1
|
Sager R, Ramanis Z. Chloroplast genetics of chlamydomonas. I. Allelic segregation ratios. Genetics 2010; 83:303-21. [PMID: 17248716 PMCID: PMC1213515 DOI: 10.1093/genetics/83.2.303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper presents allelic segregation data from a series of 16 crosses segregated for nuclear and chloroplast genes. By means of pedigree analysis, segregants of chloroplast markers occurring in the zygote have been distinguished from those occurring in zoospore clones. The genes ac1, ac2, and tm1 showed little if any deviation from 1:1 either in zygotic segregation or in zoospore clones. The genes sm2, ery, and spc showed a significant excess of the allele from the mt (+) parent in zygotes. However, in zoospores, mt( +) excess was seen only when that allele was the mutant (resistant) form but not when it was wild type (sensitive).These results show that the extent of preferential segregation differs in zygotes and in zoospores, and that preferential segregation is influenced by map location and by allele specificity. A comparison of progeny from zygotes mated after 0, 15'', 30'', and 50'' UV irradiation of the mt(+) gametes demonstrated the lack of an effect of UV upon allelic segregation ratios. In total, these results exclude the multi-copy model of chloroplast genome segregation suggested by Gillham, Boynton and Lee (1974) and support the diploid model we have previously proposed (Sager and Ramanis 1968, 1970; Sager 1972).
Collapse
Affiliation(s)
- R Sager
- Hunter College of the City University of New York, New York, N.Y. 10021
| | | |
Collapse
|
2
|
Hauser CR, Gillham NW, Boynton JE. Translational regulation of chloroplast genes. Proteins binding to the 5'-untranslated regions of chloroplast mRNAs in Chlamydomonas reinhardtii. J Biol Chem 1996; 271:1486-97. [PMID: 8576143 DOI: 10.1074/jbc.271.3.1486] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have examined the effects of illumination, carbon source, and levels of chloroplast protein synthesis on trans-acting proteins that bind to the leaders of five representative chloroplast mRNAs. The accumulation of these five chloroplast mRNAs and the proteins they encode were measured in cells grown under identical conditions. Extracts from all cell types examined contain a minimum set of six chloroplast 5'-untranslated region (UTR)-binding proteins (81, 62, 56, 47, 38, and 15 kDa). Fractionation results suggest that multiple forms of the 81-, 62-, and 47-kDa proteins may exist. A 36-kDa protein was found in all cells except those deficient in chloroplast protein synthesis. Binding of the 81-, 47-, and 38-kDa proteins to the rps12 leader is effectively competed by the atpB or rbcL 5'-UTRs, indicating that the same proteins bind to all three leaders. In contrast, these three proteins do not bind to the nuclear-encoded alpha-1 tubulin leader, which bound novel proteins of 110, 70, and 43 kDa. Cis-acting sequences within the 5'-UTRs of two chloroplast mRNAs (rps7 and atpB) have been identified which are protected from digestion by RNase T1 by extracts enriched for the 81-, 47-, and 38-kDa proteins.
Collapse
Affiliation(s)
- C R Hauser
- Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
3
|
Bennoun P, Atteia A, Pierre Y, Delosme M. Etiolated cells of Chlamydomonas reinhardtii: choice material for characterization of mitochondrial membrane polypeptides. Proc Natl Acad Sci U S A 1995; 92:10202-6. [PMID: 11607585 PMCID: PMC40764 DOI: 10.1073/pnas.92.22.10202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated a light-conditional mutant of Chlamydomonas reinhardtii (J12) that is unable to synthesize chlorophyll in the dark with the aim of characterizing the mitochondrial membrane polypeptides of this alga. A crude membrane fraction derived from etiolated cells was analyzed by gel electrophoresis, immunoblot analysis, and pulse-labeling in the presence of specific protein synthesis inhibitors. This fraction contained both mitochondrial and etioplast membranes, and the latter contained appreciable amounts of subunits of the cytochrome b6f complex. The mitochondria-encoded subunit 1 of cytochrome-c oxidase called COX1 was identified, and its synthesis was detected in this membrane fraction. The redox-difference spectra of mitochondrial cytochromes were studied in whole cells and membrane fractions, in both respiratory-competent and -deficient strains. Mitochondrial membranes could be further purified after sucrose gradient centrifugation. The use of etiolated cells and their membrane extracts, in association with appropriate methodologies, opens ways to study the molecular genetics of mitochondria in C. reinhardtii and allows us to address the question of the cooperation established between the three genetic compartments of a plant cell.
