1
|
Song S, Ge M, Wang W, Gu C, Chen K, Zhang Q, Yu Q, Liu G, Jiang J. BpEIN3.1 represses leaf senescence by inhibiting synthesis of ethylene and abscisic acid in Betula platyphylla. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111330. [PMID: 35696929 DOI: 10.1016/j.plantsci.2022.111330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence and abscission play crucial role in annual plant adapting to seasonal alteration and climate changes by shortening life cycle and development process in response to abiotic and/or biotic stressors underlying phytohormones and environmental signals. Ethylene and abscisic acid are the major phytohormones that promotes leaf senescence, involving various transcription factors, such as EIN3 (ethylene-insensitive 3) and EIL (ethylene-insensitive 3-like) gene family, controlling leaf senescence through metabolite biosynthesis and signal transduction pathways. However, the roles of EIN3 regulating leaf senescence responding to environmental changes in perennial plant, especially forestry tree, remain unclear. In this study, we found that BpEIN3.1 from a subordinated to EIL3 subclade, is a transcription repressor and regulated light-dependent premature leaf senescence in birch (Betula platyphylla). BpEIN3.1 might inhibits the transcription of BpATPS1 by binding to its promoter. Shading suppressed premature leaf senescence in birch ein3.1 mutant line. Ethylene and abscisic acid biosynthesis were also reduced. In addition, abscisic acid positively regulated the expression of BpEIN3.1. This was demonstrated by the hormone-response element analysis of BpEIN3.1 promoter and its gene expression after the hormone treatments. Moreover, our results showed that abscisic acid is also involved in maintaining homeostasis. The molecular mechanism of leaf senescence provides a possibility to increasing wood production by delaying of leaf senescence.
Collapse
Affiliation(s)
- Shiyu Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Mengyan Ge
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, United States
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Vlasov AV, Osipov SD, Bondarev NA, Uversky VN, Borshchevskiy VI, Yanyushin MF, Manukhov IV, Rogachev AV, Vlasova AD, Ilyinsky NS, Kuklin AI, Dencher NA, Gordeliy VI. ATP synthase F OF 1 structure, function, and structure-based drug design. Cell Mol Life Sci 2022; 79:179. [PMID: 35253091 PMCID: PMC11072866 DOI: 10.1007/s00018-022-04153-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.
Collapse
Affiliation(s)
- Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Stepan D Osipov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Nikolay A Bondarev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mikhail F Yanyushin
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow region, Russia
| | - Ilya V Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Andrey V Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Alexandr I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Norbert A Dencher
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Physical Biochemistry, Department Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany.
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027, Grenoble, France.
| |
Collapse
|
3
|
|
4
|
Banerjee J, Das Ghatak P, Roy S, Khanna S, Sequin EK, Bellman K, Dickinson BC, Suri P, Subramaniam VV, Chang CJ, Sen CK. Improvement of human keratinocyte migration by a redox active bioelectric dressing. PLoS One 2014; 9:e89239. [PMID: 24595050 PMCID: PMC3940438 DOI: 10.1371/journal.pone.0089239] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 01/25/2023] Open
Abstract
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Piya Das Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Emily K. Sequin
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Karen Bellman
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Bryan C. Dickinson
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Prerna Suri
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Vish V. Subramaniam
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher J. Chang
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Chandan K. Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lohrasebi A, Mohamadi S, Fadaie S, Rafii-Tabar H. Modelling the influence of thermal effects induced by radio frequency electric field on the dynamics of the ATPase nano-biomolecular motors. Phys Med 2011; 28:221-9. [PMID: 21820928 DOI: 10.1016/j.ejmp.2011.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022] Open
Abstract
We model the dynamics of the F(0) component of the F(0)F(1)-ATPase mitochondrion-based nano-motor operating in a stochastically-fluctuating medium that represents the intracellular environment. The stochastic dynamics are modeled via Langevin equation of motion wherein fluctuations are treated as white noise. We have investigated the influence of an applied alternating electric field on the rotary motion of the F(0) rotor in such an environment. The exposure to the field induces a temperature rise in the mitochondrion's membrane, within which the F(0) is embedded. The external field also induces an electric potential that promotes a change in the mitochondrion's transmembrane potential (TMP). Both the induced temperature and the change in TMP contribute to a change in the dynamics of the F(0). We have found that for external fields in the radio frequency (RF) range, normally present in the environment and encountered by biological systems, the contribution of the induced thermal effects, relative to that of the induced TMP, to the dynamics of the F(0) is more significant. The changes in the dynamics of the F(0) part affect the frequency of the rotary motion of the F(0)F(1)-ATPase protein motor which, in turn, affects the production rate of the ATP molecules.
