1
|
Hutchinson AJ, Duffy BM, Staples JF. Electron transport system supercomplexes affect reactive-oxygen species production and respiration in both a hibernator (Ictidomys tridecemlineatus) and a nonhibernator (Rattus norvegicus). J Comp Physiol B 2024; 194:81-93. [PMID: 37979043 DOI: 10.1007/s00360-023-01525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Across many taxa, the complexes of the electron transport system associate with each other within the inner mitochondrial membrane to form supercomplexes (SCs). These SCs are thought to confer some selective advantage, such as increasing cellular respiratory capacity or decreasing the production of damaging reactive oxygen species (ROS). In this study, we investigate the relationship between supercomplex abundance and performance of liver mitochondria isolated from rats that do not hibernate and hibernating ground squirrels in which metabolism fluctuates substantially. We quantified the abundance of SCs (respirasomes (SCs containing CI, CIII, and CIV) or SCs containing CIII and CIV) and examined the relationship with state 3 (OXPHOS) and state 4 (LEAK) respiration rate, as well as net ROS production. We found that, in rats, state 3 and 4 respiration rate correlated negatively with respirasome abundance, but positively with CIII/CIV SC abundance. Despite the greater range of respiration rates in different hibernation stages, these relationships were similar in ground squirrels. This is, to our knowledge, the first report of differential effects of supercomplex types on mitochondrial respiration and ROS production.
Collapse
Affiliation(s)
- Amalie J Hutchinson
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Brynne M Duffy
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - James F Staples
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
2
|
Kohler A, Barrientos A, Fontanesi F, Ott M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep 2023; 24:e57092. [PMID: 37828827 PMCID: PMC10626428 DOI: 10.15252/embr.202357092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Antoni Barrientos
- Department of Neurology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, Miller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Mitochondrial Respiratory Chain Supercomplexes: From Structure to Function. Int J Mol Sci 2022; 23:ijms232213880. [PMID: 36430359 PMCID: PMC9696846 DOI: 10.3390/ijms232213880] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial oxidative phospho rylation, the center of cellular metabolism, is pivotal for the energy production in eukaryotes. Mitochondrial oxidative phosphorylation relies on the mitochondrial respiratory chain, which consists of four main enzyme complexes and two mobile electron carriers. Mitochondrial enzyme complexes also assemble into respiratory chain supercomplexes (SCs) through specific interactions. The SCs not only have respiratory functions but also improve the efficiency of electron transfer and reduce the production of reactive oxygen species (ROS). Impaired assembly of SCs is closely related to various diseases, especially neurodegenerative diseases. Therefore, SCs play important roles in improving the efficiency of the mitochondrial respiratory chain, as well as maintaining the homeostasis of cellular metabolism. Here, we review the structure, assembly, and functions of SCs, as well as the relationship between mitochondrial SCs and diseases.
Collapse
|
4
|
Cioffi F, Giacco A, Goglia F, Silvestri E. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells 2022; 11:cells11060997. [PMID: 35326451 PMCID: PMC8947633 DOI: 10.3390/cells11060997] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Collapse
|
5
|
Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey of respirasome. Protein Cell 2020; 11:318-338. [PMID: 31919741 PMCID: PMC7196574 DOI: 10.1007/s13238-019-00681-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
Collapse
Affiliation(s)
- Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Novack GV, Galeano P, Castaño EM, Morelli L. Mitochondrial Supercomplexes: Physiological Organization and Dysregulation in Age-Related Neurodegenerative Disorders. Front Endocrinol (Lausanne) 2020; 11:600. [PMID: 33042002 PMCID: PMC7518391 DOI: 10.3389/fendo.2020.00600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Several studies suggest that the assembly of mitochondrial respiratory complexes into structures known as supercomplexes (SCs) may increase the efficiency of the electron transport chain, reducing the rate of production of reactive oxygen species. Therefore, the study of the (dis)assembly of SCs may be relevant for the understanding of mitochondrial dysfunction reported in brain aging and major neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Here we briefly reviewed the biogenesis and structural properties of SCs, the impact of mtDNA mutations and mitochondrial dynamics on SCs assembly, the role of lipids on stabilization of SCs and the methodological limitations for the study of SCs. More specifically, we summarized what is known about mitochondrial dysfunction and SCs organization and activity in aging, AD and PD. We focused on the critical variables to take into account when postmortem tissues are used to study the (dis)assembly of SCs. Since few works have been performed to study SCs in AD and PD, the impact of SCs dysfunction on the alteration of brain energetics in these diseases remains poorly understood. The convergence of future progress in the study of SCs structure at high resolution and the refinement of animal models of AD and PD, as well as the use of iPSC-based and somatic cell-derived neurons, will be critical in understanding the biological relevance of the structural remodeling of SCs.