Collapse
Affiliation(s)
- P Bennoun
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Associée 1187, Paris, France
| | | | | | | |
Collapse
|
4
|
Identification of mitochondrial proteins in membrane preparations from Chlamydomonas reinhardtii. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48483-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Harris EH, Burkhart BD, Gillham NW, Boynton JE. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 1989; 123:281-92. [PMID: 2583478 PMCID: PMC1203800 DOI: 10.1093/genetics/123.2.281] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.
Collapse
Affiliation(s)
- E H Harris
- Department of Botany, Duke University, Durham, North Carolina 27706
| | | | | | | |
Collapse
|
6
|
Liu XQ, Hosler JP, Boynton JE, Gillham NW. mRNAs for two ribosomal proteins are preferentially translated in the chloroplast of Chlamydomonas reinhardtii under conditions of reduced protein synthesis. PLANT MOLECULAR BIOLOGY 1989; 12:385-394. [PMID: 24272899 DOI: 10.1007/bf00017578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/1988] [Accepted: 12/16/1988] [Indexed: 06/02/2023]
Abstract
Two mutants of the green alga Chlamydomonas reinhardtii, one deficient in the small subunit of the chloroplast ribosome and the other having chloroplast ribosomes with reduced function under certain conditions, show a characteristic syndrome of photosynthetic defects resulting from reduced chloroplast protein synthesis. These include subnormal levels of ribulose 1,5-bisphosphate carboxylase (Rubisco), reduced Hill reaction activity, diminished capacity to fix CO2, and abnormal thylakoid stacking. However, these mutants accumulate normal appearing chloroplast ribosome monomers or large subunits containing normal ribosomal protein components. In this paper, we demonstrate that pulse-labeled cells of these mutants synthesize two large subunit chloroplast ribosomal proteins at about 60% of the wild-type rate, whereas Rubisco large subunit (LSU) and the alpha subunit of CF1 are made at only 4 to 8% of the wild-type rate. No difference in the rate of turnover between ribosomal proteins and Rubisco LSU in mutant and wild-type cells was observed during a subsequent 60 min chase. Differences between the mutants and wild-type cells in the relative synthesis rates of these proteins were not reflected in the relative levels of mRNA (either hybridizable or in vitro translatable). In aggregate, these data suggest that C. reinhardtii preferentially translates chloroplast ribosomal protein mRNAs under conditions of reduced total chloroplast protein synthesis.
Collapse
Affiliation(s)
- X Q Liu
- Department of Botany, Duke University, 27706, Durham, NC, USA
| | | | | | | |
Collapse
|
7
|
Liu XQ, Gillham NW, Boynton JE. Chloroplast ribosomal protein L-18 in Chlamydomonas reinhardtii is processed during ribosome assembly. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:588-91. [PMID: 3063953 DOI: 10.1007/bf00330499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chloroplast ribosomal protein L-18 is made in the cytoplasm as a precursor, imported into the chloroplast, and processed to the mature form in two steps. We report here that the intermediate produced following the first processing step associates specifically with a ribosomal complex migrating with the chloroplast ribosome large subunit peak in sucrose gradients, and is then processed into mature L-18. This processing event is slowed down in mutant cells deficient in synthesis of non-ribosomal proteins in the chloroplast. Thus the second processing step of L-18 occurs during ribosome assembly, depends on one or more nonribosomal proteins made in the chloroplast, and may be required for the maturation of the 50 S ribosome subunit. The mature L-18 protein shows extensive sequence homology at its amino-terminus to Escherichia coli ribosomal protein L27, which is located at the interface between 30 S and 50 S subunits and is involved in the formation of the peptidyl-tRNA binding site.
