1
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
2
|
Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, Dalal K, Fropf R, McAnany C, Gagneur J, Kundaje A, Zeitlinger J. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat Genet 2021; 53:354-366. [PMID: 33603233 PMCID: PMC8812996 DOI: 10.1038/s41588-021-00782-6] [Citation(s) in RCA: 262] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
The arrangement (syntax) of transcription factor (TF) binding motifs is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution chromatin immunoprecipitation (ChIP)-nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using clustered regularly interspaced short palindromic repeat (CRISPR)-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.
Collapse
Affiliation(s)
- Žiga Avsec
- Department of Informatics, Technical University of Munich, Garching, Germany,Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Munich, Germany,Currently at DeepMind, London, UK
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sabrina Krueger
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Amr Alexandari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Khyati Dalal
- Stowers Institute for Medical Research, Kansas City, MO, USA,The University of Kansas Medical Center, Kansas City, KS, USA
| | - Robin Fropf
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Charles McAnany
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA,Department of Genetics, Stanford University, Stanford, CA, USA,correspondence: ,
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA,The University of Kansas Medical Center, Kansas City, KS, USA,correspondence: ,
| |
Collapse
|
3
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
4
|
Abstract
This is a memoir of circumstances that have shaped my life as a scientist, some of the questions that have excited my interest, and some of the people with whom I have shared that pursuit. I was introduced to transcription soon after the discovery of RNA polymerase and have been fascinated by questions relating to gene regulation since that time. My account touches on early experiments dealing with the ability of RNA polymerase to selectively transcribe its DNA template. Temporal programs of transcription that control the multiplication cycles of viruses (phages) and the precise mechanisms generating this regulation have been a continuing source of fascination and new challenges. A longtime interest in eukaryotic RNA polymerase III has centered on yeast and on the enumeration and properties of its transcription initiation factors, the architecture of its promoter complexes, and the mechanism of transcriptional initiation. These areas of research are widely regarded as separate, but to my thinking they have posed similar questions, and I have been unwilling or unable to abandon either one for the other. An additional interest in archaeal transcription can be seen as stemming naturally from this point of view.
Collapse
Affiliation(s)
- E Peter Geiduschek
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
5
|
Braglia P, Percudani R, Dieci G. Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 2005; 280:19551-62. [PMID: 15788403 DOI: 10.1074/jbc.m412238200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic RNA polymerase (Pol) III terminates transcription at short runs of T residues in the coding DNA strand. By genomic analysis, we found that T(5) and T(4) are the shortest Pol III termination signals in yeasts and mammals, respectively, and that, at variance with yeast, oligo(dT) terminators longer than T(5) are very rare in mammals. In Saccharomyces cerevisiae, the strength of T(5) as a terminator was found to be largely influenced by both the upstream and the downstream sequence context. In particular, the CT sequence, which is naturally present downstream of T(5) in the 3'-flank of some tDNAs, was found to act as a terminator-weakening element that facilitates translocation by reducing Pol III pausing at T(5). In contrast, tDNA transcription termination was highly efficient when T(5) was followed by an A or G residue. Surprisingly, however, when a termination-proficient T(5) signal was taken out from the tDNA context and placed downstream of a fragment of the SCR1 gene, its termination activity was compromised, both in vitro and in vivo. Even the T(6) sequence, acting as a strong terminator in tRNA gene contexts, was unexpectedly weak within the SNR52 transcription unit, where it naturally occurs. The observed sequence context effects reflect intrinsic recognition properties of Pol III, because they were still observed in a simplified in vitro transcription system only consisting of purified RNA polymerase and template DNA. Our findings strengthen the notion that termination signal recognition by Pol III is influenced in a complex way by the region surrounding the T cluster and suggest that read-through transcription beyond T clusters might play a significant role in the biogenesis of class III gene products.
Collapse
Affiliation(s)
- Priscilla Braglia
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Italy
| | | | | |
Collapse
|
6
|
Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002; 30:866-75. [PMID: 11842097 PMCID: PMC100330 DOI: 10.1093/nar/30.4.866] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most classical integrases of prokaryotic genetic elements specify integration into tRNA or tmRNA genes. Sequences shared between element and host integration sites suggest that crossover can occur at any of three sublocations within a tRNA gene, two with flanking symmetry (anticodon-loop and T-loop tDNA) and the third at the asymmetric 3' end of the gene. Integrase phylogeny matches this classification: integrase subfamilies use exclusively either the symmetric sublocations or the asymmetric sublocation, although tRNA genes of several different aminoacylation identities may be used within any subfamily. These two familial sublocation preferences imply two modes by which new integration site usage evolves. The tmRNA gene has been adopted as an integration site in both modes, and its distinctive structure imposes some constraints on proposed evolutionary mechanisms.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
7
|
Rüth J, Conesa C, Dieci G, Lefebvre O, Düsterhöft A, Ottonello S, Sentenac A. A suppressor of mutations in the class III transcription system encodes a component of yeast TFIIIB. EMBO J 1996; 15:1941-9. [PMID: 8617241 PMCID: PMC450113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Class III genes depend on TFIIIB for recruitment of RNA polymerase III. Yeast TFIIIB is comprised of three components: TBP, TFIIIB70 and a 90 kDa polypeptide contained in the fraction B". We report the isolation of the yeast gene TFC7 which, based on genetic and biochemical evidence, encodes the 90 kDa polypeptide. TFC7 was isolated as a multicopy suppressor of temperature-sensitive mutations in the two largest subunits of TFIIIC. It is an essential gene, encoding a polypeptide of 68 kDa migrating with an apparent size of approximately 90 kDa. In gel shift assays, recombinant TFC7 protein (rTFC7) alone did not bind detectably to DNA, or to the TFIIIC-DNA complex even in the presence of TBP or TFIIIB70, but it was required to assemble the TFIIIB-TFIIIC-DNA complex. The two-hybrid assay pointed to an interaction between TFC7 protein and tau 131, the second largest subunit of TFIIIC (that also interacts with TFIIIB70). rTFC7p can replace the B" component of TFIIIB for synthesis of U6 RNA in a system reconstituted with recombinant TBP and TFIIIB70 polypeptides and highly purified RNA polymerase III. Surprisingly, specific transcription of the SUP4 tRNATyr gene promoted by rTFC7p was much weaker than with B". An additional factor activity, provided by the recently identified TFIIIE fraction, was required to restore control levels of transcription.