Collapse
|
7
|
Lobo-Jarne T, Ugalde C. Respiratory chain supercomplexes: Structures, function and biogenesis. Semin Cell Dev Biol 2018; 76:179-190. [PMID: 28743641 PMCID: PMC5780262 DOI: 10.1016/j.semcdb.2017.07.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Over the past sixty years, researchers have made outmost efforts to clarify the structural organization and functional regulation of the complexes that configure the mitochondrial respiratory chain. As a result, the entire composition of each individual complex is practically known and, aided by notable structural advances in mammals, it is now widely accepted that these complexes stablish interactions to form higher-order supramolecular structures called supercomplexes and respirasomes. The mechanistic models and players that regulate the function and biogenesis of such superstructures are still under intense debate, and represent one of the hottest topics of the mitochondrial research field at present. Noteworthy, understanding the pathways involved in the assembly and organization of respiratory chain complexes and supercomplexes is of high biomedical relevance because molecular alterations in these pathways frequently result in severe mitochondrial disorders. The purpose of this review is to update the structural, biogenetic and functional knowledge about the respiratory chain supercomplexes and assembly factors involved in their formation, with special emphasis on their implications in mitochondrial disease. Thanks to the integrated data resulting from recent structural, biochemical and genetic approaches in diverse biological systems, the regulation of the respiratory chain function arises at multiple levels of complexity.
Collapse
Affiliation(s)
- Teresa Lobo-Jarne
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid 28041, Spain
| | - Cristina Ugalde
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid 28041, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid 28029, Spain.
| |
Collapse
|
8
|
Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell 2016; 7:854-865. [PMID: 27743346 PMCID: PMC5205662 DOI: 10.1007/s13238-016-0329-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 11/02/2022] Open
Abstract
Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.
Collapse
|
9
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Electron Transport in the Mitochondrial Respiratory Chain. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Negishi L, Mitaku S. Electrostatic effects influence the formation of two-dimensional crystals of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine membranes. J Biochem 2011; 150:113-9. [DOI: 10.1093/jb/mvr043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Lenaz G, Genova ML. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 2010; 12:961-1008. [PMID: 19739941 DOI: 10.1089/ars.2009.2704] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enzymatic complexes of the mitochondrial respiratory chain have been extensively investigated in their structural and functional properties. A clear distinction is possible today between three complexes in which the difference in redox potential allows proton translocation (complexes I, III, and IV) and those having the mere function to convey electrons to the respiratory chain. We also have a clearer understanding of the structure and function of most respiratory complexes, of their biogenesis and regulation, and of their capacity to generate reactive oxygen species. Past investigations led to the conclusion that the complexes are randomly dispersed and functionally connected by diffusion of smaller redox components, coenzyme Q and cytochrome c. More-recent investigations by native gel electrophoresis and single-particle image processing showed the existence of supramolecular associations. Flux-control analysis demonstrated that complexes I and III in mammals and I, III, and IV in plants kinetically behave as single units, suggesting the existence of substrate channeling. This review discusses conditions affecting the formation of supercomplexes that, besides kinetic advantage, have a role in the stability and assembly of the individual complexes and in preventing excess oxygen radical formation. Disruption of supercomplex organization may lead to functional derangements responsible for pathologic changes.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica "G. Moruzzi," Alma Mater Studiorum, Università di Bologna, Bologna, Italy.
| | | |
Collapse
|
13
|
Lenaz G, Genova ML. Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 2009; 41:1750-1772. [PMID: 19711505 DOI: 10.1016/j.biocel.2009.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural organization of the mitochondrial oxidative phosphorylation (OXPHOS) system has received large attention in the past and most investigations led to the conclusion that the respiratory enzymatic complexes are randomly dispersed in the lipid bilayer of the inner membrane and functionally connected by fast diffusion of smaller redox components, Coenzyme Q and cytochrome c. More recent investigations by native gel electrophoresis, however, have shown the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis has demonstrated that Complexes I and III in mammalian mitochondria and Complexes I, III, and IV in plant mitochondria kinetically behave as single units with control coefficients approaching unity for each single component, suggesting the existence of substrate channelling within the supercomplexes. The reasons why the presence of substrate channelling for Coenzyme Q and cytochrome c was overlooked in the past are analytically discussed. The review also discusses the forces and the conditions responsible for the formation of the supramolecular units. The function of the supercomplexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes and in preventing excess oxygen radical formation. Finally, there is increasing evidence that disruption of the supercomplex organization leads to functional derangements responsible for pathological changes.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | |
Collapse
|
14
|
Lenaz G, Genova ML. Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:563-73. [DOI: 10.1016/j.bbabio.2009.02.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/23/2009] [Accepted: 02/23/2009] [Indexed: 11/29/2022]
|
15
|
Raunser S, Haase W, Franke C, Eckert GP, Müller WE, Kühlbrandt W. Heterologously expressed GLT-1 associates in approximately 200-nm protein-lipid islands. Biophys J 2006; 91:3718-26. [PMID: 16950847 PMCID: PMC1630467 DOI: 10.1529/biophysj.106.086900] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glutamate transporter GLT-1 from Rattus norvegicus was expressed at high level in baby hamster kidney (BHK-21) cells by the Semliki Forest Virus expression system. We examined the expressed GLT-1 in the plasma membrane and found that the transporter accumulates in detergent-insoluble lipid-protein assemblies. Freeze-fracture, immunogold labeling, and electron microscopy revealed that GLT-1 forms approximately 200-nm protein-rich islands in the plasma membrane. Cholesterol depletion in living cells resulted in a dispersion of the GLT-1 islands, indicating that they are the result of lipid-protein rather than protein-protein interactions. Disruption of GLT-1 islands and dispersion of GLT-1 goes along with a reduction of the glutamate transport activity. Our direct visualization of lipid-protein islands in the plasma membrane of tissue culture cells suggests that the reported clustering of glutamate transporters and their cholesterol-dependent transport activity in cells is likewise connected to their association with cholesterol-rich microdomains in the plasma membrane.