Collapse
Affiliation(s)
- A Lohrasebi
- Department of Physics, University of Isfahan, Isfahan, Iran
| | | | | | | |
Collapse
|
6
|
Chen C, Cui Y, Yue J, Huo X, Song T. Enhancement of the hydrolysis activity of F0F1-ATPases using 60 Hz magnetic fields. Bioelectromagnetics 2009; 30:663-8. [DOI: 10.1002/bem.20509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Vinkler C, Korenstein R, Farkas DL. External electric field driven ATP synthesis in chloroplasts: a slow, ATP synthase-dependent reaction. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)80174-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
|
9
|
Effects of electric fields and currents on living cells and their potential use in biotechnology: a survey. J Electroanal Chem (Lausanne) 1988. [DOI: 10.1016/0022-0728(80)80340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Teissié J. Effects of electric fields and currents on living cells and their potential use in biotechnology: A survey. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/s0302-4598(98)80011-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Abstract
Membrane-bound and isolated H+ ATPases of various origin are able to synthesize ATP from ADP and Pi after a jump-like pH increase. In the course of this increase the pH of solution (or suspension) must cross a value corresponding to pK of certain acid groups in the catalytic component of ATPase. In the case of isolated soluble enzymes it is possible to obtain up to 10 ATP molecules per one pH jump per one enzyme molecule. A physical mechanism of this phenomenon as well as of oxidative and photosynthetic phosphorylation is suggested.
Collapse
Affiliation(s)
- L A Blumenfeld
- Institute of Chemical Physics, USSR Academy of Sciences, Moscow
| |
Collapse
|
12
|
|
13
|
De Loof A. The electrical dimension of cells: the cell as a miniature electrophoresis chamber. INTERNATIONAL REVIEW OF CYTOLOGY 1986; 104:251-352. [PMID: 3531065 DOI: 10.1016/s0074-7696(08)61927-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Etemadi AH. Functional and orientational features of protein molecules in reconstituted lipid membranes. ADVANCES IN LIPID RESEARCH 1985; 21:281-428. [PMID: 3161297 DOI: 10.1016/b978-0-12-024921-3.50014-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Neumann E, Tsuji K, Schallreuter D. 728—The ion-pair concept in macromolecular dynanmics. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0302-4598(84)87043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Schwartz M, Fischler H, Korenstein R. Pulsed electromagnetic fields affect neuritic outgrowth from regenerating goldfish retinas. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0302-4598(84)87006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
|
18
|
Guffanti AA, Fuchs RT, Schneier M, Chiu E, Krulwich TA. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43244-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Chapter 5 Proton motive ATP synthesis. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/s0167-7306(08)60315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
20
|
AZZONE GIOVANNIFELICE, PIETROBON DANIELA, ZORATTI MARIO. Determination of the Proton Electrochemical Gradient across Biological Membranes. CURRENT TOPICS IN BIOENERGETICS 1984. [DOI: 10.1016/b978-0-12-152513-2.50008-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Rottenberg H. Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics. Proc Natl Acad Sci U S A 1983; 80:3313-7. [PMID: 6574486 PMCID: PMC394032 DOI: 10.1073/pnas.80.11.3313] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The general anesthetics chloroform and halothane inhibit ATP synthesis in rat liver mitochondria, in the millimolar concentration range (1-12 mM), in parallel with a reduction of respiratory control and the ratio of ATP produced to oxygen consumed. In these effects, halothane and chloroform are similar to classical, protonophoric, uncouplers. The rate of ADP-stimulated respiration or the rate of uncoupler-stimulated respiration is not affected. Like classical uncouplers, halothane and chloroform also stimulate mitochondrial ATPase activity. However, the extent of stimulation by these agents is larger than by protonophoric uncouplers and, more significantly, ATPase activity stimulated by carbonylcyanide m-chlorophenylhydrazone is further stimulated by these agents. In the presence of the Ca2+ chelator EGTA, halothane and chloroform have no measurable effect on the magnitude of the proton electrochemical potential, delta mu H. In the absence of EGTA these anesthetics have a small effect on delta mu H, apparently due to stimulation of Ca2+ cycling. Under these conditions the membrane potential is decreased while delta pH is increased, but the total value of delta mu H is only slightly decreased. The uncoupling activity of the anesthetics is the same in the presence of absence of EGTA. Thus, in contrast to protonophoric uncouplers, the uncoupling effect of general anesthetics does not depend on the collapse of delta mu H. In the same concentration range in which anesthetics uncouple oxidative phosphorylation both halothane and chloroform increase membrane fluidity, as measured by the partitioning of the hydrophobic spin probe 5-doxyldecane. These findings suggest a role for intramembrane processes in energy conversion that is not dependent on the bulk delta mu H.