Collapse
Affiliation(s)
- J Rüth
- Service de Biochimie et de Génétique Moléculaire, CEA-Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Kornacki JA, Chang CH, Figurski DH. kil-kor regulon of promiscuous plasmid RK2: structure, products, and regulation of two operons that constitute the kilE locus. J Bacteriol 1993; 175:5078-90. [PMID: 8349548 PMCID: PMC204974 DOI: 10.1128/jb.175.16.5078-5090.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The kil-kor regulon of IncP plasmid RK2 is a complex regulatory network that includes genes for replication and conjugal transfer, as well as for several potentially host-lethal proteins encoded by the kilA, kilB, and kilC loci. While kilB is known to be involved in conjugal transfer, the functions of kilA and kilC are unknown. The coregulation of kilA and kilC with replication and transfer genes indicates a possible role in the maintenance or broad host range of RK2. In this work, we found that a fourth kil locus, designated kilE, is located in the kb 2.4 to 4.5 region of RK2 and is regulated as part of the kil-kor regulon. The cloned kilE locus cannot be maintained in Escherichia coli host cells, unless korA or korC is also present in trans to control its expression. The nucleotide sequence of the kilE region revealed two potential multicistronic operons. The kleA operon consists of two genes, kleA and kleB, predicted to encode polypeptide products with molecular masses of 8.7 and 7.6 kDa, respectively. The kleC operon contains four genes, kleC, kleD, kleE, and kleF, with predicted products of 9.2, 8.0, 12.2, and 11.3 kDa, respectively. To identify the polypeptide products, each gene was cloned downstream of the phage T7 phi 10 promoter and expressed in vivo in the presence of T7 RNA polymerase. A polypeptide product of the expected size was observed for all six kle genes. In addition, kleF expressed a second polypeptide of 6 kDa that most likely results from the use of a predicted internal translational start site. The kleA and kleC genes are each preceded by sequences resembling strong sigma 70 promoters. Primer extension analysis revealed that the putative kleA and kleC promoters are functional in E. coli and that transcription is initiated at the expected nucleotides. The abundance of transcripts initiated in vivo from both the kleA and kleC promoters was reduced in cells containing korA or korC. When korA and korC were present together, they appeared to act synergistically in reducing the level of transcripts from both promoters. The kleA and kleC promoter regions are highly homologous and contain two palindromic sequences (A and C) that are the predicted targets for KorA and KorC proteins. DNA binding studies showed that protein extracts from korA-containing E. coli cells specifically retarded the electrophoretic mobility of DNA fragments containing palindrome A. Extracts from korC-containing cells altered the mobility of DNA fragments containing palindrome C. These results show that KorA and KorC both act as repressors of the kleAand kleC promoters. In the absence of korA and korC, expression of the cloned kleA operon was lethal to E.coli cells, whereas the cloned kleC operon gave rise to slowly growing, unhealthy colonies. Both phenotypes depended on at least one structural gene in each operon, suggesting that the operons encode genes whose products interact with critical host functions required for normal growth and viability. Thus, the kilA, kilC, and kilE loci of RK2 constitute a cluster of at least 10 genes that are coregulated with the plasmid replication initiator and the conjugal transfer system. Their potential toxicity to the host cell indicates that RK2 is able to establish a variety of intimate plasmid-host interactions that may be important to its survival in nature.
Collapse
Affiliation(s)
- J A Kornacki
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | | | |
Collapse
|
9
|
Displacement of Xenopus transcription factor IIIA from a 5S rRNA gene by a transcribing RNA polymerase. Mol Cell Biol 1991. [PMID: 2072903 DOI: 10.1128/mcb.11.8.3978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the absence of other components of the RNA polymerase III transcription machinery, transcription factor IIIA (TFIIIA) can be displaced from both strands of its DNA-binding site (the internal control region) on the somatic-type 5S rRNA gene of Xenopus borealis during transcription elongation by bacteriophage T7 RNA polymerase, regardless of which DNA strand is transcribed. Furthermore, substantial displacement is observed after the template has been transcribed only once. Since the complete 5S rRNA transcription complex has previously been shown to remain stably bound to the gene during repeated rounds of transcription by either RNA polymerase III or bacteriophage SP6 RNA polymerase, these results indicate that a factor(s) in addition to TFIIIA is required to create a complex that will remain stably associated with the template during transcription. Thus, transcription complex stability during passage of RNA polymerase cannot be explained solely on the basis of the DNA-binding properties of TFIIIA.
Collapse
|
10
|
Campbell FE, Setzer DR. Displacement of Xenopus transcription factor IIIA from a 5S rRNA gene by a transcribing RNA polymerase. Mol Cell Biol 1991; 11:3978-86. [PMID: 2072903 PMCID: PMC361196 DOI: 10.1128/mcb.11.8.3978-3986.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the absence of other components of the RNA polymerase III transcription machinery, transcription factor IIIA (TFIIIA) can be displaced from both strands of its DNA-binding site (the internal control region) on the somatic-type 5S rRNA gene of Xenopus borealis during transcription elongation by bacteriophage T7 RNA polymerase, regardless of which DNA strand is transcribed. Furthermore, substantial displacement is observed after the template has been transcribed only once. Since the complete 5S rRNA transcription complex has previously been shown to remain stably bound to the gene during repeated rounds of transcription by either RNA polymerase III or bacteriophage SP6 RNA polymerase, these results indicate that a factor(s) in addition to TFIIIA is required to create a complex that will remain stably associated with the template during transcription. Thus, transcription complex stability during passage of RNA polymerase cannot be explained solely on the basis of the DNA-binding properties of TFIIIA.
Collapse
Affiliation(s)
- F E Campbell
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
11
|
Huh YJ, Weiss AA. A 23-kilodalton protein, distinct from BvgA, expressed by virulent Bordetella pertussis binds to the promoter region of vir-regulated toxin genes. Infect Immun 1991; 59:2389-95. [PMID: 2050404 PMCID: PMC258023 DOI: 10.1128/iai.59.7.2389-2395.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bordetella pertussis coordinately regulates expression of its virulence factors in response to changing environmental conditions. These factors include pertussis toxin, adenylate cyclase toxin, and the filamentous hemagglutinin (FHA). The vir (or bvg) locus has been shown genetically to be required for this coordinate regulation. We have attempted to study the biochemical basis for coordinate regulation. DNA promoter deletion studies from other laboratories have shown that two tandem 20-bp repeats -157 to -117 bp upstream from the pertussis toxin promoter are essential for transcription. A similar 20-bp tandem repeat was found at the same site in the upstream region of the adenylate cyclase toxin promoter but is not present in the FHA or vir promoter region. Gel retardation revealed protein from virulent strains (able to express the virulence genes) but not from avirulent strains (unable to express the virulence genes) bound to the promoter region of the pertussis toxin gene, and this binding could be abolished by competition with an excess of oligonucleotides corresponding to either tandem repeat. The protein was determined to be 23 kDa by Southwestern (DNA-protein) analysis and could bind to either 20-bp oligonucleotide from the pertussis toxin promoter and either 20-bp oligonucleotide from the adenylate cyclase toxin promoter. BvgA, a 23-kDa protein encoded in the vir locus, has been reported to bind to a 14-bp inverted repeat in the FHA promoter which is not present in the pertussis toxin or adenylate cyclase promoter. We could not demonstrate binding of BvgA to the pertussis toxin promoter region. These data suggest that we have identified a second 23-kDa protein, distinct from BvgA but regulated by the vir operon, that binds to DNA sequences required for transcription of some, but not all, vir-regulated genes.