Collapse
Affiliation(s)
- Stefan Raunser
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
16
|
D'Aurelio M, Gajewski CD, Lenaz G, Manfredi G. Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 2006; 15:2157-69. [PMID: 16740593 DOI: 10.1093/hmg/ddl141] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations cause heterogeneous disorders in humans. MtDNA exists in multiple copies per cell, and mutations need to accumulate beyond a critical threshold to cause disease, because coexisting wild-type mtDNA can complement the genetic defect. A better understanding of the molecular determinants of functional complementation among mtDNA molecules could help us shedding some light on the mechanisms modulating the phenotypic expression of mtDNA mutations in mitochondrial diseases. We studied mtDNA complementation in human cells by fusing two cell lines, one containing a homoplasmic mutation in a subunit of respiratory chain complex IV, COX I, and the other a distinct homoplasmic mutation in a subunit of complex III, cytochrome b. Upon cell fusion, respiration is recovered in hybrids cells, indicating that mitochondria fuse and exchange genetic and protein materials. Mitochondrial functional complementation occurs frequently, but with variable efficiency. We have investigated by native gel electrophoresis the molecular organization of the mitochondrial respiratory chain in complementing hybrid cells. We show that the recovery of mitochondrial respiration correlates with the presence of supramolecular structures (supercomplexes) containing complexes I, III and IV. We suggest that critical amounts of complexes III or IV are required in order for supercomplexes to form and provide mitochondrial functional complementation. From these findings, supercomplex assembly emerges as a necessary step for respiration, and its defect sets the threshold for respiratory impairment in mtDNA mutant cells.
Collapse
Affiliation(s)
- Marilena D'Aurelio
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
17
|
Bianchi C, Genova ML, Parenti Castelli G, Lenaz G. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 2004; 279:36562-9. [PMID: 15205457 DOI: 10.1074/jbc.m405135200] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The model of the respiratory chain in which the enzyme complexes are independently embedded in the lipid bilayer of the inner mitochondrial membrane and connected by randomly diffusing coenzyme Q and cytochrome c is mostly favored. However, multicomplex units can be isolated from mammalian mitochondria, suggesting a model based on direct electron channeling between complexes. Kinetic testing using metabolic flux control analysis can discriminate between the two models: the former model implies that each enzyme may be rate-controlling to a different extent, whereas in the latter, the whole metabolic pathway would behave as a single supercomplex and inhibition of any one of its components would elicit the same flux control. In particular, in the absence of other components of the oxidative phosphorylation apparatus (i.e. ATP synthase, membrane potential, carriers), the existence of a supercomplex would elicit a flux control coefficient near unity for each respiratory complex, and the sum of all coefficients would be well above unity. Using bovine heart mitochondria and submitochondrial particles devoid of substrate permeability barriers, we investigated the flux control coefficients of the complexes involved in aerobic NADH oxidation (I, III, IV) and in succinate oxidation (II, III, IV). Both Complexes I and III were found to be highly rate-controlling over NADH oxidation, a strong kinetic evidence suggesting the existence of functionally relevant association between the two complexes, whereas Complex IV appears randomly distributed. Moreover, we show that Complex II is fully rate-limiting for succinate oxidation, clearly indicating the absence of substrate channeling toward Complexes III and IV.
Collapse
Affiliation(s)
- Cristina Bianchi
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
18
|
Bernard M, Cartoux C, Caus T, Sciaky M, Cozzone PJ. The influence of temperature on metabolic and cellular protection of the heart during long-term ischemia: a study using P-31 magnetic resonance spectroscopy and biochemical analyses. Cryobiology 1998; 37:309-17. [PMID: 9917347 DOI: 10.1006/cryo.1998.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have compared the influence of two different cold temperatures (below 10 degreesC) for cardiac ischemia by measuring a large variety of hemodynamic and metabolic parameters during ischemia and reflow. Isolated isovolumic rat hearts were arrested with a preservation solution which was developed in our laboratory and then submitted to 5 h of cold storage (4 degreesC, group I; and 7.5 degreesC, group II) in the same solution. After an additional period of 50 min of ischemia at 15 degreesC with intermittent cardioplegic infusion, hearts were reperfused for 60 min at 37 degreesC. Function was assessed during the control period and reflow. High-energy phosphates and intracellular pH were followed by 31P magnetic resonance spectroscopy. Analyses of metabolites and enzymes were performed by biochemical assays and HPLC in coronary effluents and in freeze-clamped hearts to assess cellular integrity. The energetic pool was better preserved at 4 degreesC during ischemia (ATP at the end of 4 degreesC ischemia, 59 +/- 7% in group I vs 31 +/- 5% in group II, P < 0.01) and reflow (P < 0.05) but membrane protection was higher when increasing the temperature to 7.5 degreesC (reduction of creatine kinase leakage, 89 +/- 16 IU/min in group I vs 51 +/- 5 IU/min in group II, P < 0.05). As a result, functional recovery, represented by the rate pressure product, was higher in hearts preserved at 7.5 degreesC (52 +/- 6% recovery in group I vs 77 +/- 7% in group II at the end of reflow, P < 0.05). Altogether, cold storage at 7.5 degreesC provides a better protection than storage at 4 degreesC.
