1
|
|
2
|
Cogo C, Pérez-Giménez J, Rajeswari CB, Luna MF, Lodeiro AR. Induction by Bradyrhizobium diazoefficiens of Different Pathways for Growth in D-mannitol or L-arabinose Leading to Pronounced Differences in CO 2 Fixation, O 2 Consumption, and Lateral-Flagellum Production. Front Microbiol 2018; 9:1189. [PMID: 29922265 PMCID: PMC5996035 DOI: 10.3389/fmicb.2018.01189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, constitutes the basic input in one of the most prominent inoculant industries worldwide. This bacterium may be cultured with D-mannitol or L-arabinose as carbon-plus-energy source (C-source) with similar specific growth rates, but with higher biomass production with D-mannitol. To better understand the bacterium’s carbon metabolism, we analyzed, by liquid chromatography and tandem mass spectrometry (MS), the whole set of proteins obtained from cells grown on each C-source. Among 3,334 proteins identified, 266 were overproduced in D-mannitol and 237 in L-arabinose, but among these, only 22% from D-mannitol cultures and 35% from L-arabinose cultures were annotated with well defined functions. In the D-mannitol-differential pool we found 19 enzymes of the pentose-phosphate and Calvin–Benson–Bassham pathways and accordingly observed increased extracellular-polysaccharide production by D-mannitol grown bacteria in a CO2-enriched atmosphere. Moreover, poly-3-hydroxybutyrate biosynthesis was increased, suggesting a surplus of reducing power. In contrast, the L-arabinose-differential pool contained 11 enzymes of the L-2-keto-3-deoxyarabonate pathway, 4 enzymes for the synthesis of nicotinamide-adenine dinucleotide from aspartate, with those cultures having a threefold higher O2-consumption rate than the D-mannitol cultures. The stoichiometric balances deduced from the modeled pathways, however, resulted in similar O2 consumptions and ATP productions per C-mole of substrate. These results suggested higher maintenance-energy demands in L-arabinose, which energy may be used partly for flagella-driven motility. Since B. diazoefficiens produces the lateral-flagella system in only L-arabinose, we calculated the O2-consumption rates of a lafR::Km mutant devoid of lateral flagella cultured in L-arabinose or D-mannitol. Contrary to that of the wild-type, the O2-consumption rate of this mutant was similar on both C-sources, and accordingly outcompeted the wild-type in coculture, suggesting that the lateral flagella behaved as parasitic structures under these conditions. Proteomic data are available via ProteomeXchange with identifier PXD008263.
Collapse
Affiliation(s)
- Carolina Cogo
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina.,Departamento de Ciencias Básicas, Facultad de Ingeniería-UNLP, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Chandrasekar B Rajeswari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - María F Luna
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
3
|
Masuda S, Hennecke H, Fischer HM. Requirements for Efficient Thiosulfate Oxidation in Bradyrhizobium diazoefficiens. Genes (Basel) 2017; 8:genes8120390. [PMID: 29244759 PMCID: PMC5748708 DOI: 10.3390/genes8120390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
One of the many disparate lifestyles of Bradyrhizobium diazoefficiens is chemolithotrophic growth with thiosulfate as an electron donor for respiration. The employed carbon source may be CO2 (autotrophy) or an organic compound such as succinate (mixotrophy). Here, we discovered three new facets of this capacity: (i) When thiosulfate and succinate were consumed concomitantly in conditions of mixotrophy, even a high molar excess of succinate did not exert efficient catabolite repression over the use of thiosulfate. (ii) Using appropriate cytochrome mutants, we found that electrons derived from thiosulfate during chemolithoautotrophic growth are preferentially channeled via cytochrome c550 to the aa3-type heme-copper cytochrome oxidase. (iii) Three genetic regulators were identified to act at least partially in the expression control of genes for chemolithoautotrophic thiosulfate oxidation: RegR and CbbR as activators, and SoxR as a repressor.
Collapse
Affiliation(s)
- Sachiko Masuda
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
| | - Hauke Hennecke
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| | - Hans-Martin Fischer
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
4
|
Masuda S, Saito M, Sugawara C, Itakura M, Eda S, Minamisawa K. Identification of the Hydrogen Uptake Gene Cluster for Chemolithoautotrophic Growth and Symbiosis Hydrogen Uptake in Bradyrhizobium Diazoefficiens. Microbes Environ 2016; 31:76-8. [PMID: 26911707 PMCID: PMC4791120 DOI: 10.1264/jsme2.me15182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 11/12/2022] Open
Abstract
The hydrogen uptake (Hup) system of Bradyrhizobium diazoefficiens recycles the H2 released by nitrogenase in soybean nodule symbiosis, and is responsible for H2-dependent chemolithoautotrophic growth. The strain USDA110 has two hup gene clusters located outside (locus I) and inside (locus II) a symbiosis island. Bacterial growth under H2-dependent chemolithoautotrophic conditions was markedly weaker and H2 production by soybean nodules was markedly stronger for the mutant of hup locus I (ΔhupS1L1) than for the mutant of hup locus II (ΔhupS2L2). These results indicate that locus I is primarily responsible for Hup activity.
Collapse
Affiliation(s)
- Sachiko Masuda
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Masaki Saito
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Chiaki Sugawara
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Shima Eda
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku UniversityKatahira, Aoba-ku, Sendai, Miyagi 980–8577Japan
| |
Collapse
|
5
|
Draft Genome Sequence of the Bacteriocin-Producing Bradyrhizobium japonicum Strain FN1. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00812-15. [PMID: 26227594 PMCID: PMC4520892 DOI: 10.1128/genomea.00812-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bradyrhizobium japonicum strain FN1 was found to produce bacteriocin-like zones of clearing when tested against other strains of bradyrhizbia. The genome was sequenced, and several putative bacteriocin-producing genes, in addition to the expected genes involved in nodulation and nitrogen fixation, were identified.