Collapse
Affiliation(s)
- Y J Huh
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298
| | | |
Collapse
|
12
|
Interaction of yeast transcription factor IIIC with dimeric Schizosaccharomyces pombe tRNASer-tRNAMet genes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47290-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Identification of a 150-kilodalton polypeptide that copurifies with yeast TFIIIC and binds specifically to tRNA genes. Mol Cell Biol 1989. [PMID: 2664466 DOI: 10.1128/mcb.9.5.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription in vitro of eucaryotic tRNA genes by RNA polymerase III requires two transcription factors, designated TFIIIB and TFIIIC. One of the critical functions of TFIIIC in the transcription of tRNA genes is that it interacts directly and specifically with the two internal promoter elements of these genes. We have partially purified Saccharomyces cerevisiae TFIIIC by chromatography on Bio-Rex 70, DEAE-cellulose, and phosphocellulose resins. A 150-kilodalton (kDa) DNA-binding polypeptide copurified with TFIIIC activity. This 150-kDa protein coeluted with the DNA-binding activity of TFIIIC after rechromatography of TFIIIC on phosphocellulose and its elution with a linear salt gradient. The stable and high-affinity interaction of this protein with tRNA genes was demonstrated by the maintenance of a protein-DNA complex under conditions of high ionic strength. Finally, we showed by two criteria that the interaction of this protein with tRNA genes was specific. First, the protein-DNA complex was competed with only by DNA-containing tRNA genes; second, the protein preferentially bound to DNA fragments containing a tRNA gene. These results strongly suggest that the DNA-binding domain of the yeast TFIIIC is contained within this 150-kDa polypeptide.
Collapse
|
14
|
Johnson DL, Wilson SL. Identification of a 150-kilodalton polypeptide that copurifies with yeast TFIIIC and binds specifically to tRNA genes. Mol Cell Biol 1989; 9:2018-24. [PMID: 2664466 PMCID: PMC362994 DOI: 10.1128/mcb.9.5.2018-2024.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transcription in vitro of eucaryotic tRNA genes by RNA polymerase III requires two transcription factors, designated TFIIIB and TFIIIC. One of the critical functions of TFIIIC in the transcription of tRNA genes is that it interacts directly and specifically with the two internal promoter elements of these genes. We have partially purified Saccharomyces cerevisiae TFIIIC by chromatography on Bio-Rex 70, DEAE-cellulose, and phosphocellulose resins. A 150-kilodalton (kDa) DNA-binding polypeptide copurified with TFIIIC activity. This 150-kDa protein coeluted with the DNA-binding activity of TFIIIC after rechromatography of TFIIIC on phosphocellulose and its elution with a linear salt gradient. The stable and high-affinity interaction of this protein with tRNA genes was demonstrated by the maintenance of a protein-DNA complex under conditions of high ionic strength. Finally, we showed by two criteria that the interaction of this protein with tRNA genes was specific. First, the protein-DNA complex was competed with only by DNA-containing tRNA genes; second, the protein preferentially bound to DNA fragments containing a tRNA gene. These results strongly suggest that the DNA-binding domain of the yeast TFIIIC is contained within this 150-kDa polypeptide.
Collapse
Affiliation(s)
- D L Johnson
- School of Pharmacy, Division of Biomedicinal Chemistry, University of Southern California, Los Angeles 90003
| | | |
Collapse
|
15
|
Gabrielsen OS, Marzouki N, Ruet A, Sentenac A, Fromageot P. Two polypeptide chains in yeast transcription factor τ interact with DNA. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83263-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Gottlieb E, Steitz JA. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J 1989; 8:851-61. [PMID: 2470590 PMCID: PMC400884 DOI: 10.1002/j.1460-2075.1989.tb03446.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have tested the hypothesis that the mammalian La protein, which appears to be required for accurate and efficient RNA polymerase III transcription, is a transcription termination factor. Our data suggest that 3' foreshortened transcripts generated in La's absence are components of a novel transcription intermediate containing a paused polymerase. These transcripts are produced by fractionated transcription complexes, are synthesized with kinetics different from full-length transcripts, and are chasable to completion from the stalled transcription complexes. Together, these findings argue that termination by RNA polymerase III requires auxilliary factor(s) and implicate La as such a factor. Since La appears to facilitate transcript completion and release and also binds the resulting RNA product, it may be a regulator of RNA polymerase III transcription.
Collapse
Affiliation(s)
- E Gottlieb
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
17
|
Rooney RJ, Harding JD. Transcriptional activity and factor binding are stimulated by separate and distinct sequences in the 5' flanking region of a mouse tRNAAsp gene. Nucleic Acids Res 1988; 16:2509-21. [PMID: 3362674 PMCID: PMC336386 DOI: 10.1093/nar/16.6.2509] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The transcriptional properties of two cloned mouse tRNAAsp genes were examined in vitro. The tRNA(2Asp) gene displays a five fold greater transcriptional activity than the tRNA(1Asp) gene and a greater ability to form stable complexes with transcription factors. Transcription of a hybrid gene with swapped 5' flanking sequences and of 5' flanking region deletion mutants demonstrates that the differential transcription of the genes results from stimulatory sequences in the 5' flanking region of the tRNA(2Asp) gene. Distal sequences including those between positions -53 and -31 stimulate transcription but do not affect factor binding. Proximal sequences between positions -9 and -1 enhance factor binding. Thus, binding of transcription factors and later steps required for transcription can be modulated by separate and distinct 5' flanking sequence motifs in eukaryotic tRNA genes.
Collapse
Affiliation(s)
- R J Rooney
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
18
|
Fabrizio P, Coppo A, Fruscoloni P, Benedetti P, Di Segni G, Tocchini-Valentini GP. Comparative mutational analysis of wild-type and stretched tRNA3(Leu) gene promoters. Proc Natl Acad Sci U S A 1987; 84:8763-7. [PMID: 3321052 PMCID: PMC299630 DOI: 10.1073/pnas.84.24.8763] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We demonstrate that, when the yeast tRNA(3Leu) gene is stretched so that the distance between the two portions of the intragenic promoter is increased to 365 base pairs, the A and B blocks remain functional. Mutations in the A block, which show a weak phenotype when inserted in the wild type, exert a dramatic effect when inserted into the stretched gene. Experiments with extensively purified transcription factor tau indicate that the tau B-B block interaction is not influenced by A-B distance; only the ability of tau A to interact with A block sequences is affected, possibly because of the additional free-energy cost of forming a large loop of the intervening DNA.