Collapse
Affiliation(s)
- M Bernard
- Faculté de Médecine, UMR CNRS 6612, 27 Boulevard Jean Moulin, Marseille, 13005, France
| | | | | | | | | |
Collapse
|
19
|
Hendry PJ, Labow RS, Barry YA, Keon WJ. An assessment of crystalloid solutions for donor heart preservation. J Thorac Cardiovasc Surg 1991. [DOI: 10.1016/s0022-5223(19)36653-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Chazotte B, Hackenbrock CR. Lateral Diffusion as a Rate-limiting Step in Ubiquinone-mediated Mitochondrial Electron Transport. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83687-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Chazotte B, Hackenbrock CR. The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68228-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Porpaczy Z, Sumegi B, Alkonyi I. Interaction between NAD-dependent isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex, and NADH:ubiquinone oxidoreductase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47962-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Hui SW. Ultrastructural Studies of the Molecular Assembly in Biomembranes: Diversity and Similarity. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0070-2161(08)60042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
24
|
Abstract
The different possible dispositions of the electron transfer components in electron transfer chains are discussed: random distribution of complexes and ubiquinone with diffusion-controlled collisions of ubiquinone with the complexes, random distribution as above, but with ubiquinone diffusion not rate-limiting, diffusion and collision of protein complexes carrying bound ubiquinone, and solid-state assembly. Discrimination among these possibilities requires knowledge of the mobility of the electron transfer chain components. The collisional frequency of ubiquinone-10 with the fluorescent probe 12-(9-anthroyl)stearate, investigated by fluorescence quenching, is 2.3 X 10(9) M-1 sec-1 corresponding to a diffusion coefficient in the range of 10(-6) cm2/sec (Fato, R., Battino, M., Degli Esposti, M., Parenti Castelli, G., and Lenaz, G., Biochemistry, 25, 3378-3390, 1986); the long-range diffusion of a short-chain polar Q derivative measured by fluorescence photobleaching recovery (FRAP) (Gupte, S., Wu, E. S., Höchli, L., Höchli, M., Jacobson, K., Sowers, A. E., and Hackenbrock, C. R., Proc. Natl. Acad. Sci. USA 81, 2606-2610, 1984) is 3 X 10(-9) cm2/sec. The discrepancy between these results is carefully scrutinized, and is mainly ascribed to the differences in diffusion ranges measured by the two techniques; it is proposed that short-range diffusion, measured by fluorescence quenching, is more meaningful for electron transfer than long-range diffusion measured by FRAP, or microcollisions, which are not sensed by either method. Calculation of the distances traveled by random walk of ubiquinone in the membrane allows a large excess of collisions per turnover of the respiratory chain. Moreover, the second-order rate constants of NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase are at least three orders of magnitude lower than the second-order collisional constant calculated from the diffusion of ubiquinone. The activation energies of either the above activities or integrated electron transfer (NADH-cytochrome c reductase) are well above that for diffusion (found to be ca. 1 kcal/mol). Cholesterol incorporation in liposomes, increasing bilayer viscosity, lowers the diffusion coefficients of ubiquinone but not ubiquinol-cytochrome c reductase or succinate-cytochrome c reductase activities. The decrease of activity by ubiquinone dilution in the membrane is explained by its concentration falling below the Km of the partner enzymes. It is calculated that ubiquinone diffusion is not rate-limiting, favoring a random model of the respiratory chain organization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
25
|
Hackenbrock CR, Chazotte B, Gupte SS. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 1986; 18:331-68. [PMID: 3021714 DOI: 10.1007/bf00743010] [Citation(s) in RCA: 276] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review focuses on our studies over the past ten years which reveal that the mitochondrial inner membrane is a fluid-state rather than a solid-state membrane and that all membrane proteins and redox components which catalyze electron transport and ATP synthesis are in constant and independent diffusional motion. The studies reviewed represent the experimental basis for the random collision model of electron transport. We present five fundamental postulates upon which the random collision model of mitochondrial electron transport is founded: All redox components are independent lateral diffusants; Cytochrome c diffuses primarily in three dimensions; Electron transport is a diffusion-coupled kinetic process; Electron transport is a multicollisional, obstructed, long-range diffusional process; The rates of diffusion of the redox components have a direct influence on the overall kinetic process of electron transport and can be rate limiting, as in diffusion control. The experimental rationales and the results obtained in testing each of the five postulates of the random collision model are presented. In addition, we offer the basic concepts, criteria and experimental strategies that we believe are essential in considering the significance of the relationship between diffusion and electron transport. Finally, we critically explore and assess other contemporary studies on the diffusion of inner membrane components related to electron transport including studies on: rotational diffusion, immobile fractions, complex formation, dynamic aggregates, and rates of diffusion. Review of all available data confirms the random collision model and no data appear to exist that contravene it. It is concluded that mitochondrial electron transport is a diffusion-based random collision process and that diffusion has an integral and controlling affect on electron transport.