Collapse
|
6
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
7
|
Kim JYH, Cha HJ. Recent progress in hydrogenase and its biotechnological application for viable hydrogen technology. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-012-0208-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, Wing RA, Soderlund CA, Pryor BM, Pierson LS, Maier RM. Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. MICROBIAL ECOLOGY 2013; 65:371-383. [PMID: 23224253 DOI: 10.1007/s00248-012-0143-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
Caves are relatively accessible subterranean habitats ideal for the study of subsurface microbial dynamics and metabolisms under oligotrophic, non-photosynthetic conditions. A 454-pyrotag analysis of the V6 region of the 16S rRNA gene was used to systematically evaluate the bacterial diversity of ten cave surfaces within Kartchner Caverns, a limestone cave. Results showed an average of 1,994 operational taxonomic units (97 % cutoff) per speleothem and a broad taxonomic diversity that included 21 phyla and 12 candidate phyla. Comparative analysis of speleothems within a single room of the cave revealed three distinct bacterial taxonomic profiles dominated by either Actinobacteria, Proteobacteria, or Acidobacteria. A gradient in observed species richness along the sampling transect revealed that the communities with lower diversity corresponded to those dominated by Actinobacteria while the more diverse communities were those dominated by Proteobacteria. A 16S rRNA gene clone library from one of the Actinobacteria-dominated speleothems identified clones with 99 % identity to chemoautotrophs and previously characterized oligotrophs, providing insights into potential energy dynamics supporting these communities. The robust analysis conducted for this study demonstrated a rich bacterial diversity on speleothem surfaces. Further, it was shown that seemingly comparable speleothems supported divergent phylogenetic profiles suggesting that these communities are very sensitive to subtle variations in nutritional inputs and environmental factors typifying speleothem surfaces in Kartchner Caverns.
Collapse
Affiliation(s)
- Marianyoly Ortiz
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721-0038, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
SynopsisBecause of both the energy costs and the slowness of the reactions of the nitrogenase complex compared with those involving some form of combined nitrogen (oxidised or reduced), we argue that the evolution of nitrogen-fixing organisms required an environment which was very limited in combined nitrogen. This is thought to have occurred after phototrophy evolved, but before water was used as a hydrogen donor (and therefore oxygen was present in the atmosphere). After oxygenic photosynthesis evolved, the need for a high level of biological nitrogen-fixation remained, since abiotic inputs were insufficient to keep pace with the rapidly evolving biomass (flora and fauna). Symbiotic fixation probably first evolved in the form of casual associations between cyanobacteria and most other groups of plants. By inhabiting the sporophytic generation of evolving land plants (cycads in particular), protection against nitrogenase-inactivating oxygen and a more desiccating environment was achieved simultaneously.We envisage nodulated plants arising by the transfer ofnifgenes into tumour-forming bacteria. In the case of legumes, these would be ancestors of extant agrobacteria, which gain entry into their hostsviawounds. Co-evolution of symbionts from nitrogen-fixing tumours has taken several routes, leading to extant nodules differing in mode of infection, structure and physiology. Evolution towards optimisation of oxygen usage is continuing.Nitrogen-fixing symbiosis in animal systems is only advantageous in specialised ecological niches in which wood is the sole dietary intake. In the case of shipworms, the symbiosis has many of the advanced features associated with nitrogen fixing root nodules.
Collapse
|
11
|
Abstract
Some strains of Rhizobium japonicum can use hydrogen as an energy source for growth under microaerophilic conditions. Mutant strains have been selected that use hydrogen in the presence of high partial pressures of oxygen. The mutants contain more hydrogenase than the parent strain, both as free-living cells and as bacteroids in nitrogen-fixing soybean root nodules.
Collapse
|
12
|
Lambert GR, Cantrell MA, Hanus FJ, Russell SA, Haddad KR, Evans HJ. Intra- and interspecies transfer and expression of Rhizobium japonicum hydrogen uptake genes and autotrophic growth capability. Proc Natl Acad Sci U S A 2010; 82:3232-6. [PMID: 16578786 PMCID: PMC397749 DOI: 10.1073/pnas.82.10.3232] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cosmids containing hydrogen uptake genes have previously been isolated in this laboratory. Four new cosmids that contain additional hup gene(s) have now been identified by conjugal transfer of a Rhizobium japonicum 122DES gene bank into a Tn5-generated Hup(-) mutant and screening for the acquisition of Hup activity. The newly isolated cosmids, pHU50-pHU53, contain part of the previously isolated pHU1 but extend as far as 20 kilobases beyond its border. pHU52 complements five of six Hup(-) mutants and confers activity on several Hup(-) wild-type R. japonicum strains in the free-living state and where tested in nodules. Transconjugants obtained from interspecies transfer of pHU52 to Rhizobium meliloti 102F28, 102F32, and 102F51 and Rhizobium leguminosarum 128C53 showed hydrogen-dependent methyleneblue reduction, performed the oxyhydrogen reaction, and showed hydrogen-dependent autotrophic growth by virtue of the introduced genes. The identity of the presumptive transconjugants was confirmed by antibiotic-resistance profiles and by plant nodulation tests.
Collapse
Affiliation(s)
- G R Lambert
- Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis, OR 97331
| | | | | | | | | | | |
Collapse
|
13
|
Klucas RV, Hanus FJ, Russell SA, Evans HJ. Nickel: A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proc Natl Acad Sci U S A 2010; 80:2253-7. [PMID: 16578770 PMCID: PMC393797 DOI: 10.1073/pnas.80.8.2253] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soybean plants and Rhizobium japonicum 122 DES, a hydrogen uptake-positive strain, were cultured in media purified to remove Ni. Supplemental Ni had no significant effect on the dry matter or total N content of plants. However, the addition of Ni to both nitrate-grown and symbiotically grown plants resulted in a 7- to 10-fold increase in urease activity (urea amidohydrolase, EC 3.5.1.5) in leaves and significantly increased the hydrogenase activity (EC 1.18.3.1) in isolated nodule bacteroids. When cultured under chemolithotrophic conditions, free-living R. japonicum required Ni for growth and for the expression of hydrogenase activity. Hydrogenase activity was minimal or not detectable in cells incubated either without Ni or with Ni and chloramphenicol. Ni is required for derepression of hydrogenase activity and apparently protein synthesis is necessary for the participation of Ni in hydrogenase expression. The addition of Cr, V, Sn, and Pb in place of Ni failed to stimulate the activity of hydrogenase in R. japonicum and urease in soybean leaves. The evidence indicates that Ni is an important micronutrient element in the biology of the soybean plant and R. japonicum.