Collapse
Affiliation(s)
- P Fabrizio
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università degli Studi La Sapienza, Rome, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Baker RE, Camier S, Sentenac A, Hall BD. Gene size differentially affects the binding of yeast transcription factor tau to two intragenic regions. Proc Natl Acad Sci U S A 1987; 84:8768-72. [PMID: 2827154 PMCID: PMC299631 DOI: 10.1073/pnas.84.24.8768] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Yeast transcription factor tau (transcription factor IIIC) specifically interacts with tRNA genes, binding to both the A block and the B block elements of the internal promoter. To study the influence of A block-B block spacing, we analyzed the binding of purified tau protein to a series of internally deleted yeast tRNA(3Leu) genes with A and B blocks separated by 0 to 74 base pairs. Optimal binding occurred with genes having A block-B block distances of 30-60 base pairs; the relative helical orientation of the A and B blocks was unimportant. Results from DNase I "footprinting" and lambda exonuclease protection experiments were consistent with these findings and further revealed that changes in A block-B block distance primarily affect the ability of tau to interact with A block sequences; B block interactions are unaltered. When the A block-B block distance is 17 base pairs or less, tau interacts with a sequence located 15 base pairs upstream of the normal A block, and a new RNA initiation site is observed by in vitro transcription. We propose that the initial binding of tau to the B block activates transcription by enhancing its ability to bind at the A block, and that the A block interaction ultimately directs initiation by RNA polymerase III.
Collapse
Affiliation(s)
- R E Baker
- Department of Genetics, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
20
|
Gutierrez-Hartmann A, Baxter JD. Differential ability of various plasmid DNAs to sequester inhibitors of RNA polymerase III transcription. DNA (MARY ANN LIEBERT, INC.) 1987; 6:231-7. [PMID: 3109865 DOI: 10.1089/dna.1987.6.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deletion mutants of the Drosophila tRNA(Arg) gene that lack A-box promoter sequences are not transcribed in several cell-free systems; however, they are actively expressed in vivo in Xenopus oocytes (Sharp et al., 1983a). We show that two A-box deletion mutants of the tRNA(Arg) gene can be transcribed by a HeLa cell-free transcription system if it is preincubated with various DNAs, indicating that an inhibitor is responsible for the lack of mutant tRNA gene transcription. Optimal mutant transcription rescue, and presumably optimal binding of inhibitor, is facilitated by the presence of an active RNA polymerase II promoter in the preincubating DNA. Plasmid DNAs containing RNA polymerase III or weak RNA polymerase II promoters are of intermediate rescue efficiency, and pBR322 DNA is least efficient. Competition studies indicate that the stability of the inhibitor-DNA complex formed initially is apparently increased if the preincubating DNA contains an active RNA polymerase II promoter. Thus, HeLa whole-cell lysates contain a specific inhibitor(s) of RNA polymerase III transcription that primarily affects weakened RNA polymerase III promoters (e.g., A-box deletion mutants) and binds preferentially to DNAs containing an active RNA polymerase II promoter. Yet this apparent sequestration of inhibitor by Class II templates does not appear to inhibit their subsequent transcription by RNA polymerase II. These data raise the possibility that there may be interactions between the RNA polymerase II and III transcription machinery.
Collapse
|
21
|
Sullivan MA, Folk WR. Transcription of eucaryotic tRNA1met and 5SRNA genes by RNA polymerase III is blocked by base mismatches in the intragenic control regions. Nucleic Acids Res 1987; 15:2059-68. [PMID: 3645544 PMCID: PMC340617 DOI: 10.1093/nar/15.5.2059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have constructed duplex DNAs containing single G-T or A-C mismatches in the X. laevis tRNA1met gene. Mismatches within regions of this gene which are bound by transcription factor TFIIIC prevent transcription by RNA polymerase III. Homoduplexes with G-C----A-T mutations at some of the same sites, however, are transcribed efficiently in oocytes. Mismatches outside of the tRNA1met gene have no effect upon transcription. A survey of several point mutants in the Syrian hamster 5SRNA gene indicates that mismatches outside the internal control region somewhat reduce transcription, but a mismatch within the internal control region blocks transcription. Thus, the presence of mismatched bases in the region of DNA which interacts with RNA polymerase III transcription factors blocks transcription, perhaps by interfering with DNA renaturation following transit of the RNA polymerase.
Collapse
|
22
|
Wingender E, Seifart KH. Transkription in Eukaryonten – die Rolle von Transkriptionskomplexen und ihren Komponenten. Angew Chem Int Ed Engl 1987. [DOI: 10.1002/ange.19870990307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Mutational analysis of the coordinate expression of the yeast tRNAArg-tRNAAsp gene tandem. Mol Cell Biol 1987. [PMID: 3537719 DOI: 10.1128/mcb.6.7.2436] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNA genes occur in the yeast genome as highly dispersed and independent transcriptional units. The 5'-tRNAArg-tRNAAsp-3' gene tandem, separated by a 10-base-pair spacer sequence, thus represents a rare case of tight clustering. Previous in vitro studies did not reveal any primary transcript from the tRNAAsp gene, but rather a dimeric precursor containing both gene sequences plus spacer, which undergoes a series of maturation steps. This seems anomalous since the tRNAAsp gene contains the sequences necessary for its own transcription. We found that site-directed mutation of the highly conserved C at position 56 to a G in the tRNAArg gene suppresses all transcription and does not activate the tRNAAsp gene. Precise deletion of the entire tRNAArg gene gives a similar result. Rescue of tRNAAsp gene transcription is effected either by the precise deletion of both the tRNAArg gene and spacer or by the precise deletion of this gene with concomitant introduction of an artificial RNA polymerase III start site in the spacer. This artificial start site is ineffective if the tRNAArg gene is present upstream.