Collapse
|
26
|
Duvert M, Mazat JP, Barets AL. Intermitochondrial junctions in the heart of the frog, Rana esculenta. A thin-section and freeze-fracture study. Cell Tissue Res 1985; 241:129-37. [PMID: 3875412 DOI: 10.1007/bf00214634] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In muscle fibers of the frog heart, junctions between outer membranes of adjacent mitochondrial profiles are occasionally found. In thin sections of embedded tissue and of mitochondrial pellets, the intermitochondrial junctional space is 5.4 +/- 0.15 nm; the external leaflets of the membranes are joined by periodic structures separated from each other by 16.3 +/- 0.29 nm. There are 65.3 +/- 2 periodic structures per micron of membrane measured on a section perpendicular to the junction. After cryofracture, the outer membrane is cleaved into two parts. Closely packed, parallel rows of large particles and furrows are found either on the P-, or on the E-faces. The rows of particles are 11 +/- 0.3 nm thick and are separated from each other by 16.5 +/- 0.46 nm, their density being 65 +/- 2.28 per micron of the membrane. In junctional areas, rows of particles on one membrane correspond with the furrows on the other membrane. Intermitochondrial junctions appear to be real structures and not artifacts due to preparation procedures. The conditions of their occurrence are discussed.
Collapse
|
27
|
Sjöstrand FS, Candipan RC. Immobilized enzymes at the surface of rat heart muscle mitochondria. JOURNAL OF ULTRASTRUCTURE RESEARCH 1985; 91:51-6. [PMID: 4057342 DOI: 10.1016/0889-1605(85)90075-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Of the three pairs of complementary replicas mentioned in the previous paper (1985, J. Ultrastruct. Res. 91, 38-50) one pair consisted of fracture faces exposing the cytoplasmic surface of the outer surface membrane while the complementary face exposed the cytosol at the membrane surface. The latter face was particulate with randomly distributed particles in the size range of 100 to 200 A. These particles could be shown to be located in the cytosol at the membrane surface. They qualify as particles that are loosely bound to this surface, and it is proposed that at least part of these particles consist of glycolytic enzymes.
Collapse
|
28
|
Müller M, Krebs JJ, Cherry RJ, Kawato S. Rotational diffusion of the ADP/ATP translocator in the inner membrane of mitochondria and in proteoliposomes. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43255-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Froud RJ, Ragan CI. Cytochrome c mediates electron transfer between ubiquinol-cytochrome c reductase and cytochrome c oxidase by free diffusion along the surface of the membrane. Biochem J 1984; 217:561-71. [PMID: 6320811 PMCID: PMC1153249 DOI: 10.1042/bj2170561] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ubiquinol oxidase can be reconstituted from ubiquinol-cytochrome c reductase (Complex III) and cytochrome c oxidase (Complex IV) whose endogenous phosphatidylcholine and phosphatidylethanolamine have been replaced by dimyristoylglycerophosphocholine. Phase transition of the lipid has no effect on Complex III and Complex IV activities assayed separately, but ubiquinol oxidase activity rapidly decreases as the temperature is lowered through the phase transition. A spin-labelled yeast cytochrome c derivative has been synthesized. Binding of the cytochrome c to liposomes demonstrates that only cardiolipin is involved under the conditions used for the ubiquinol oxidase experiments. In liposomes consisting of cardiolipin and dimyristoylglycerophosphocholine, e.s.r. (electron-spin-resonance) measurements show that rotational diffusion of cytochrome c is slowed in the gel phase of the latter lipid. We propose that the cytochrome c pool is bound to cardiolipin molecules, whose lateral and rotational diffusion in the bilayer is adequate to account for electron-transport rates.
Collapse
|
30
|
DIXIT BSUDHAN, VANDERKOOI JANEM. Probing Structure and Motion of the Mitochondrial Cytochromes. CURRENT TOPICS IN BIOENERGETICS 1984. [DOI: 10.1016/b978-0-12-152513-2.50011-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Chamberlain BK, Levitsky DO, Fleischer S. Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32455-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Kruuv J, Glofcheski D, Cheng KH, Campbell SD, Al-Qysi HM, Nolan WT, Lepock JR. Factors influencing survival and growth of mammalian cells exposed to hypothermia. I. Effects of temperature and membrane lipid perturbers. J Cell Physiol 1983; 115:179-85. [PMID: 6841461 DOI: 10.1002/jcp.1041150212] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Arrhenius plot of the rate of V79 Chinese hamster cell inactivation due to hypothermia has a "break" around 7-10 degrees C with optimum storage temperature for unprotected cells being about 10 degrees C. Addition of the membrane lipid perturber, butylated hydroxytoluene, improves survival of cells when compared to controls at temperatures below this break but not above. Arrhenius plots of growth rates of the cells show breaks at 30 and 40 degrees C. Measurements of membrane fluidity by electron spin resonance or membrane polarization anisotropy by fluorescence spectrophotometry techniques as a function of temperature in these cells also reveal "breaks" centered around 8 and 30 degrees C. Hence, the changes in the rate of cell inactivation and growth as a function of temperature may be related to membrane lipid phase changes.