Collapse
Affiliation(s)
- R V Klucas
- Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis, Oregon 97331
| | | | | | | |
Collapse
|
14
|
Hom SS, Novak PD, Maier RJ. Transposon Tn5-Generated Bradyrhizobium japonicum Mutants Unable To Grow Chemoautotrophically with H(2). Appl Environ Microbiol 2010; 54:358-63. [PMID: 16347549 PMCID: PMC202457 DOI: 10.1128/aem.54.2.358-363.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO(2) and H(2) (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O(2). All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup mutant, had CO(2) fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.
Collapse
Affiliation(s)
- S S Hom
- Department of Biology and McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
15
|
Haugland RA, Hanus FJ, Cantrell MA, Evans HJ. Rapid Colony Screening Method for Identifying Hydrogenase Activity in Rhizobium japonicum. Appl Environ Microbiol 2010; 45:892-7. [PMID: 16346252 PMCID: PMC242389 DOI: 10.1128/aem.45.3.892-897.1983] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method has been developed for the rapid screening of Rhizobium japonicum colonies for hydrogenase activity based on their ability to reduce methylene blue in the presence of respiratory inhibitors and hydrogen. Hydrogen uptake-positive (Hup) colonies derepressed for hydrogenase activity were visualized by their localized decolorization of filter paper disks impregnated with the dye. Appropriate responses were seen with a number of Hup and Hup wild-type strains of R. japonicum as well as Hup mutants. Its specificity was further confirmed in selected strains on the basis of comparisons with chemolithotrophic growth and the presence of other genetic markers. Utilization of the method in identifying Hup colonies among 16,000 merodiploid derivatives of the Hup mutant strain PJ17nal containing cloned DNA fragments of the Hup strain 122 DES has demonstrated its applicability as a screening procedure in the genetic analysis of the R. japonicum hydrogen uptake system.
Collapse
Affiliation(s)
- R A Haugland
- Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis, Oregon 97331
| | | | | | | |
Collapse
|
16
|
Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum. Appl Environ Microbiol 2010; 76:2402-9. [PMID: 20173070 DOI: 10.1128/aem.02783-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY(2) gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O(2) respiration was observed only in USDA110 and the soxY(2) mutant and not in the soxY(1) mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O(2). B. japonicum USDA110 showed (14)CO(2) fixation under chemolithotrophic growth conditions. The CO(2) fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the soxY(1) gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the soxY(1) gene of B. japonicum USDA110.
Collapse
|
17
|
|
18
|
Maier RJ, Nadler KD. Biochemistry, Regulation, and Genetics of Hydrogen Oxidation in Rhizobium. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388558509150779] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. J Bacteriol 2008; 190:6697-705. [PMID: 18689488 DOI: 10.1128/jb.00543-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum is a facultative chemoautotroph capable of utilizing hydrogen gas as an electron donor in a respiratory chain terminated by oxygen to provide energy for cellular processes and carbon dioxide assimilation via a reductive pentose phosphate pathway. A transcriptomic analysis of B. japonicum cultured chemoautotrophically identified 1,485 transcripts, representing 17.5% of the genome, as differentially expressed when compared to heterotrophic cultures. Genetic determinants required for hydrogen utilization and carbon fixation, including the uptake hydrogenase system and components of the Calvin-Benson-Bassham cycle, were strongly induced in chemoautotrophically cultured cells. A putative isocitrate lyase (aceA; blr2455) was among the most strongly upregulated genes, suggesting a role for the glyoxylate cycle during chemoautotrophic growth. Addition of arabinose to chemoautotrophic cultures of B. japonicum did not significantly alter transcript profiles. Furthermore, a subset of nitrogen fixation genes was moderately induced during chemoautotrophic growth. In order to specifically address the role of isocitrate lyase and nitrogenase in chemoautotrophic growth, we cultured aceA, nifD, and nifH mutants under chemoautotrophic conditions. Growth of each mutant was similar to that of the wild type, indicating that the glyoxylate bypass and nitrogenase activity are not essential components of chemoautotrophy in B. japonicum.
Collapse
|
20
|
Abstract
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes (tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources.
Collapse
|
21
|
Gomez-Alvarez V, King GM, Nüsslein K. Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 2007; 60:60-73. [PMID: 17381525 DOI: 10.1111/j.1574-6941.2006.00253.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Volcanic activity creates new landforms that can change dramatically over time as a consequence of biotic succession. Nonetheless, volcanic deposits present severe constraints for microbial colonization and activity. We have characterized bacterial diversity on four recent deposits at Kilauea volcano, Hawaii (KVD). Much of the diversity was either closely related to uncultured organisms or distinct from any reported 16S rRNA gene sequences. Diversity indices suggested that diversity was highest in a moderately vegetated 210-year-old ash deposit (1790-KVD), and lowest for a 79-year-old lava flow (1921-KVD). Diversity for a 41-year-old tephra deposit (1959-KVD) and a 300-year-old rainforest (1700-KVD) reached intermediate values. The 1959-KVD and 1790-KVD communities were dominated by Acidobacteria, Alpha- and Gammaproteobacteria, Actinobacteria, Cyanobacteria, and many unclassified phylotypes. The 1921-KVD, an unvegetated low pH deposit, was dominated by unclassified phylotypes. In contrast, 1700-KVD was primarily populated by Alphaproteobacteria with very few unclassified phylotypes. Similar diversity indices and levels of trace gas flux were found for 1959-KVD and 1790-KVD; however, statistical analyses indicated significantly different communities. This study not only showed that microorganisms colonize recent volcanic deposits and are able to establish diverse communities, but also that their composition is governed by variations in local deposit parameters.