Collapse
|
24
|
Competitive and cooperative functioning of the anterior and posterior promoter elements of an Alu family repeat. Mol Cell Biol 1986. [PMID: 3023916 DOI: 10.1128/mcb.6.6.2041] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Similar to tRNA genes and the VAI gene, the Alu family repeats are transcribed by RNA polymerase III and contain a split intragenic promoter. Results of our previous studies have shown that when the anterior, box A-containing promoter element (5'-Pu-Pu-Py-N-N-Pu-Pu-Py-G-G-3' in which Pu is any purine, Py is any pyrimidine, and N is any nucleotide) of a human Alu family repeat is deleted, the remaining box B-containing promoter element (5'-G-A/T-T-C-Pu-A-N-N-C-3') is still capable of directing weak transcriptional initiation at approximately 70 base pairs (bp) upstream from the box B sequence. This is different from the tRNA genes in which the box A-containing promoter element plays the major role in the positioning of the transcriptional initiation site(s). To account for this difference, we first carried out competition experiments in which we show that the posterior element of the Alu repeat competes with the VAI gene effectively for the transcription factor C in HeLa cell extracts. We then constructed a series of contraction and expansion mutants of the Alu repeat promoter in which the spacing between boxes A and B was systematically varied by molecular cloning. In vitro transcription of these clones in HeLa cell extracts was analyzed by RNA gel electrophoresis and primer extension mapping. We show that when the box A and box B promoter sequences are separated by 47 to 298 bp, the transcriptional initiation sites remain 4 to 5 bp upstream from box A. However, this positioning function by the box A-containing promoter element was lost when the spacing was shortened to only 26 bp or increased to longer than 600 bp. Instead, transcriptional initiation occurred approximately 70 bp upstream from box B, similar to that in the clones containing only the box B promoter element. All the mutant clones were transcribed less efficiently than was the wild type. An increase in the distance between boxes A and B also activated a second box A-like element within the Alu family repeat. We compare these results with the results of tRNA gene studies. We also discuss this comparison in terms of the positioning function of the split class III promoter elements and the evolutionary conservation of the spacing between the two promoter elements for optimum transcriptional efficiency.
Collapse
|
25
|
Marzouki N, Camier S, Ruet A, Moenne A, Sentenac A. Selective proteolysis defines two DNA binding domains in yeast transcription factor tau. Nature 1986; 323:176-8. [PMID: 3528868 DOI: 10.1038/323176a0] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcription of eukaryotic transfer RNA genes involves, as a primary event, the stable binding of a protein factor to the intragenic promoter. The internal control region is composed of two non-contiguous conserved sequence elements, the A and B blocks. These are variably spaced depending on the genes. tau, a large transcription factor purified from yeast cells, interacts with these two control elements as shown by DNase I footprinting, exonuclease digestion, dimethyl sulphate protection experiments and by analysis of point mutations. Here we used a limited proteolysis treatment to obtain a smaller form of tau with drastically altered DNA binding properties. A protease-resistant domain interacts solely with the B block region of tRNA genes.
Collapse
|
26
|
Reyes VM, Newman A, Abelson J. Mutational analysis of the coordinate expression of the yeast tRNAArg-tRNAAsp gene tandem. Mol Cell Biol 1986; 6:2436-42. [PMID: 3537719 PMCID: PMC367797 DOI: 10.1128/mcb.6.7.2436-2442.1986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
tRNA genes occur in the yeast genome as highly dispersed and independent transcriptional units. The 5'-tRNAArg-tRNAAsp-3' gene tandem, separated by a 10-base-pair spacer sequence, thus represents a rare case of tight clustering. Previous in vitro studies did not reveal any primary transcript from the tRNAAsp gene, but rather a dimeric precursor containing both gene sequences plus spacer, which undergoes a series of maturation steps. This seems anomalous since the tRNAAsp gene contains the sequences necessary for its own transcription. We found that site-directed mutation of the highly conserved C at position 56 to a G in the tRNAArg gene suppresses all transcription and does not activate the tRNAAsp gene. Precise deletion of the entire tRNAArg gene gives a similar result. Rescue of tRNAAsp gene transcription is effected either by the precise deletion of both the tRNAArg gene and spacer or by the precise deletion of this gene with concomitant introduction of an artificial RNA polymerase III start site in the spacer. This artificial start site is ineffective if the tRNAArg gene is present upstream.
Collapse
|
27
|
Perez-Stable C, Shen CK. Competitive and cooperative functioning of the anterior and posterior promoter elements of an Alu family repeat. Mol Cell Biol 1986; 6:2041-52. [PMID: 3023916 PMCID: PMC367744 DOI: 10.1128/mcb.6.6.2041-2052.1986] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Similar to tRNA genes and the VAI gene, the Alu family repeats are transcribed by RNA polymerase III and contain a split intragenic promoter. Results of our previous studies have shown that when the anterior, box A-containing promoter element (5'-Pu-Pu-Py-N-N-Pu-Pu-Py-G-G-3' in which Pu is any purine, Py is any pyrimidine, and N is any nucleotide) of a human Alu family repeat is deleted, the remaining box B-containing promoter element (5'-G-A/T-T-C-Pu-A-N-N-C-3') is still capable of directing weak transcriptional initiation at approximately 70 base pairs (bp) upstream from the box B sequence. This is different from the tRNA genes in which the box A-containing promoter element plays the major role in the positioning of the transcriptional initiation site(s). To account for this difference, we first carried out competition experiments in which we show that the posterior element of the Alu repeat competes with the VAI gene effectively for the transcription factor C in HeLa cell extracts. We then constructed a series of contraction and expansion mutants of the Alu repeat promoter in which the spacing between boxes A and B was systematically varied by molecular cloning. In vitro transcription of these clones in HeLa cell extracts was analyzed by RNA gel electrophoresis and primer extension mapping. We show that when the box A and box B promoter sequences are separated by 47 to 298 bp, the transcriptional initiation sites remain 4 to 5 bp upstream from box A. However, this positioning function by the box A-containing promoter element was lost when the spacing was shortened to only 26 bp or increased to longer than 600 bp. Instead, transcriptional initiation occurred approximately 70 bp upstream from box B, similar to that in the clones containing only the box B promoter element. All the mutant clones were transcribed less efficiently than was the wild type. An increase in the distance between boxes A and B also activated a second box A-like element within the Alu family repeat. We compare these results with the results of tRNA gene studies. We also discuss this comparison in terms of the positioning function of the split class III promoter elements and the evolutionary conservation of the spacing between the two promoter elements for optimum transcriptional efficiency.
Collapse
|
28
|
Carey MF, Gerrard SP, Cozzarelli NR. Analysis of RNA polymerase III transcription complexes by gel filtration. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35662-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Hottinger-Werlen A, Schaack J, Lapointe J, Mao J, Nichols M, Söll D. Dimeric tRNA gene arrangement in Schizosaccharomyces pombe allows increased expression of the downstream gene. Nucleic Acids Res 1985; 13:8739-47. [PMID: 3936021 PMCID: PMC318948 DOI: 10.1093/nar/13.24.8739] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Three Schizosaccharomyces pombe dimeric tRNA genes, consisting of a tRNASer gene encoding a minor species with an intervening sequence followed by a tRNAMeti gene, have been described [Mao et al. (1980) Cell 21, 509-516; Hottinger et al. (1982) Mol. Gen. Genet. 188, 219-224; Willis et al. (1984) EMBO J. 3, 1573-1580]. We have examined the reason for the dimeric structure by comparing the transcriptional efficiencies and competitive abilities of the genes subcloned from the dimeric arrangement. Both of the subcloned genes are active in vivo in Saccharomyces cerevisiae, but only the tRNASer gene is efficiently transcribed in vitro. The tRNASer gene competes efficiently for transcription factors, while the tRNAMeti gene does so only weakly. Thus, it appears that the dimeric arrangement is required to support expression of the tRNAMeti gene. S. pombe genes encoding major species of tRNASer are transcribed considerably less efficiently than are the minor genes from the dimers, so coupling of the tRNAMeti gene to the minor species genes should lead to efficient production of tRNAMeti.