Collapse
|
33
|
Smith RA, Ord MJ. Mitochondrial form and function relationships in vivo: their potential in toxicology and pathology. INTERNATIONAL REVIEW OF CYTOLOGY 1983; 83:63-134. [PMID: 6196312 DOI: 10.1016/s0074-7696(08)61686-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Abstract
Phase separation represents a possibility for segregation of lipidic membrane components into structurally distinct domains. Freeze-fracture electronmicroscopy is a useful method for detection of lipid domains. Indications of a possible domain-nature of structures are a regular pattern within a separated area, a regular outline of such an area and a local modulation of curvature (evagination or invagination). Candidates for domain structures in biological membranes are smooth particle-free areas and arrays of regularly arranged particles. The interpretation of the particle-free areas is more reliable than that of the arrays with regularly arranged particles. Phase separation in biological membranes can be induced experimentally by lowering the temperature, but physiologically the isothermically induced domains are more important. Factors in control of isothermic domain formation are divalent cations, proteins, cholesterol etc. Suggestions on the biological relevance of domain formation concern mainly their role in the mechanism of membrane fusion, but domains in form of transient or stable membrane structures seem to occur also otherwise and disturbances in domain formation or artificially induced domains can be suitable for pathological alterations.
Collapse
|
35
|
Kawato S, Lehner C, Müller M, Cherry RJ. Protein-protein interactions of cytochrome oxidase in inner mitochondrial membranes. The effect of liposome fusion on protein rotational mobility. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(20)65165-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Müller M, Krebs J, Cherry R, Kawato S. Selective labeling and rotational diffusion of the ADP/ATP translocator in the inner mitochondrial membrane. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68157-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Schuler G, Pohlin G, Fritsch PO. Differences of cell surface label distribution and redistribution patterns between mammalian keratinocytes and melanocytes in culture. J Invest Dermatol 1981; 77:347-52. [PMID: 6168710 DOI: 10.1111/1523-1747.ep12493248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Primary guinea pig epidermal cell cultures were subjected to a variety of ultrastructural surface labeling techniques specific for lectin binding sites (Concanavalin A-horseradish peroxidase, wheatgerm agglutinin-chitobiosyl-horseradish peroxidase) or anionic surface sites (Ruthenium red, cationized ferritin). All these techniques were carried out on fixed cells; with cationized ferritin, labeling was also performed on unfixed, viable cells by incubation at 4 degrees C and 37 degrees C for various time periods. Lectin labeling resulted in a diffuse pattern identical for both melanocytes and keratinocytes. Different patterns were obtained with the markers for anionic sites: with both ruthenium red and cationized ferritin, fixed keratinocytes were more heavily labeled than melanocytes, the label being diffuse with randomly distributed globular condensations. Melanocytes, in contrast, were lined by a thin uniform band-like label. On viable keratinocytes, exposed to cationized ferritin at 4 degrees C, the label was confined to randomly disseminated patches which most probably represent the "inherent" distribution of anionic surface sites. At 37 degrees C, this pattern was progressively changed by cluster formation as expression of ligand induced label redistribution, shedding and endocytosis of label material. In contrast, viable melanocytes lacked all of these activities except endocytosis, invariably displaying the same uniform diffuse labeling pattern as fixed melanocytes. It is concluded that melanocytes differ from keratinocytes with regard to quantity, distribution, and lateral mobility of anionic surface sites whereas no differences pertain to quantity and distribution of the binding sites to the lectins tested.
Collapse
|
38
|
Sowers AE, Hackenbrock CR. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc Natl Acad Sci U S A 1981; 78:6246-50. [PMID: 6947228 PMCID: PMC349015 DOI: 10.1073/pnas.78.10.6246] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A method combining electrophoresis and freeze-fracture electron microscopy is described; the method was used to determine the lateral diffusion coefficient of intramembrane particles (integral proteins) in the mitochondrial inner membrane. An electric current was passed through microsuspensions of purified, spherical inner membranes at pH 7.4, which caused an electrophoretic migration of intramembrane particles in the membrane plane into a single, crowded patch facing the positive electrode. The membrane microsuspensions were quick-frozen at specified times after the packed particles were released from the electrophoretic force and while the particles were diffusing back to a random distribution. Observed concentration gradients of intramembrane particles during this time were quantitatively compared with and found to follow a mathematical model for Fickian diffusion of particles on a spherical membrane. The results determine the kinetics of free diffusion of integral proteins at the resolution of individual proteins. The diffusion coefficient of the integral proteins in the mitochondrial inner membrane was determined to be 8.3 X 10(-10) cm2/sec at 20 degrees C, from which a root-mean-square displacement of 57 nm in 10 msec is predicted.