Collapse
|
22
|
Fernández D, Toffanin A, Palacios JM, Ruiz-Argüeso T, Imperial J. Hydrogenase genes are uncommon and highly conserved in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 2005; 253:83-8. [PMID: 16216440 DOI: 10.1016/j.femsle.2005.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 11/30/2022] Open
Abstract
A screening for hydrogen uptake (hup) genes in Rhizobium leguminosarum bv. viciae isolates from different locations within Spain identified no Hup+ strains, confirming the scarcity of the Hup trait in R. leguminosarum. However, five new Hup+ strains were isolated from Ni-rich soils from Italy and Germany. The hup gene variability was studied in these strains and in six available strains isolated from North America. Sequence analysis of three regions within the hup cluster showed an unusually high conservation among strains, with only 0.5-0.6% polymorphic sites, suggesting that R. leguminosarum acquired hup genes de novo in a very recent event.
Collapse
Affiliation(s)
- Domingo Fernández
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
King GM. Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 2003; 69:4067-75. [PMID: 12839783 PMCID: PMC165208 DOI: 10.1128/aem.69.7.4067-4075.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of sites were established on Hawaiian volcanic deposits ranging from about 18 to 300 years old. Three sites occurred in areas that supported tropical rain forests; the remaining sites were in areas that supported little or no plant growth. Sites >26 years old consumed atmospheric CO and hydrogen at rates ranging from about 0.2 to 5 mg of CO m(-2) day(-1) and 0.1 to 4 mg of H(2) m(-2) day(-1), respectively. Respiration, measured as CO(2) production, for a subset of the sites ranged from about 40 to >1,400 mg of CO(2) m(-2) day(-1). CO and H(2) accounted for about 13 to 25% of reducing equivalent flow for all but a forested site, where neither substrate appeared significant. Based on responses to chloroform fumigation, hydrogen utilization appeared largely due to microbial uptake. In contrast to results for CO and hydrogen, methane uptake occurred consistently only at the forest site. Increasing deposit age was generally accompanied by increasing concentrations of organic matter and microbial biomass, measured as phospholipid phosphate. Exoenzymatic activities (acid and alkaline phosphatases and alpha- and beta-glucosidases) were positively correlated with deposit age in spite of considerable variability within sites. The diversity of substrates utilized in Biolog Ecoplate assays also increased with deposit age, possibly reflecting changes in microbial community complexity.
Collapse
Affiliation(s)
- Gary M King
- Darling Marine Center, University of Maine, Walpole, ME 04573, USA.
| |
Collapse
|
24
|
Lorite MJ, Tachil J, Sanjuán J, Meyer O, Bedmar EJ. Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum. Appl Environ Microbiol 2000; 66:1871-6. [PMID: 10788353 PMCID: PMC101426 DOI: 10.1128/aem.66.5.1871-1876.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum strain 110spc4 was capable of chemolithoautotrophic growth with carbon monoxide (CO) as a sole energy and carbon source under aerobic conditions. The enzyme carbon monoxide dehydrogenase (CODH; EC 1.2.99.2) has been purified 21-fold, with a yield of 16% and a specific activity of 58 nmol of CO oxidized/min/mg of protein, by a procedure that involved differential ultracentrifugation, anion-exchange chromatography, hydrophobic interaction chromatography, and gel filtration. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis and had a molecular mass of 230,000 Da. The 230-kDa enzyme was composed of large (L; 75-kDa), medium (M; 28.4-kDa), and small (S; 17.2-kDa) subunits occurring in heterohexameric (LMS)(2) subunit composition. The 75-kDa polypeptide exhibited immunological cross-reactivity with the large subunit of the CODH of Oligotropha carboxidovorans. The B. japonicum enzyme contained, per mole, 2.29 atoms of Mo, 7.96 atoms of Fe, 7.60 atoms of labile S, and 1.99 mol of flavin. Treatment of the enzyme with iodoacetamide yielded di(carboxamidomethyl)molybdopterin cytosine dinucleotide, identifying molybdopterin cytosine dinucleotide as the organic portion of the B. japonicum CODH molybdenum cofactor. The absorption spectrum of the purified enzyme was characteristic of a molybdenum-containing iron-sulfur flavoprotein.
Collapse
Affiliation(s)
- M J Lorite
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
25
|
Van Soom C, Lerouge I, Vanderleyden J, Ruiz-Argüeso T, Palacios JM. Identification and characterization of hupT, a gene involved in negative regulation of hydrogen oxidation in Bradyrhizobium japonicum. J Bacteriol 1999; 181:5085-9. [PMID: 10438783 PMCID: PMC94000 DOI: 10.1128/jb.181.16.5085-5089.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bradyrhizobium japonicum hupT gene was sequenced, and its gene product was found to be homologous to NtrB-like histidine kinases. A hupT mutant expresses higher levels of hydrogenase activity than the wild-type strain under hydrogenase-inducing conditions (i.e., microaerobiosis plus hydrogen, or symbiosis), whereas in noninduced hupT cells, hupSL expression is derepressed but does not lead to hydrogenase activity. We conclude that HupT is involved in the repression of HupSL synthesis at the transcriptional level but that enzymatic activation requires inducing conditions.
Collapse
Affiliation(s)
- C Van Soom
- F. A. Janssens Laboratory of Genetics, Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
26
|
Horken KM, Tabita FR. Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities. Arch Biochem Biophys 1999; 361:183-94. [PMID: 9882445 DOI: 10.1006/abbi.1998.0979] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deduced primary sequence (cbbL and cbbS) of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (rubisco) from Bradyrhizobium japonicum places this enzyme within the Type IC subgroup of red-like rubisco enzymes. In addition, B. japonicum appears to organize most of the structural genes of the Calvin-Benson-Bassham (CBB) pathway in at least one major operon. Functional expression and characterization of the B. japonicum and Xanthobacter flavus enzymes from this group revealed that these molecules exhibit diverse kinetic properties despite their relatively high degree of sequence relatedness. Of prime importance was the fact that these closely related enzymes exhibited CO2 and O2 substrate specificities that varied from relatively low values [tau = (VcKo)/(VoKc) = 45] to values that approximated those obtained for higher plants (tau = 75). These results, combined with the metabolic and genetic versatility of the organisms from which these enzymes were derived, suggest a potential rich resource for future biological selection and structure-function studies aimed at elucidating structural features that govern key enzymological properties of rubisco.