Collapse
|
30
|
Drabkin HJ, RajBhandary UL. Attempted expression of a human initiator tRNA gene in Saccharomyces cerevisiae. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89064-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
31
|
Schaack J, Söll D. Transcription of a Drosophila tRNAArg gene in yeast extract: 5'-flanking sequence dependence for transcription in a heterologous system. Nucleic Acids Res 1985; 13:2803-14. [PMID: 3889849 PMCID: PMC341195 DOI: 10.1093/nar/13.8.2803] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Drosophila tRNA gene encoded on pArg is efficiently transcribed in extracts of Saccharomyces cerevisiae, but the efficiency is 5'-flanking sequence dependent: deletion to between positions -21 and -17 (relative to position +1 of the mature coding sequence) reduces transcription to a very low level. This demonstrates that requirement for wild-type 5'-flanking sequence exists in the case of a heterologous combination of a tRNA gene and transcription extract. Expression of pArg in vivo in S. cerevisiae is also dependent on the wild-type 5'-flanking sequence, but only with deletion to between -17 and -11 is the steady-state level of pArg transcripts reduced to near zero. The 5'-flanking sequence requirement in S. cerevisiae extract is similar to that found in Drosophila Kc cell extract. However, transcription kinetics distinguish S. cerevisiae extract from that of Drosophila Kc cells. tRNA genes added to S. cerevisiae extract exhibit a lag phase before initiation of active transcription, but this lag is much shorter and much less temperature dependent than is the lag phase in Drosophila Kc cell extract.
Collapse
|
32
|
Taylor MJ, Segall J. Characterization of factors and DNA sequences required for accurate transcription of the Saccharomyces cerevisiae 5 S RNA gene. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89296-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Camier S, Gabrielsen O, Baker R, Sentenac A. A split binding site for transcription factor tau on the tRNA3Glu gene. EMBO J 1985; 4:491-500. [PMID: 2862029 PMCID: PMC554212 DOI: 10.1002/j.1460-2075.1985.tb03655.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Yeast transcription factor tau forms a stable complex with tRNA genes. Using this property, the factor could be highly purified on a specific tDNA column. The purified factor was found by DNA footprinting to protect the whole yeast tRNA3Glu gene from position -8 to +81. A DNase-sensitive site was retained in the middle of the gene on both strands. The 3' border of the complex was mapped by exonuclease digestion at +88, just downstream of the termination signal. The 5' limit of the complex was found at position -11. However, upon prolonged incubation with exonuclease, the -11 blockage disappeared and the DNA molecules were digested to position +30 to 38 in the middle of the gene. Contact points at guanine residues were identified by dimethyl sulphate protection experiments. Reduced methylation of G residues in the presence of factor was found solely within the A block and in the B block region. All six invariant GC pairs (i.e., G10, G18, G19 and G53, C56 and C61) were found to have strong contacts with the factor. These results show that tau factor interacts with both the 5' and 3' half of the tRNA3Glu gene, with the B block region being the predominant binding site. The presence of this dual binding site suggests a model in which the factor would bind alternately at the A and B block regions to allow transcription of the internal promoter by RNA polymerase C.
Collapse
|
34
|
Abstract
This review will attempt to cover the present information on the multiple forms of eukaryotic DNA-dependent RNA polymerases, both at the structural and functional level. Nuclear RNA polymerases constitute a group of three large multimeric enzymes, each with a different and complex subunit structure and distinct specificity. The review will include a detailed description of their molecular structure. The current approaches to elucidate subunit function via chemical modification, phosphorylation, enzyme reconstitution, immunological studies, and mutant analysis will be described. In vitro reconstituted systems are available for the accurate transcription of cloned genes coding for rRNA, tRNA, 5 SRNA, and mRNA. These systems will be described with special attention to the cellular factors required for specific transcription. A section on future prospects will address questions concerning the significance of the complex subunit structure of the nuclear enzymes; the organization and regulation of the gene coding for RNA polymerase subunits; the obtention of mutants affected at the level of factors, or RNA polymerases; the mechanism of template recognition by factors and RNA polymerase.
Collapse
|
35
|
Sharp SJ, Schaack J, Cooley L, Burke DJ, Söll D. Structure and transcription of eukaryotic tRNA genes. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1985; 19:107-44. [PMID: 3905254 DOI: 10.3109/10409238509082541] [Citation(s) in RCA: 210] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The availability of cloned tRNA genes and a variety of eukaryotic in vitro transcription systems allowed rapid progress during the past few years in the characterization of signals in the DNA-controlling gene transcription and in the processing of the precurser RNAs formed. This will be the subject matter discussed in this review.
Collapse
|
36
|
Burke DJ, Söll D. Functional analysis of fractionated Drosophila Kc cell tRNA gene transcription components. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(20)71171-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Johnson JD, Raymond GJ, deParasis J. Transcription of tRNA gene fragments by HeLa cell extracts. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:55-61. [PMID: 6392825 DOI: 10.1007/bf00327922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Promoter elements for tRNA genes from several eukaryotes have been identified in the coding regions of the DNA. There are two non-contiguous sequences, an A-block or D-control region and a B-block or T-control region, located in the 5'- and 3'-halves of the tRNA sequence respectively. Both sequences are about 12 bp in length and are strongly conserved in all tRNA genes. We and others have recently shown that some tRNA genes from yeast and insects have a third control region located in the 5'-flanking sequences adjacent to tDNA. The tRNALeu3 genes from yeast have such a sequence. It is strongly conserved in non-allelic copies of tRNALeu3 genes as well as several other yeast tRNA genes. This 5'-flanking sequence is indispensable for transcription of the gene in an in vitro system derived from yeast cells. Further, the transcription apparatus from yeast will recognize and transcribe gene fragments including the 5'-flanking sequence in conjunction with either the A or B-blocks. Neither the 5'-flanking sequence alone nor the A and B-blocks lacking the 5'-flanking region can act as promoters in the yeast system. We have used these tRNALeu3 gene fragments to analyze the promoter activity of the three control regions with a Hela cell extract which actively transcribes class III genes. We find that the Hela cell system requires the presence of both A and B-block sequences and is insensitive to 5'-flanking DNA.