Collapse
|
39
|
Kawato S, Sigel E, Carafoli E, Cherry R. Rotation of cytochrome oxidase in phospholipid vesicles. Investigations of interactions between cytochrome oxidases and between cytochrome oxidase and cytochrome bc1 complex. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68993-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Hui SW. Geometry of phase-separated domains in phospholipid bilayers by diffraction-contrast electron microscopy. Biophys J 1981; 34:383-95. [PMID: 6894707 PMCID: PMC1327482 DOI: 10.1016/s0006-3495(81)84857-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers.
Collapse
|
41
|
Cain BD, Deal CD, Fraley RT, Kaplan S. In vivo intermembrane transfer of phospholipids in the photosynthetic bacterium Rhodopseudomonas sphaeroides. J Bacteriol 1981; 145:1154-66. [PMID: 6970743 PMCID: PMC217116 DOI: 10.1128/jb.145.3.1154-1166.1981] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The kinetics of accumulation of phospholipids into the intracytoplasmic membrane of Rhodopseudomonas sphaeroides have been examined. We have previously demonstrated that accumulation of phospholipids in the intracytoplasmic membrane is discontinuous with respect to the cell cycle. In this study we demonstrated a sevenfold increase in the rate of phospholipid incorporation into the intracytoplasmic membrane concurrent with the onset of cell division. Pulse-chase labeling studies revealed that the increase in the rate of phospholipid accumulation into the intracytoplasmic membrane results from the transfer of phospholipid from a site other than the intracytoplasmic membrane, and that the transfer of phospholipid, rather than synthesis of phospholipid, is most likely subject to cell cycle-specific regulation. The rates of synthesis of the individual phospholipid species (phosphatidylethanolamine, phosphatidyglycerol, and an unknown phospholipid) remained constant with respect to one another throughout the cell cycle. Similarly, each of these phospholipid species appeared to be transferred simultaneously to the intracytoplasmic membrane. We also present preliminary kinetic evidence which suggested that phosphatidylethanolamine may be converted to phosphatidycholine within the intracytoplasmic membrane.
Collapse
|
42
|
Robenek H, Grosser V, Kolde G, Themann H. [Freeze-fracture study of the morphology of cell membranes in hepatocytes following extrahepatic cholestasis (author's transl)]. Pathol Res Pract 1980; 167:322-34. [PMID: 7433240 DOI: 10.1016/s0344-0338(80)80062-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Cytochrome oxidase rotates in the inner membrane of intact mitochondria and submitochondrial particles. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)70656-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Schneider H, Lemasters J, Höchli M, Hackenbrock C. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85768-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Ohnishi T, Trumpower B. Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate . cytochrome c reductase complex. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85696-x] [Citation(s) in RCA: 249] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Schneider H, Lemasters JJ, Höchli M, Hackenbrock CR. Fusion of liposomes with mitochondrial inner membranes. Proc Natl Acad Sci U S A 1980; 77:442-6. [PMID: 6928637 PMCID: PMC348287 DOI: 10.1073/pnas.77.1.442] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A procedure is outlined for the fusion of mixed phospholipid liposomes (small unilamellar vesicles) with the mitochondrial inner membrane, which enriches the membrane lipid bilayer 30-700% in a controlled fashion. Fusion was initiated by manipulation of the pH of a mixture of freshly sonicated liposomes and the functional inner membrane/matrix fraction of rat liver mitochondria. During the pH fusion procedure, liposomes became closely apposed with and sequestered by the inner membranes as revealed by freeze-fracture electron microscopy. After the pH fusion procedure, a number of ultrastructural, compositional, and functional characteristics were found to be proportionally related: the membrane surface area increased; the lateral density distribution of intramembrane particles (integral proteins) in the plane of the membrane decreased whereas the particles remained random; the membrane became more buoyant; the ratio of membrane lipid phosphorus to total membrane protein increased; the ratio of membrane lipid phosphorus to heme a of cytochrome c oxidase increased; and the rate of electron transfer between some interacting membrane oxidoreduction proteins decreased. These data reveal that liposomal phospholipid was incorporated into the membrane bilayer (not simply adsorbed to the membrane surface) and that integral membrane proteins diffused freely into the laterally expanding bilayer. Furthermore, the data suggest that the rate of electron transfer may be limited by the rate of lateral diffusion of oxidoreduction components in the bilayer of the mitochondrial inner membrane.