Collapse
Affiliation(s)
- K M Horken
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210-1292, USA
| | | |
Collapse
|
27
|
Lenz O, Strack A, Tran-Betcke A, Friedrich B. A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species. J Bacteriol 1997; 179:1655-63. [PMID: 9045826 PMCID: PMC178879 DOI: 10.1128/jb.179.5.1655-1663.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heterologous complementation studies using Alcaligenes eutrophus H16 as a recipient identified a hydrogenase-specific regulatory DNA region on megaplasmid pHG21-a of the related species Alcaligenes hydrogenophilus. Nucleotide sequence analysis revealed four open reading frames on the subcloned DNA, designated hoxA, hoxB, hoxC, and hoxJ. The product of hoxA is homologous to a transcriptional activator of the family of two-component regulatory systems present in a number of H2-oxidizing bacteria. hoxB and hoxC predict polypeptides of 34.5 and 52.5 kDa, respectively, which resemble the small and the large subunits of [NiFe] hydrogenases and correlate with putative regulatory proteins of Bradyrhizobium japonicum (HupU and HupV) and Rhodobacter capsulatus (HupU). hoxJ encodes a protein with typical consensus motifs of histidine protein kinases. Introduction of the complete set of genes on a broad-host-range plasmid into A. eutrophus H16 caused severe repression of soluble and membrane-bound hydrogenase (SH and MBH, respectively) synthesis in the absence of H2. This repression was released by truncation of hoxJ. H2-dependent hydrogenase gene transcription is a typical feature of A. hydrogenophilus and differs from the energy and carbon source-responding, H2-independent mode of control characteristic of A. eutrophus H16. Disruption of the A. hydrogenophilus hoxJ gene by an in-frame deletion on megaplasmid pHG21-a led to conversion of the regulatory phenotype: SH and MBH of the mutant were expressed in the absence of H2 in response to the availability of the carbon and energy source. RNA dot blot analysis showed that HoxJ functions on the transcriptional level. These results suggest that the putative histidine protein kinase HoxJ is involved in sensing molecular hydrogen, possibly in conjunction with the hydrogenase-like polypeptides HoxB and HoxC.
Collapse
Affiliation(s)
- O Lenz
- Institut für Biologie der Humboldt-Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Nitrogen Fixing Root Nodule Symbioses: Legume Nodules and Actinorhizal Nodules. BIOTECHNOLOGY ANNUAL REVIEW 1996. [DOI: 10.1016/s1387-2656(08)70009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Hydrogenase in Bradyrhizobium japonicum: genetics, regulation and effect on plant growth. World J Microbiol Biotechnol 1993; 9:615-24. [DOI: 10.1007/bf00369567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/26/1993] [Accepted: 05/13/1993] [Indexed: 10/26/2022]
|
30
|
Abstract
Frankia strains are N2-fixing actinomycetes whose isolation and cultivation were first reported in 1978. They induce N2-fixing root nodules on diverse nonleguminous (actinorhizal) plants that are important in ecological successions and in land reclamation and remediation. The genus Frankia encompasses a diverse group of soil actinomycetes that have in common the formation of multilocular sporangia, filamentous growth, and nitrogenase-containing vesicles enveloped in multilaminated lipid envelopes. The relatively constant morphology of vesicles in culture is modified by plant interactions in symbiosis to give a diverse array of vesicles shapes. Recent studies of the genetics and molecular genetics of these organisms have begun to provide new insights into higher-plant-bacterium interactions that lead to productive N2-fixing symbioses. Sufficient information about the relationship of Frankia strains to other bacteria, and to each other, is now available to warrant the creation of some species based on phenotypic and genetic criteria.
Collapse
Affiliation(s)
- D R Benson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3044
| | | |
Collapse
|
31
|
Sekhon GK, Gupta RP, Pandher MS, Arora JK. Symbiotic effectiveness of Hup+ Rhizobium, VAM fungi and phosphorus levels in relation to nitrogen fixation and plant growth ofCajanus cajan. Folia Microbiol (Praha) 1992. [DOI: 10.1007/bf02933149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Minamisawa K, Fukai K, Asami T. Rhizobitoxine inhibition of hydrogenase synthesis in free-living Bradyrhizobium japonicum. J Bacteriol 1990; 172:4505-9. [PMID: 2198262 PMCID: PMC213281 DOI: 10.1128/jb.172.8.4505-4509.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rhizobitoxine produced by Bradyrhizobium species strongly prevented derepression of hydrogenase expression in free-living Bradyrhizobium japonicum, although the toxin had no effect on the activity of cells which had already synthesized hydrogenase protein. Dihydrorhizobitoxine, a structural analog of rhizobitoxine, proved to be a less potent inhibitor of hydrogenase derepression. Rhizobitoxine did not cause cell death at a concentration sufficient to eliminate hydrogenase expression. The large subunit of hydrogenase was not detectable with antibody after derepression in the presence of rhizobitoxine. The general pattern of proteins synthesized from 14C-labeled amino acids during derepression was not significantly different in the presence or absence of rhizobitoxine. These results indicated that rhizobitoxine inhibited hydrogenase synthesis in free-living B. japonicum. Cystathionine and methionine strongly prevented the inhibition of hydrogenase derepression by rhizobitoxine, suggesting that the inhibition involves the level of sulfur-containing amino acids in the cell.
Collapse
Affiliation(s)
- K Minamisawa
- Department of Agricultural Chemistry, Ibaraki University, Japan
| | | | | |
Collapse
|
33
|
Maier RJ, Pihl TD, Stults L, Sray W. Nickel accumulation and storage in Bradyrhizobium japonicum. Appl Environ Microbiol 1990; 56:1905-11. [PMID: 2200341 PMCID: PMC184529 DOI: 10.1128/aem.56.6.1905-1911.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hydrogenase-derepressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl2, and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown and derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunoprecipitation of 63Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms.