Collapse
|
38
|
Gutierrez-Hartmann A, Lieberburg I, Gardner D, Baxter JD, Cathala GG. Transcription of two classes of rat growth hormone gene-associated repetitive DNA: differences in activity and effects of tandem repeat structure. Nucleic Acids Res 1984; 12:7153-73. [PMID: 6091058 PMCID: PMC320148 DOI: 10.1093/nar/12.18.7153] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The rat growth hormone (rGH) gene contains two classes of repetitive DNA arranged as clusters within intron B and the 3' flanking region. The major family is equivalent to the CHO type 2 DNA. The second ("truncated repeat", TR) is a truncated version of the first and occurs in certain neural-specific transcripts and genes ("identifier" elements, ID). Here we report, using the HeLa cell-free transcription assay, that RNA polymerase III (Pol III) efficiently initiates at internal promoters within a tandem array of rGH gene repetitive DNA monomers and results in a novel organization of overlapping Class III transcription units. Transcription competition studies revealed that the rat type 2 structures share Pol III transcription factors with a tRNA gene, a human Alu repeat, and a mutant VA1 gene. Also, the rGH type 2 but not the TR DNA efficiently promotes Pol III initiation, yet other TR members, which differ only in flanking DNA, are transcribed. Thus, the rGH gene is strikingly enriched with 10 repetitive DNA monomers; multimeric type 2 elements are actively transcribed; rGH-TR sequences are expressed only as part of larger transcripts promoted by type 2 DNA; and, type 2 DNA uses tRNA gene transcription factors. These studies show that flanking sequences, promoter organization and factor competition may all affect rat repetitive DNA expression.
Collapse
|
39
|
Perez-Stable C, Ayres TM, Shen CK. Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc Natl Acad Sci U S A 1984; 81:5291-5. [PMID: 6089189 PMCID: PMC391689 DOI: 10.1073/pnas.81.17.5291] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Plasmid clones containing a human Alu family repeat can be transcribed efficiently by RNA polymerase III in HeLa cell extract. This generated three RNA species, all of which initiated from the first base (+1) of the repeat. By studying the transcriptional properties of deletion clones, subclones, and topologically different DNA templates, we demonstrated that: supercoiled DNA templates are transcribed 3- to 5-fold more efficiently than are linear or nicked circular DNA molecules; a contiguous DNA helix in the transcription complexes that extends into the 5' flanking region of positions -30 to -85 is absolutely required for initiation to occur (this interaction does not involve recognition of specific DNA sequences); and similar to the adenovirus VAI RNA and tRNA genes, the Alu repeat 3' to the alpha 1-globin gene (designated 3'-alpha 1 Alu) contains a split intragenic promoter: an anterior element (positions +4 to +37) and a posterior element (positions +70 to +82). However, the promoter of the Alu repeat functions in distinctive ways in comparison to those of other RNA polymerase III-dependent genes. The posterior promoter element alone is sufficient and necessary for an accurate initiation to occur. The presence of the anterior promoter element, which by itself does not initiate transcription, enhances the transcriptional efficiency by a factor of 10- to 20-fold. Furthermore, the distance between the initiation sites and the posterior promoter element, but not the anterior promoter element, remains constant. These results suggest that the promoter of this Alu family repeat consists of at least two functionally different domains: a "directing element" (the posterior promoter element) that determines the accuracy of initiation and an "enhancing element" (the anterior promoter element) that is mainly responsible for the transcriptional efficiency.
Collapse
|
40
|
Effects of altered 5'-flanking sequences on the in vivo expression of a Saccharomyces cerevisiae tRNATyr gene. Mol Cell Biol 1984. [PMID: 6371493 DOI: 10.1128/mcb.4.4.657] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion mutations ending in the 5'-flanking sequences of the Saccharomyces cerevisiae SUP4-o gene have been analyzed for their effects on gene expression. This ochre-suppressing tRNATyr gene was cloned into a S. cerevisiae centromeric plasmid, and its level of in vivo expression was monitored by observing the suppressor phenotype of the gene after transformation into S. cerevisiae. A deletion mutant that retains only four base pairs of the 5'-flanking sequence is profoundly deficient in expression; deletion mutants extending to positions -18, -17, -16, or -15 are moderately deficient; deletion mutants extending to positions -36 or -27 are slightly defective; and mutants retaining more than 60 base pairs of the original 5'-flanking DNA are expressed normally. In some cases, the cloning procedure led to the introduction of multiple BamHI linkers at the SUP4-o-vector fusion site, and in one instance, the resulting structure dramatically affects gene function: the presence of three linkers abutting a -18 deletion completely inhibits the in vivo expression of SUP4-o. In contrast, three linkers that abut a -77 deletion have no effect on in vivo expression. The template properties of these plasmids in a homologous in vitro transcription system parallel the levels of in vivo expression, suggesting that the mutations predominantly affect transcription. The data demonstrate that there are significant functional constraints on the 5'-flanking sequences of this RNA polymerase III-transcribed gene. The dramatic effects of the multiple linker insertion at position -18 suggest that there may be extensive melting of the DNA in this region during normal transcription initiation.
Collapse
|
41
|
von Beroldingen CH, Reynolds WF, Millstein L, Bazett-Jones DP, Gottesfeld JM. Eukaryotic transcription complexes. Mol Cell Biochem 1984; 62:97-108. [PMID: 6379414 DOI: 10.1007/bf00223300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Accurate transcription of eukaryotic genes in vitro is preceeded by the assembly of the template DNA into stable DNA-protein complexes. Such complexes have been reported for genes transcribed by each of the three eukaryotic RNA polymerases. DNAase I protection or footprint assays have yielded information as to the sites of protein factor binding. These sites correlate with many of the sequences which have been implicated as promoter elements through analysis of deletion mutants. Stable transcription complexes are also formed in microinjected Xenopus oocytes and such complexes can be shown to exist in vivo in nuclei and chromatin. The propagation of active transcription complexes may prove to be a crucial element in cellular differentiation.
Collapse
|
42
|
Correlations between transcription of a yeast tRNA gene and transcription factor-DNA interactions. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42885-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Sharp S, Dingermann T, Schaack J, Sharp JA, Burke DJ, DeRobertis EM, Söll D. Each element of the Drosophila tRNAArg gene split promoter directs transcription in Xenopus oocytes. Nucleic Acids Res 1984; 11:8677-90. [PMID: 6561520 PMCID: PMC326616 DOI: 10.1093/nar/11.24.8677] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intragenic control regions of a eukaryotic tRNA gene have been examined by transcribing mutant forms of a Drosophila tRNAArg gene either by injection into the nucleus of Xenopus oocytes or in extracts prepared from isolated oocyte nuclei. These experiments demonstrate that the selection of the transcription initiation site is a complex mechanism that involves the T-control region, the D-control region, and sequences 5' adjacent to the D-control region. In this study either "half" of the Drosophila tRNAArg gene promoted transcription in Xenopus oocytes. This finding supports a recent model for eukaryotic tRNA gene transcription (Dingermann et al., 1983, J. Biol. Chem. 258, 10395-10402) that proposes transcription initiation is dependent on the ability of specific DNA sequences to sequester two RNA polymerase III transcription factors.