Collapse
|
22
|
Tsuji K, Neumann E. Conformational flexibility of membrane proteins in electric fields. Biophys Chem 1983; 17:153-63. [PMID: 17000437 DOI: 10.1016/0301-4622(83)80009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/1982] [Revised: 11/08/1982] [Accepted: 11/15/1982] [Indexed: 11/23/2022]
Abstract
Bacteriorhodopsin of halobacterial purple membranes exhibits conformational flexibility in high electric field pulses (1-30 x 10(5) V m(-1), 1-100 micros). High-field electric dichroism data of purple membrane suspensions indicate two kinetically different structural transitions within the protein; involving a rapid (approximately 1 micros) concerted change in the orientation of both retinal and tyrosine and/or tryptophan side chains concomitant with alterations in the local protein environment of these chromophores. as well as slower changes (approximately 100 micros) of the microenvironment of aromatic amino acid residues concomitant with pK changes in at least two types of proton-binding sites. Light scattering data are consistent with the maintenance of the random distribution of the membrane discs within the short duration of the applied electric fields. The kinetics of the electro-optic signals and the steep dependence of the relaxation amplitudes on the electric field strength suggest a saturable induced-dipole mechanism and a rather large reaction dipole moment of 1.1 x 10(-25) C m ( = 3.3 x 10(4) debye) per cooperative unit at E = 1.3 x 10(5) V m(-1), which is indicative of appreciable cooperativity in the probably unidirectional transversal displacement of ionic groups on the surfaces of and within the bacteriorhodopsin proteins of the membrane lattice. The electro-optic data of bacteriorhodopsin are suggestive of a possibly general, induced-dipole mechanism for electric field-dependent structural changes in membrane transport proteins such as the gating proteins in excitable membranes or the ATP synthetases.
Collapse
Affiliation(s)
- K Tsuji
- Max-Planck-Institut für Biochemie, D-8033 Martinsried bei München, F.R.G
| | | |
Collapse
|
23
|
Coherent Properties of the Membranous Systems of Electron Transport Phosphorylation. PROCEEDINGS IN LIFE SCIENCES 1983. [DOI: 10.1007/978-3-642-69186-7_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Robillard GT, Konings WN. A hypothesis for the role of dithiol-disulfide interchange in solute transport and energy-transducing processes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 127:597-604. [PMID: 6293818 DOI: 10.1111/j.1432-1033.1982.tb06914.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have recently shown that the physical mechanism for delta approximately mu H+-driven changes in the Km for three different transport systems is an oxidation-reduction reaction involving a dithiol-disulfide interconversion [Robillard, G.T. and Konings, W.N. (1981) Biochemistry, 20, 5025-5032; Konings, W.N. and Robillard, G.T. (1982) Proc. Natl Acad. Sci. USA, in the press]. Based on the similarities between the data from these three systems and published data from other systems, we now propose that dithiol-disulfide interchange may play a general role in membrane-related processes such as transport, energy transduction and hormone-receptor interactions. We propose that the affinities of the substrate-binding sites are regulated by a dithiol and a disulfide situated at different depths in the membrane. In addition we propose that the oxidation states of these two redox centers are coupled by dithiol-disulfide interchange such that, when one is oxidized, the other is reduced. Since a transmembrane electrical potential, delta psi, or a pH gradient, delta pH, can alter the redox state, it can change the affinity of the substrate-binding sites. The delta approximately mu H+-induced changes in affinity are sufficient to drive active transport (symport or antiport) and energy-transducing processes. A similar mechanism can be applied to transport systems driven by phosphorylated enzyme intermediates instead of delta approximately mu H+. Changes of the redox potential in a given compartment during metabolism could also control the affinity of ligand binding even in the absence of a delta approximately mu H+. The ligand-binding affinities of facilitated diffusion transport systems and receptor proteins may be regulated in this manner.
Collapse
|