Neel JV, Mohrenweiser HW, Rothman ED, Naidu JM. A revised indirect estimate of mutation rates in Amerindians.
Am J Hum Genet 1986;
38:649-66. [PMID:
3459353 PMCID:
PMC1684814]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have previously raised the possibility that the mutation rate resulting in rare electrophoretic variants is higher in tribal/tropical-dwelling/nonindustrialized societies than in civilized/temperate-dwelling/industrialized societies. Here, we report the results of examining 11 additional proteins for the occurrence of rare electrophoretic variants in 10 Amerindian tribes, for a total of 8,968 determinations and a total of 17,648 locus tests. When these data are combined with the results of all our previous similar studies of Amerindians, a total of 272,298 polypeptides, the products of 43 different loci, have been examined for the occurrence of rare electrophoretic variants. On the assumption that these variants are maintained by mutation pressure and are essentially neutral in their phenotypic effects, we have calculated by three different approaches that it requires an average mutation rate of 1.3 X 10(-5)/locus per generation to maintain the observed variant frequency. Concurrently, we are reporting elsewhere that a direct estimate of the mutation rate resulting in electromorphs in various studies of civilized industrialized populations is 0.3 X 10(-5)/locus per generation. Although this difference appears to have statistical significance, the nonquantifiable uncertainties to both approaches are such that our enthusiasm for a true difference in mutation rates between the two types of populations has diminished. However, even the lower of these estimates, when corrected for all the types of genetic variation that electrophoresis does not detect, implies total locus and gametic mutation rates well above those which in the past have dominated genetic thinking.
Collapse