Collapse
|
44
|
Johnson JD, Raymond GJ. Three regions of a yeast tRNALeu3 gene promote RNA polymerase III transcription. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)91111-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Shaw KJ, Olson MV. Effects of altered 5'-flanking sequences on the in vivo expression of a Saccharomyces cerevisiae tRNATyr gene. Mol Cell Biol 1984; 4:657-65. [PMID: 6371493 PMCID: PMC368776 DOI: 10.1128/mcb.4.4.657-665.1984] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Deletion mutations ending in the 5'-flanking sequences of the Saccharomyces cerevisiae SUP4-o gene have been analyzed for their effects on gene expression. This ochre-suppressing tRNATyr gene was cloned into a S. cerevisiae centromeric plasmid, and its level of in vivo expression was monitored by observing the suppressor phenotype of the gene after transformation into S. cerevisiae. A deletion mutant that retains only four base pairs of the 5'-flanking sequence is profoundly deficient in expression; deletion mutants extending to positions -18, -17, -16, or -15 are moderately deficient; deletion mutants extending to positions -36 or -27 are slightly defective; and mutants retaining more than 60 base pairs of the original 5'-flanking DNA are expressed normally. In some cases, the cloning procedure led to the introduction of multiple BamHI linkers at the SUP4-o-vector fusion site, and in one instance, the resulting structure dramatically affects gene function: the presence of three linkers abutting a -18 deletion completely inhibits the in vivo expression of SUP4-o. In contrast, three linkers that abut a -77 deletion have no effect on in vivo expression. The template properties of these plasmids in a homologous in vitro transcription system parallel the levels of in vivo expression, suggesting that the mutations predominantly affect transcription. The data demonstrate that there are significant functional constraints on the 5'-flanking sequences of this RNA polymerase III-transcribed gene. The dramatic effects of the multiple linker insertion at position -18 suggest that there may be extensive melting of the DNA in this region during normal transcription initiation.
Collapse
|
46
|
Kjellin-Straby K, Engelke DR, Abelson J. Homologous in vitro transcription of linear DNA fragments containing the tRNAArg-tRNAAsp gene pair from Saccharomyces cerevisiae. DNA (MARY ANN LIEBERT, INC.) 1984; 3:167-71. [PMID: 6373202 DOI: 10.1089/dna.1984.3.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transcription of a tRNAArg-tRNAAsp gene pair from Saccharomyces cerevisiae by an homologous yeast extract results in a dimeric percursor molecule which is processed to mature-sized tRNAArg and tRNAAsp molecules. We have transcribed linear DNA fragments cleaved within the gene sequences to show that precursor synthesis is not dependent on the internal promoter of the second gene (tRNAAsp). Furthermore, the second gene does not support independent transcription when the normal upstream initiation site is removed.
Collapse
|
47
|
Hörcher R, Seifart KH. The duck alpha A globin but not the yeast actin gene is transcribed by a HeLa cell extract. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 139:201-8. [PMID: 6321176 DOI: 10.1111/j.1432-1033.1984.tb07995.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have investigated the transcription in a HeLa whole-cell extract of two evolutionary widely separated structural genes coding for duck alpha A globin and yeast actin. Transcription of isolated DNA fragments of the duck alpha A globin gene increases linearly up to relatively high concentrations of DNA. Size analyses and S1 mapping of the transcripts synthesized in vitro on either linear DNA fragments or supercoiled templates reveal that the alpha A globin RNA is initiated at the in vivo cap site and remains unspliced. The same assay conditions were used to transcribe the yeast actin gene. In contrast to the duck gene, size analyses and S1 mapping of the RNA products synthesized on both linear DNA fragments and the supercoiled template containing the actin gene show that the transcripts found in vitro do not stem from the in vivo cap site. The promoter of the yeast actin gene is not recognized in this system in vitro.
Collapse
|
48
|
Organization of the noncontiguous promoter components of adenovirus VAI RNA gene is strikingly similar to that of eucaryotic tRNA genes. Mol Cell Biol 1984. [PMID: 6656762 DOI: 10.1128/mcb.3.11.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intragenic transcriptional control region (internal promoter) of the adenovirus type 2 VAI RNA gene was mutated by deletion, insertion, and substitution of DNA sequences at the plasmid level. The mutant plasmids were assayed for in vitro transcriptional activity by using HeLa cell extracts. The mutant clones with substitution or insertion of DNA sequences or both between nucleotides +18 and +53 of the VAI RNA gene were all transcriptionally active, although to various extents. Substitution of unrelated DNA sequences up to +26 or between +54 and +61 abolished the transcriptional activity completely. Based on these results, the intragenic promoter sequences of the VAI RNA gene can be subdivided into two components: element A, +10 to +18; and element B, +54 to +69. The distance between the A and B components could be enlarged from its normal 35 base pairs to 75 base pairs without destroying the transcriptional activity. However, a deletion of 4 or 6 base pairs in the DNA segment separating the A and B components (segment C) reduced the transcriptional activity of the genes to less than 2% of that of the wild type. When the VAI RNA gene with its element A or B was substituted for the corresponding element A or B of the Xenopus laevis tRNAMet gene, the hybrid genes transcribed close to the level of the wild-type VAI RNA gene and about 10- to 20-fold more efficiently than the tRNAMet gene. Thus, the organization of DNA sequences in the internal promoter of the VAI RNA gene appears to be very similar to that of eucaryotic tRNA genes. This similarity suggests an evolutionary relationship of the VAI RNA gene to tRNA genes.
Collapse
|
49
|
HeLa cell RNA polymerase III transcription factors. Functional characterization of a fraction identified by its activity in a second template rescue assay. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43497-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
50
|
Ruet A, Camier S, Smagowicz W, Sentenac A, Fromageot P. Isolation of a class C transcription factor which forms a stable complex with tRNA genes. EMBO J 1984; 3:343-50. [PMID: 6370678 PMCID: PMC557347 DOI: 10.1002/j.1460-2075.1984.tb01809.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A yeast extract was fractionated to resolve the factors involved in the transcription of yeast tRNA genes. An in vitro transcription system was reconstituted with two separate protein fractions and purified RNA polymerase C (III). Optimal conditions for tRNA synthesis have been determined. One essential component, termed tau factor, was partially purified by conventional chromatographic methods on heparin-agarose and DEAE-Sephadex; it sedimented as a large macromolecule in glycerol gradients (mol. wt. approximately 300 000). tau factor was found to form a stable complex with the tRNA gene in the absence of other transcriptional components. Complex formation is very fast, is not temperature dependent between 10 degrees C and 25 degrees C and does not require divalent cations. The factor-DNA complex is stable for at least 30 min at high salt concentration (0.1 M ammonium sulfate). These results indicate that gene recognition by a specific factor is a primary event in tRNA synthesis.
Collapse
|