Collapse
Affiliation(s)
- X Q Liu
- Department of Botany, Duke University, Durham, NC 27706
| | | | | |
Collapse
|
8
|
Mutations in a nuclear gene of Chlamydomonas cause the loss of two chloroplast ribosomal proteins, one synthesized in the chloroplast and the other in the cytoplasm. Curr Genet 1984; 8:369-78. [DOI: 10.1007/bf00419826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/1984] [Indexed: 10/26/2022]
|
9
|
Schmidt RJ, Richardson CB, Gillham NW, Boynton JE. Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas. J Cell Biol 1983; 96:1451-63. [PMID: 6841455 PMCID: PMC2112658 DOI: 10.1083/jcb.96.5.1451] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cells of Chlamydomonas reinhardtii were pulse-labeled in vivo in the presence of inhibitors of cytoplasmic (anisomycin) or chloroplast (lincomycin) protein synthesis to ascertain the sites of synthesis of chloroplast ribosomal proteins. Fluorographs of the labeled proteins, resolved on two-dimensional (2-D) charge/SDS and one-dimensional (1-D) SDS-urea gradient gels, demonstrated that five to six of the large subunit proteins are products of chloroplast protein synthesis while 26 to 27 of the large subunit proteins are synthesized on cytoplasmic ribosomes. Similarly, 14 of 31 small subunit proteins are products of chloroplast protein synthesis, while the remainder are synthesized in the cytoplasm. The 20 ribosomal proteins shown to be made in the chloroplast of Chlamydomonas more than double the number of proteins known to be synthesized in the chloroplast of this alga.
Collapse
|
10
|
Menczel L, Nagy F, Kiss ZR, Maliga P. Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum + Nicotiana knightiana: correlation of resistance to N. tabacum plastids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1981; 59:191-5. [PMID: 24276446 DOI: 10.1007/bf00264975] [Citation(s) in RCA: 121] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/1980] [Indexed: 05/05/2023]
Abstract
Protoplasts of Nicotiana tabacum SRI (streptomycin resistant) and of Nicotiana knightiana (streptomycin sensitive) were fused using polyethylene glycol treatment. From three heterokaryons 500 clones were obtained. From the 43 which were further investigated, 6 resistant, 3 sensitive, and 34 chimeric (consisting of resistant and sensitive sectors) calli were found. From eight clones, a total of 39 plants were regenerated and identified as somatic hybrids. Chloroplast type (N. tabacum = NT or N. knightiana = NK) in the plants was determined on the basis of the species specific EcoRI restriction pattern of the chloroplast DNA. Regenerates contained NT (13 plants) or NK (15 plants) plastids but only the plants with the NT chloroplasts were resistant to streptomycin. This finding and our earlier data on uniparental inheritance points to the chloroplasts as the carriers of the streptomycin resistance factor.
Collapse
Affiliation(s)
- L Menczel
- Institute of Plant Physiology, BRC, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | |
Collapse
|
11
|
Keller SJ, Ho C. Chloroplast DNA Replication in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/s0074-7696(08)62322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Ribosomal subunits affected by antibiotic resistance mutations at seven chloroplast loci in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1979. [DOI: 10.1007/bf00273214] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Kanamycin-resistant Scenedesmus obliquus showing simultaneous resistance to other antibiotics and polychlorinated biphenyls. Nature 1979. [DOI: 10.1038/277562a0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Ryan R, Grant D, Chiang KS, Swift H. Isolation and characterization of mitochondrial DNA from Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 1978; 75:3268-72. [PMID: 277923 PMCID: PMC392756 DOI: 10.1073/pnas.75.7.3268] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) has been isolated from a mitochondrial pellet of Chlamydomonas reinhardtii. The mtDNA has a buoyant density of 1.706 g/ml in CsCl, a melting temperature of 87.9 degrees in standard saline citrate, and a nucleoside composition of 47.5% deoxyguanidine plus deoxycytidine with no odd nucleosides. Thermal denaturation and renaturation studies have shown that (i) mtDNA contains no extensive intramolecular heterogeneity nor significant base bias between the complementary polynucleotide chains and (ii) mtDNA renatures as a single homogeneous class with a kinetic complexity of 9.78 X 10(6) daltons. Although rare (less than or equal to 1%), both open and supercoiled circular mtDNA molecules have been observed in the electron microscope. Contour lengths of linear and open and closed circular molecules are all within the range of 4.0-5.4 micron with a mean of 4.67 +/- 0.30 micron. This size is similar to that of animal mtDNA but approximately 1/8 that of the higher plant mtDNAs. The magnitude of mtDNA reiteration in C. reinhardtii is estimated to be of the same order as that of chloroplast DNA.
Collapse
|
15
|
Grant D, Swinton DC, Chiang KS. Differential patterns of mitochondrial, chloroplastic and nuclear DNA synthesis in the synchronous cell cycle of Chlamydomonas reinhardtii. PLANTA 1978; 141:259-267. [PMID: 24414870 DOI: 10.1007/bf00388341] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/1978] [Accepted: 04/28/1978] [Indexed: 06/03/2023]
Abstract
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both (32)P[or-thophosphoric acid] ((32)P) and [(14)C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different (32)P-incorporation patterns in the cell cycle. Considerable amounts of (32)P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect (32)P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [(3)H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with (32)P. Most [(3)H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [(3)H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [(3)H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of (32)P- and of [(3)H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.