Collapse
Affiliation(s)
- R J Maier
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
34
|
Abstract
In symbiosis with peas, Rhizobium leguminosarum UPM791 induces the synthesis of a hydrogen uptake (Hup) system that recycles hydrogen generated in nodules by nitrogenase. A cosmid (pAL618) containing hup genes from this strain on a 20-kilobase-pair (kb) DNA insert has previously been isolated in our laboratory (A. Leyva, J. M. Palacios, T. Mozo, and T.Ruiz-Argüeso, J. Bacteriol. 169:4929-4934, 1987). Here we show that cosmid pAL618 contains all of the genetic information required to confer high levels of hydrogenase activity on the naturally Hup- strains R. leguminosarum UML2 and Rhizobium phaseoli CFN42, and we also describe in detail the organization of hup genes on pAL618. To study hup gene organization, site-directed transposon mutagenesis and complementation analysis were carried out. According to the Hup phenotype associated with the transposon insertions, hup genes were found to span a 15-kilobase-pair region within pAL618 insert DNA. Complementation analysis revealed that Hup- mutants fell into six distinct complementation groups that define six transcriptional units, designated regions hupI to hupVI. Region hupI was subcloned and expressed in Escherichia coli cells under the control of a bacteriophage T7 promoter. A polypeptide of ca. 65 kilodaltons that was cross-reactive with antiserum against the large subunit of Bradyrhizobium japonicum hydrogenase was detected both in E. coli cells carrying the cloned hupI region and in pea bacteroids from strain UPM791, indicating that region hupI codes for structural genes of R. leguminosarum hydrogenase.
Collapse
|
35
|
Novak PD, Maier RJ. Identification of a Locus Upstream from the Hydrogenase Structural Genes That Is Involved in Hydrogenase Expression in
Bradyrhizobium japonicum. Appl Environ Microbiol 1989; 55:3051-7. [PMID: 16348066 PMCID: PMC203222 DOI: 10.1128/aem.55.12.3051-3057.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A locus involved in the expression of the uptake hydrogenase system of
Bradyrhizobium japonicum
was identified adjacent to genes encoding the hydrogenase subunits. A cloned fragment of DNA was used to complement to autotrophy a Hup
−
putative regulatory mutant of
B. japonicum
. The mutant strain lacked hydrogenase activity and synthesized low levels of the large subunit of hydrogenase as determined by Western gels. Tn
5
-induced mutagenesis located the region within the fragment which was necessary for complementation of the mutant phenotype. The locus identified is adjacent to that encoding the small subunit of hydrogenase; its right border is <0.5 kilobase upstream from the hydrogenase transcriptional start site, and its left border is between 1 and 2.5 kilobases from that start site. However, the locus is outside the region previously shown to contain
hup
-related genes of
B. japonicum
. Thus, the localization of this gene describes a previously unidentified
hup
-related gene on a region of DNA not previously shown to contain
hup
-specific DNA.
Collapse
Affiliation(s)
- P D Novak
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
36
|
Catanese CA, Emerich DW, Zahler WL. Adenylate cyclase and cyclic AMP phosphodiesterase in Bradyrhizobium japonicum bacteroids. J Bacteriol 1989; 171:4531-6. [PMID: 2548992 PMCID: PMC210246 DOI: 10.1128/jb.171.9.4531-4536.1989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenylate cyclase and cyclic AMP (cAMP) phosphodiesterase have been identified and partially characterized in bacteroids of Bradyrhizobium japonicum 3I1b-143. Adenylate cyclase activity was found in the bacteroid membrane fraction, whereas cAMP phosphodiesterase activity was located in both the membrane and the cytosol. In contrast to other microorganisms, B. japonicum adenylate cyclase remained firmly bound to the membrane during treatment with detergents. Adenylate cyclase was activated four- to fivefold by 0.01% sodium dodecyl sulfate (SDS), whereas other detergents gave only slight activation. SDS had no effect on the membrane-bound cAMP phosphodiesterase but strongly inhibited the soluble enzyme, indicating that the two enzymes are different. All three enzymes were characterized by their kinetic constants, pH optima, and divalent metal ion requirements. With increasing nodule age, adenylate cyclase activity increased, the membrane-bound cAMP phosphodiesterase decreased, and the soluble cAMP phosphodiesterase remained largely unchanged. These results suggest that cAMP plays a role in symbiosis.
Collapse
Affiliation(s)
- C A Catanese
- Department of Biochemistry, University of Missouri-Columbia 65211
| | | | | |
Collapse
|
37
|
Abstract
Protein phosphorylation was demonstrated in Bradyrhizobium japonicum bacteroids in vivo and in cultures in vivo and in vitro. Comparison of in vivo-labeled phosphoproteins of bacteroids and of cultured cells showed differences in both the pattern and intensity of labeling. In cultured cells, comparison of the labeling patterns and intensities of in vivo- and in vitro-labeled phosphoproteins showed a number of similarities; however, several phosphoproteins were found only after one of the two labeling conditions. The labeling intensity was time dependent in both in vivo and in vitro assays and was dependent on the presence of magnesium in in vitro assays. Differences in the rates of phosphorylation and dephosphorylation were noted for a number of proteins. The level of incorporation of 32P into protein was only 2% or less of the total phosphate accumulated during the in vivo labeling period. Several isolation and sample preparation procedures resulted in differences in labeling patterns. Phosphatase inhibitors and several potential metabolic effectors had negligible effects on the phosphorylation pattern. There were no significant changes in the phosphorylation patterns of cells cultured on mannitol, acetate, and succinate, although the intensity of the labeling did vary with the carbon source.