Collapse
|
47
|
Hackenbrock CR, Schneider H, Lemasters JJ, Höchli M. Relationships between bilayer lipid, motional freedom of oxidoreductase components, and electron transfer in the mitochondrial inner membrane. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1980; 132:245-63. [PMID: 7424710 DOI: 10.1007/978-1-4757-1419-7_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relationships between bilayer lipid, diffusional and conformational activities of oxidoreduction components, and electron transfer activity in the mitochondrial inner membrane are considered. Using a new, low pH method to fuse liposome phospholipid (asolectin) with the isolated mitochondrial inner membrane, the membrane bilayer is enriched up to 700% with exogenous phospholipid. During such enrichment, ultrastructural analysis reveals that integral proteins diffuse freely and randomly into the expanding bilayer. Kinetic analysis reveals that a diffusion limited step occurs between succinate- and NADH dehydrogenase and cytochromes bc1, and that the dehydrogenases, ubiquinone, and cytochromes bc1 are free to diffuse independently of one another in the membrane plane. Whether cytochromes bc1 and cytochrome c oxidase codiffuse in the membrane plane, or diffuse independently of one another remains unclear. The specific activities of succinate- and NADH-dehydrogenase as well as cytochrome c oxidase are affected by bilayer enrichment. This most likely occurs through the direct modulation by the newly incorporated phospholipid on conformational activity required in the oxidoreductases for electron transfer.
Collapse
|
48
|
Abstract
The membranes of living organisms are involved in many aspects of the life, growth and development of all cells. The predominant structural elements of these membranes are lipids and proteins and the basic strucvture of these molecules has been reviewed. The physical properties of the lipid constituents particularly their behavior in aqueous systems has led to the concepts of thermotropic and lyotropic mesomorphism; the interaction between different types of lipid molecules modulate this behavior. Interaction of phospholipids in aqueous systems with cholesterol, ions and drugs have been examined in this context. In addition a variety of model lipid-protein systems have been investigated and the implications of interactions between lipids and different proteins in biological membranes has been evaluated. This leads to a detailed consideration of the way lipids and proteins ae organized in cell membranes and contains an appraisal of the evidence supporting contemporary views of membrane structure. Particular attention has been devoted to the question of how mobile the components are within the structure. Particular attention has been devoted to the question of how mobile the components are within the structure. Finally the biosynthesis, turnover and modulation of the properties of interacting membrane constituents is critically reviewed and possible ways of controlling the behavior of cells and organisms by altering the structural parameters of different membranes has been considered.
Collapse
|
49
|
Black VH, Robbins D, McNamara N, Huima T. A correlated thin-section and freeze-fracture analysis of guinea pig adrenocortical cells. THE AMERICAN JOURNAL OF ANATOMY 1979; 156:453-503. [PMID: 525624 DOI: 10.1002/aja.1001560404] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Comparison of the fine structural features of guinea pig adrenocortical cells as seen in thin sections with those revealed by freeze-fracture confirms the structural appearance of steroid-secreting cells as interpreted from thin sections and reveals significant new features of the membranous organelles. Smooth-surfaced endoplasmic reticulum appears as a network of tubules, interwoven or in parallel, and as cisternae, fenestrated and non-fenestrated. These elements are tightly packed in the deeper cortical cells, excluding other organelles from their domain. Tubules and fenestrated cisternae possess randomly distributed intramembranous particles on their PF faces, while closely packed non-fenestrated cisternae possess aggregates of particles interspersed with aparticulate regions on their PF faces. These differences in particle distribution suggest functional specialization among the various forms of reticulum. Mitochondria appear as elongated structures of varying shape. Freeze-fracture reveals that all their cristae have circular origins from the inner membrane. Sinuous tubules, which appear as tubules in section, and straight tubules, which appear as lamellae in section, arise from single sites. Flattened sac-like cristae may have multiple circular origins. Definite contact points seen between inner and outer membranes may facilitate passage of molecules, including steroids, into the mitochondrial compartments. Lysosomes and peroxisomes, which are easily identified in thin sections with the aid of cytochemistry, are difficult to identify with certainty by freeze-fracture. Single membrane-bound granules of slightly smaller diameter than mitochondria may represent lysosomes. Smaller granules interconnected with the tubular reticulum, as well as dilated regions of this organelle, may represent peroxisomes. Plasma membranes show no indication of tight junctions but do have abundant gap junctions which show a zonal differentiation: small gap junctions throughout the cortex, medium-sized regularly shaped gap junctions in zona fasciculata externa, and large irregular gap junctions in zona fasciculata interna and zona reticularis. The large junctions cover planar areas as well as surfaces of projections of one cell into another. Such junctions may allow passage of ions as well as of low-molecular-weight substances between the cells, facilitating or even amplifying the response to trophic hormone stimulation.
Collapse
|
50
|
Hebdon GM, Cunningham LW, Green NM. Cross-linking experiments with the adenosine triphosphatase of sarcoplasmic reticulum. Biochem J 1979; 179:135-9. [PMID: 157736 PMCID: PMC1186603 DOI: 10.1042/bj1790135] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proteins of sarcoplasmic reticulum were cross-linked by rapid oxidation of thiol groups with I2. About two-thirds of the thiols were oxidized without any significant cross-linking, implying an extensive formation of intramolecular disulphide bonds. When the thiols were completely oxidized at room temperature a series of oligomers containing up to five molecules were observed, as well as large aggregates which were excluded from the gels. Complete oxidation at -10 degrees C left most of the ATPase (adenosine triphosphatase) as monomer. Similar results were obtained when copper-phenanthroline complexes or dimethyl suberimidate were used as cross-linking reagents. We conclude that most of the cross-linked species arise by linking of randomly colliding ATPase molecules which are present in the membrane at very high concentration.
Collapse
|