Collapse
Affiliation(s)
- D Grant
- Department of Biophysics and Theoretical Biology, University of Chicago, 60637, Chicago, IL, USA
| | | | | |
Collapse
|
16
|
Harris EH, Boynton JE, Gillham NW, Tingle CL, Fox SB. Mapping of chloroplast genes involved in chloroplast ribosome biogenesis in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1977. [DOI: 10.1007/bf00272804] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
|
18
|
Conde MF, Boynton JE, Gillham NW, Harris EH, Tingle CL, Wang WL. Chloroplast genes in Chlamydomonas affecting organelle ribosomes. Genetic and biochemical analysis of analysis of antibiotic-resistant mutants at several gene loci. MOLECULAR & GENERAL GENETICS : MGG 1975; 140:183-220. [PMID: 128689 DOI: 10.1007/bf00334266] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Six chloroplast gene mutants of Chlamydomonas reinhardtii resistant to spectinomycin, erythromycin, or streptomycin have been assessed for antibiotic resistance of their chloroplast ribosomes. Four of these mutations clearly confer high levels of antibiotic resistance on the chloroplast ribosomes both in vivo. Although one mutant resistant to streptomycin and one resistant to spectinomycin have chloroplast ribosomes as sensitive to antibiotics as those of wild type in vivo, these mutations can be shown to alter the wildtype sensitivity of chloroplast ribosomes in polynucleotide-directed amino acid incorporation in vitro. Genetic analysis of these six chloroplast mutants and three similar mutants (Sager, 1972), two of which have been shown to affect chloroplast ribosomes (Mets and Bogorad, 1972; Schlanger and Sager, 1974), indicates that in Chlamydomonas at least three chloroplast gene loci can affect streptomycin resistance of chloroplast ribosomes and that two can affect erythromycin resistance. The three spectinomycin-resistant mutants examined appear to be alleles at a single chloroplast gene locus, but may represent mutations at two different sites within the same gene. Unlike wild type, the streptomycin and spectinomycin resistant mutants which have chloroplast ribosomes sensitive to antibiotics in vivo, grow well in the presence of antibiotic by respiring exogenously supplied acetate as a carbon source, and have normal levels of cytochrome oxidase activity and cyanide-sensitive respiration. We conclude that mitochondrial protein synthesis in these mutants is resistant to these antibiotics, whereas in wild type it is sensitive. To explain the behavior of these two chloroplast gene mutants as well as other one-step mutants which are resistant both photosynthetically and when respiring acetate in the dark, we have postulated that a mutation in a single chloroplast gene may result in alteration of both chloroplast and mitochondrial ribosomes. Mitochondrial resistance would appear to be the minimal necessary condition for survival of all such mutants, and antibiotic-resistant chloroplast ribosomes would be necessary for survival only under photosynthetic conditions.
Collapse
|
19
|
|
20
|
Harris EH, Boynton JE, Gillham NW. Chloroplast ribosome biogenesis in Chlamydomonas. Selection and characterization of mutants blocked in ribosome formation. J Cell Biol 1974; 63:160-79. [PMID: 4423964 PMCID: PMC2109351 DOI: 10.1083/jcb.63.1.160] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chloroplast protein synthesis in Chlamydomonas reinhardtii is dispensable when cells are provided acetate as a carbon source. Mutants defective in synthesis, assembly, or function of chloroplast ribosomes are therefore conditionally viable. Positive selection of nonphotosynthetic cells on arsenate has been combined with a simple screening procedure to isolate mutants with a broad spectrum of defects in chloroplast protein synthesis. Eight new mutants deficient in chloroplast ribosomes have been isolated. Three of these have been characterized genetically and phenotypically, and compared with two previously described ribosome mutants, ac-20 and cr-1. A working model of ribosome assembly is proposed which suggests possible biochemical roles for these five Mendelian gene loci.
Collapse
|
21
|
Hanson MR, Davidson JN, Mets LJ, Bogorad L. Characterization of chloroplast and cytoplasmic ribosomal proteins of Chlamydomonas reinhardi by two-dimensional gel electrophoresis. MOLECULAR & GENERAL GENETICS : MGG 1974; 132:105-18. [PMID: 4417561 DOI: 10.1007/bf00272176] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|