, Ghosh S. Physicochemical Studies on Pepsin−CTAB Interaction: Energetics and Structural Changes. J Phys Chem B 2007; 111:2736-46. [PMID: 17311444 DOI: 10.1021/jp066051l] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between pepsin and CTAB has been elaborately studied with a number of techniques. The enzyme-induced interaction produced complexes, aggregates, and micelles of CTAB with distinct physicochemical features. It was found that at very low surfactant concentration (much below the critical micellar concentration (cmc) of pure CTAB), the surfactant got adsorbed both in monomeric and lower aggregated forms to the high-energy sites of the native biopolymer, leading to enhanced hydrophobicity of the combine, and hence, lowering of the interfacial (air/solution) tension. This was followed by the formation of a faintly turbid solution of the polymer-surfactant coacervate. The CTAB interacted unfolded pepsin along with the surfactant monomer remained adsorbed at the interface to decrease the interfacial tension (gamma) to a low level to produce a break in the gamma vs log [CTAB] plot prior to the normally observed extended cmc (cmce) in presence of polymers. The cac-like aggregation (as observed in tensiometry and viscometry) was not found in conductometry and microcalorimetry, whereas microcalorimetry evidenced the formation of the cmce of CTAB in the presence of the biopolymer. The CTAB influenced structural features of the pepsin were assessed from spectral, viscometric, and circular dichroism measurements.
Collapse
Affiliation(s)
- Tanushree Chakraborty
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | | | | |
Collapse
|
46
|
Hynek R, Vankova H, Tesarova M, Kas J. DEGREE OF PHOSPHORYLATION OF PEPSINOGEN IN GASTRIC CANCER. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100106949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Radovan Hynek
- a Department of Biochemistry and Microbiology , Institute of Chemical Technology , Technická 5, Prague 6, 166 28, Czech Republic
| | - Hana Vankova
- b Department of Pathological Physiology, 1st Faculty of Medicine , Charles University , U Nemocnice 5, Prague 2, 128 53, Czech Republic
| | - Marketa Tesarova
- a Department of Biochemistry and Microbiology , Institute of Chemical Technology , Technická 5, Prague 6, 166 28, Czech Republic
| | - Jan Kas
- a Department of Biochemistry and Microbiology , Institute of Chemical Technology , Technická 5, Prague 6, 166 28, Czech Republic
| |
Collapse
|
47
|
Fruton JS. The mechanism of the catalytic action of pepsin and related acid proteinases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 44:1-36. [PMID: 775937 DOI: 10.1002/9780470122891.ch1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Vega-Hernández MC, Gómez-Coello A, Villar J, Claverie-Martín F. Molecular cloning and expression in yeast of caprine prochymosin. J Biotechnol 2005; 114:69-79. [PMID: 15464600 DOI: 10.1016/j.jbiotec.2004.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
We cloned and characterized a preprochymosin cDNA from the abomasum of milk-fed kid goats. This cDNA contained an open reading frame that predicts a polypeptide of 381 amino acid residues, with a signal peptide and a proenzyme region of 16 and 42 amino acids, respectively. Comparison of the caprine preprochymosin sequence with the corresponding sequences of lamb and calf revealed 99 and 94% identity at the amino acid level. The cDNA fragment encoding the mature portion of caprine prochymosin was fused in frame both to the killer toxin signal sequence and to the alpha-factor signal sequence-FLAG in two different yeast expression vectors. The recombinant plasmids were transformed into Kluyveromyces lactis and Saccharomyces cerevisiae cells, respectively. Culture supernatants of both yeast transformants showed milk-clotting activity after activation at acid pH. The FLAG-prochymosin fusion was purified from S. cerevisiae culture supernatants by affinity chromatography. Proteolytic activity assayed toward casein fractions indicated that the recombinant caprine chymosin specifically hydrolysed kappa-casein.
Collapse
Affiliation(s)
- Maria C Vega-Hernández
- Molecular Biology Laboratory, Research Unit, Nuestra Señora de Candelaria University Hospital, 38010, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
49
|
Abstract
Studies on gastric digestion during 1820-1840 led to the discovery of pepsin as the agent which, in the presence of stomach acid, causes the dissolution of nutrients such as meat or coagulated egg white. Soon afterward it was shown that these protein nutrients were cleaved by pepsin to diffusible products named peptones. Efforts to isolate and purify pepsin were spurred by its widespread adoption for the treatment of digestive disorders, and highly active preparations were available by the end of the nineteenth century. There was uncertainty, however, as to the chemical nature of pepsin, for some preparations exhibited the properties of proteins while other preparations failed to do so. The question was not settled until after 1930, when Northrop crystallized swine pepsin and provided convincing evidence for its identity as a protein. The availability of this purified pepsin during the 1930s also led to the discovery of the first synthetic peptide substrates for pepsin, thus providing needed evidence for the peptide structure of native proteins, a matter of debate at that time. After 1945, with the introduction of new separation methods, notably chromatography and electrophoresis, and the availability of specific proteinases, the amino acid sequences of many proteins, including pepsin and its precursor pepsinogen, were determined. Moreover, treatment of pepsin with chemical reagents indicated the participation in the catalytic mechanism of two aspartyl units widely separated in the linear sequence. Studies on the kinetics of pepsin action on long chain synthetic peptides suggested that the catalytic site was an extended structure. Similar properties were found for other "aspartyl proteinases," such as chymosin (used in cheese making), some intracellular proteinases (cathepsins), and plant proteinases. After 1975, the three-dimensional structures of pepsin and many of its relatives were determined by means of x-ray diffraction techniques, greatly extending our insight into the mechanism of the catalytic action of these enzymes. That knowledge has led to the design of new inhibitors of aspartyl proteinases, which are participants in the maturation of human immunodeficiency virus and in the generation of Alzheimer's disease.
Collapse
|
50
|
|