Collapse
Affiliation(s)
- D B Karr
- Department of Biochemistry and Interdisciplinary Plant Biotechnology, University of Missouri, Columbia 65211
| | | |
Collapse
|
38
|
Moshiri F, Maier RJ. Conformational changes in the membrane-bound hydrogenase of Bradyrhizobium japonicum. Evidence that the redox state of the enzyme affects its accessibility to protease and membrane-impermeant reagents. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77907-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
|
40
|
O'Brian MR, Maier RJ. Hydrogen metabolism in Rhizobium: energetics, regulation, enzymology and genetics. Adv Microb Physiol 1988; 29:1-52. [PMID: 3132815 DOI: 10.1016/s0065-2911(08)60345-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M R O'Brian
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
41
|
Leyva A, Palacios JM, Mozo T, Ruiz-Argüeso T. Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum. J Bacteriol 1987; 169:4929-34. [PMID: 2822654 PMCID: PMC213888 DOI: 10.1128/jb.169.11.4929-4934.1987] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plasmid pHU1 containing hup genes of Bradyhizobium japonicum. The corresponding recombinant cosmids, pAL618 and pAL704, were isolated, and a region of about 28 kb containing the sequences homologous to B. japonicum hup-specific DNA was physically mapped. Further hybridization analysis with three fragments from pHU1 (5.9-kb HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) showed that the overall arrangement of the R. leguminosarum hup-specific region closely parallels that of B. japonicum. The presence of functional hup genes within the isolated cosmid DNA was demonstrated by site-directed Tn5 mutagenesis of the 128C53 genome and analysis of the Hup phenotype of the Tn5 insertion strains in symbiosis with peas. Transposon Tn5 insertions at six different sites spanning 11 kb of pAL618 completely suppressed the hydrogenase activity of the pea bacteroids.
Collapse
Affiliation(s)
- A Leyva
- Departamento de Microbiología, Universidad Politécnica, Madrid, Spain
| | | | | | | |
Collapse
|
42
|
van Berkum P. Expression of uptake hydrogenase and hydrogen oxidation during heterotrophic growth of Bradyrhizobium japonicum. J Bacteriol 1987; 169:4565-9. [PMID: 3115959 PMCID: PMC213822 DOI: 10.1128/jb.169.10.4565-4569.1987] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Strains I-110 ARS, SR, USDA 136, USDA 137, and AK13 1c of Bradyrhizobium japonicum induced Hup activity when growing heterotrophically in medium with carbon substrate and NH4Cl in the presence of 2% H2 and 2% O2. Hup activity was induced during heterotrophic growth in the presence of carbon substrates, which were assimilated during the time of H2 oxidation. Strains I-110 ARS and SR grown heterotrophically or chemoautotrophically for 3 days had similar rates of H2 oxidation. Similar rates of Hup activity were also observed when cell suspensions were induced for 24 h in heterotrophic or chemoautotrophic growth medium with 1% O2, 10% H2, and 5% CO2 in N2. These results are contrary to the reported repression of Hup activity by carbon substrates in B. japonicum. Bradyrhizobial Hup activity during heterotrophic growth was limited by H2 and O2 and repressed by aerobic conditions, and CO2 addition had no effect. Nitrogenase and ribulosebisphosphate carboxylase activities were not detected in H2-oxidizing cultures of B. japonicum during heterotrophic growth. Immunoblot analysis of cell extracts with antibodies prepared against the 65-kilodalton subunit of uptake hydrogenase indicated that Hup protein synthesis was induced by H2 and repressed under aerobic conditions.
Collapse
Affiliation(s)
- P van Berkum
- Nitrogen Fixation and Soybean Genetics Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705
| |
Collapse
|
43
|
Abstract
Free-living Bradyrhizobium japonicum grown heterotrophically with 1 microM 63Ni2+ accumulated label. Strain SR470, a Hupc mutant, accumulated almost 10-fold more 63Ni2+ on a per-cell basis than did strain SR, the wild type. Nongrowing cells were also able to accumulate nickel over a 2-h period, with the Hupc mutant strain SR470 again accumulating significantly more 63Ni2+ than strain SR. These results suggest that this mutant is constitutive for nickel uptake as well as for hydrogenase expression. The apparent Kms for nickel uptake in strain SR and strain SR470 were found to be similar, approximately 26 and 50 microM, respectively. The Vmax values, however, were significantly different, 0.29 nmol of Ni/min per 10(8) cells for SR and 1.40 nmol of Ni/min per 10(8) cells for SR470. The uptake process was relatively specific for nickel; only Cu2+ and Zn2+ (10 microM) were found to appreciably inhibit the uptake of 1 microM Ni, while a 10-fold excess of Mg2+, Co2+, Fe3+, or Mn2+ did not affect Ni2+ uptake. The lack of inhibition by Mg2+ indicates that nickel is not transported by a magnesium uptake system. Nickel uptake was also inhibited by cold (53% inhibition at 4 degrees C) and slightly by the ionophores nigericin and carbonyl cyanide m-chlorophenylhydrazone. Other ionophores did not appreciably affect nickel uptake, even though they significantly stimulated O2 uptake. The cytochrome c oxidase inhibitors azide, cyanide, and hydroxylamine did not inhibit Ni2+ uptake, even at concentrations (of cyanide and hydroxylamine) that inhibited O2 uptake. The addition of oxidizable substrates such as succinate or gluconate did not increase nickel uptake, even though they increased respiratory activity. Nickel update showed a pH dependence with an optimum at 6.0. Most (approximately 85%) of the 63Ni2+ taken up in 1 min by strain SR470 was not exchangeable with cold nickel.
Collapse
|
44
|
|
45
|
Tilak KVBR, Schneider K, Schlegel HG. Autotrophic growth of nitrogen-fixingAzospirillum species and partial characterization of hydrogenase from strain CC. Curr Microbiol 1986. [DOI: 10.1007/bf01577194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Zuber M, Harker AR, Sultana MA, Evans HJ. Cloning and expression of Bradyrhizobium japonicum uptake hydrogenase structural genes in Escherichia coli. Proc Natl Acad Sci U S A 1986; 83:7668-72. [PMID: 3532119 PMCID: PMC386782 DOI: 10.1073/pnas.83.20.7668] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To identify the structural genes for the components of Bradyrhizobium japonicum uptake hydrogenase (Mr 60,000 and 30,000), we have expressed these genes in Escherichia coli and shown that the products cross-react with antibodies to the respective hydrogenase subunits. We constructed subclones of overlapping DNA fragments from an uptake hydrogenase-complementing cosmid, pHU52 [Lambert, G. R., Cantrell, M. A., Hanus, F. J., Russell, S. A., Haddad, K. R. & Evans, H. J. (1985) Proc. Natl. Acad. Sci. USA 82, 3232-3236], in pMZ 545, a plasmid expression vector. DNA fragments inserted into one or more of the four cloning sites downstream from the E. coli lac operon promoter (Plac) on pMZ 545 generate transcriptional, but not translational, fusions. Two subclones that directed the synthesis of Mr 60,000 and 30,000 proteins in E. coli "maxicells" were identified. The DNA inserts from these subclones were then inserted down-stream of the bacteriophage lambda PL promoter on a transcriptional fusion vector. When the PL promoter was activated in vivo by heat inactivation of the temperature sensitive cI repressor of lambda in an appropriate E. coli strain, the respective fragments expressed higher levels of Mr 60,000 and 30,000 proteins that could be detected in immunoblots. These data provide direct evidence for the presence of uptake hydrogenase structural genes on the uptake hydrogenase-complementing cosmid pHU52.
Collapse
|
47
|
Stults LW, Moshiri F, Maier RJ. Aerobic purification of hydrogenase from Rhizobium japonicum by affinity chromatography. J Bacteriol 1986; 166:795-800. [PMID: 3519580 PMCID: PMC215196 DOI: 10.1128/jb.166.3.795-800.1986] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We purified active hydrogenase from free-living Rhizobium japonicum by affinity chromatography. The uptake hydrogenase of R. japonicum has been treated previously as an oxygen-sensitive protein. In this purification, however, reducing agents were not added nor was there any attempt to exclude oxygen. In fact, the addition of sodium dithionite to aerobically purified protein resulted in the rapid loss of activity. Purified hydrogenase was more stable when stored under O2 than when stored under Ar. Sodium-chloride-washed hydrogen-oxidizing membranes were solubilized in Triton X-100 and deoxycholate and loaded onto a reactive red 120-agarose column. Purified hydrogenase elutes at 0.36 M NaCl, contains a nickel, and has a pH optimum of 6.0. There was 452-fold purification resulting in a specific activity of 76.9 mumol of H2 oxidized per min per mg of protein and a yield of 17%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed subunits with estimated molecular weights of 65,000 and 33,000. Hydrogenase prepared in this manner was used to raise and affinity purify antibodies against both subunits.
Collapse
|
48
|
Harker AR, Zuber M, Evans HJ. Immunological homology between the membrane-bound uptake hydrogenases of Rhizobium japonicum and Escherichia coli. J Bacteriol 1986; 165:579-84. [PMID: 3511036 PMCID: PMC214458 DOI: 10.1128/jb.165.2.579-584.1986] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Two polypeptides present in aerobic and anaerobic cultures of Escherichia coli HB101 were shown to cross-react with antibodies to the 30- and 60-kilodalton (kDa) subunits of the uptake hydrogenase of Rhizobium japonicum. The cross-reactive polypeptides in a series of different E. coli strains are of Mrs ca. 60,000 and 30,000, and both polypeptides are present in proportion to measurable hydrogen uptake (Hup) activity (r = 0.95). The 60-kDa polypeptide from E. coli HB101 comigrated on native gels with detectable Hup activity. The exact role of the 30-kDa polypeptide in E. coli is unclear. E. coli MBM7061, a natural Hup- variant, grown anaerobically or aerobically lacked detectable Hup activity and failed to cross-react with the antisera against the hydrogenase from R. japonicum. Anaerobically cultured E. coli MBM7061, however, did express formate hydrogenlyase activity, indicating that the hydrogenases involved in the oxygen-dependent activation of hydrogen and the formate-dependent evolution of hydrogen are biochemically distinct.
Collapse
|
49
|
Harker AR, Lambert GR, Hanus FJ, Evans HJ. Further evidence that two unique subunits are essential for expression of hydrogenase activity in Rhizobium japonicum. J Bacteriol 1985; 164:187-91. [PMID: 3900036 PMCID: PMC214228 DOI: 10.1128/jb.164.1.187-191.1985] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Eight strains of Rhizobium lacking hydrogenase uptake (Hup) activity and 17 transconjugant strains carrying the hup cosmids pHU1, pHU52, or pHU53 (G. R. Lambert, M. A. Cantrell, F. J. Hanus, S. A. Russell, K. R. Haddad, and H. J. Evans, Proc. Natl. Acad. Sci. USA, 82:3232-3236, 1985) were screened for Hup activity and the presence of immunologically detectable hydrogenase polypeptides. Crude extracts of these strains were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis with affinity-purified antibodies against the two subunits of purified hydrogenase (Mr 60,000 and 30,000). Derepressed transconjugants carrying the cosmid pHU52 were Hup+ and contained detectable levels of both hydrogenase subunit polypeptides. Non-derepressed strains, Hup- parent strains, and strains carrying cosmids other than pHU52 did not express Hup activity and contained no immunologically detectable protein. These data provide further evidence for the essential involvement of the smaller (Mr 30,000) subunit in the expression of hydrogenase activity in Rhizobium japonicum and suggest that the determinants for hydrogenase subunit synthesis are present on pHU52.
Collapse
|
50
|
Catabolite repression and role of cyclic AMP in CO2 fixation and H2 metabolism in Rhizobium spp. J Bacteriol 1985; 163:1282-4. [PMID: 2993243 PMCID: PMC219275 DOI: 10.1128/jb.163.3.1282-1284.1985] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CO2 fixation in Rhizobium meliloti was repressed by a variety of organic carbon sources. Cellular cyclic AMP levels were similar in repressed and nonrepressed cultures. Exogenous cyclic AMP or additional copies of the adenyl cyclase gene in cells experiencing repression failed to affect the rates of CO2 fixation. However, in R. japonicum catabolite repression of H2 utilization was partially circumvented by the presence of the R. meliloti adenyl cyclase gene.
Collapse
|