1
|
Marušič M, Schlagnitweit J, Petzold K. RNA Dynamics by NMR Spectroscopy. Chembiochem 2019; 20:2685-2710. [PMID: 30997719 PMCID: PMC6899578 DOI: 10.1002/cbic.201900072] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Indexed: 12/22/2022]
Abstract
An ever-increasing number of functional RNAs require a mechanistic understanding. RNA function relies on changes in its structure, so-called dynamics. To reveal dynamic processes and higher energy structures, new NMR methods have been developed to elucidate these dynamics in RNA with atomic resolution. In this Review, we provide an introduction to dynamics novices and an overview of methods that access most dynamic timescales, from picoseconds to hours. Examples are provided as well as insight into theory, data acquisition and analysis for these different methods. Using this broad spectrum of methodology, unprecedented detail and invisible structures have been obtained and are reviewed here. RNA, though often more complicated and therefore neglected, also provides a great system to study structural changes, as these RNA structural changes are more easily defined-Lego like-than in proteins, hence the numerous revelations of RNA excited states.
Collapse
Affiliation(s)
- Maja Marušič
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| | - Katja Petzold
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetSolnavägen 917177StockholmSweden
| |
Collapse
|
2
|
Base-pair Opening Dynamics of Nucleic Acids in Relation to Their Biological Function. Comput Struct Biotechnol J 2019; 17:797-804. [PMID: 31312417 PMCID: PMC6607312 DOI: 10.1016/j.csbj.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Base-pair opening is a conformational transition that is required for proper biological function of nucleic acids. Hydrogen exchange, observed by NMR spectroscopic experiments, is a widely used method to study the thermodynamics and kinetics of base-pair opening in nucleic acids. The hydrogen exchange data of imino protons are analyzed based on a two-state (open/closed) model for the base-pair, where hydrogen exchange only occurs from the open state. In this review, we discuss examples of how hydrogen exchange data provide insight into several interesting biological processes involving functional interactions of nucleic acids: i) selective recognition of DNA by proteins; ii) regulation of RNA cleavage by site-specific mutations; iii) intermolecular interaction of proteins with their target DNA or RNA; iv) formation of PNA:DNA hybrid duplexes. This review systematically summarizes hydrogen exchange theory for base-paired imino protons of nucleic acids. Base-pair opening kinetics explain how the DNA can be selectively recognized by its target proteins. Base-pair opening kinetics explain the mechanisms by which site-specific mutations regulate RNA cleavage. Hydrogen exchange studies can elucidate the intermolecular interaction of proteins with their target DNA or RNA.
Collapse
|
3
|
Bartova S, Pechlaner M, Donghi D, Sigel RKO. Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR. J Biol Inorg Chem 2016; 21:319-28. [PMID: 26880094 DOI: 10.1007/s00775-016-1341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped (1)H, (15)N, (13)C, and (31)P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5'-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be.
Collapse
Affiliation(s)
- Simona Bartova
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Maria Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Daniela Donghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS). Arch Virol 2013; 159:235-48. [PMID: 23942952 PMCID: PMC3906528 DOI: 10.1007/s00705-013-1802-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/19/2013] [Indexed: 11/05/2022]
Abstract
Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted “modified panhandle” structure, the 5’ and 3’ termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3’- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3’ adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5’- and 3’-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties.
Collapse
|
5
|
Zhao Q, Huang HC, Nagaswamy U, Xia Y, Gao X, Fox GE. UNAC tetraloops: to what extent do they mimic GNRA tetraloops? Biopolymers 2012; 97:617-28. [PMID: 22605553 DOI: 10.1002/bip.22049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structures of four small RNAs each containing a different version of the UNAC loop were determined in solution using NMR spectroscopy and restrained molecular dynamics. The UMAC tetraloops (where M is A or C) exhibited a typical GNRA fold including at least one hydrogen bond between the first U and fourth C. In contrast, UGAC and UUAC tetraloops have a different orientation of the first and fourth residues, such that they do not closely mimic the GNRA fold. Although the UMAC tetraloops are excellent structural mimics of the GNRA tetraloop backbone, sequence comparisons typically do not reveal co-variation between the two loop types. The limited covariation is attributed to differences in the location of potential hydrogen bond donors and acceptors as a result of the replacement of the terminal A of GNRA with C in the UMAC version. Thus, UMAC loops do not readily form the common GNRA tetraloop-receptor interaction. The loop at positions 863-866 in E. coli 16S ribosomal RNA appears to be a major exception. However, in this case the GNRA loop does not in fact engage in the usual base to backbone tertiary interactions. In summary, UMAC loops are not just an alternative sequence version of the GNRA loop family, but instead they expand the types of interactions, or lack thereof, that are possible. From a synthetic biology perspective their inclusion in an artificial RNA may allow the establishment of a stable loop structure while minimizing unwanted long range interactions or permitting alternative long-range interactions. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 617-628, 2012.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
6
|
Bothe JR, Nikolova EN, Eichhorn CD, Chugh J, Hansen AL, Al-Hashimi HM. Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat Methods 2011; 8:919-31. [PMID: 22036746 PMCID: PMC3320163 DOI: 10.1038/nmeth.1735] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many recently discovered noncoding RNAs do not fold into a single native conformation but sample many different conformations along their free-energy landscape to carry out their biological function. Here we review solution-state NMR techniques that measure the structural, kinetic and thermodynamic characteristics of RNA motions spanning picosecond to second timescales at atomic resolution, allowing unprecedented insights into the RNA dynamic structure landscape. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering.
Collapse
Affiliation(s)
- Jameson R. Bothe
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
| | - Evgenia N. Nikolova
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine D. Eichhorn
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jeetender Chugh
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandar L. Hansen
- Department of Chemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Hashim M. Al-Hashimi
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Hsu STD, Varnai P, Bugaut A, Reszka AP, Neidle S, Balasubramanian S. A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J Am Chem Soc 2009; 131:13399-409. [PMID: 19705869 PMCID: PMC3055164 DOI: 10.1021/ja904007p] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Guanine-rich DNA sequences with the ability to form quadruplex structures are enriched in the promoter regions of protein-coding genes, particularly those of proto-oncogenes. G-quadruplexes are structurally polymorphic and their folding topologies can depend on the sample conditions. We report here on a structural study using solution state NMR spectroscopy of a second G-quadruplex-forming motif (c-kit2) that has been recently identified in the promoter region of the c-kit oncogene. In the presence of potassium ions, c-kit2 exists as an ensemble of structures that share the same parallel-stranded propeller-type conformations. Subtle differences in structural dynamics have been identified using hydrogen-deuterium exchange experiments by NMR spectroscopy, suggesting the coexistence of at least two structurally similar but dynamically distinct substates, which undergo slow interconversion on the NMR timescale.
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Peter Varnai
- Department of Chemistry and Biochemistry, University of Sussex, Falmer Brighton BN1 9QJ, United Kingdom
| | - Anthony Bugaut
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Anthony P. Reszka
- The Cancer Research UK, Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Stephen Neidle
- The Cancer Research UK, Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Shankar Balasubramanian
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, United Kingdom
| |
Collapse
|
8
|
Zhao Q, Nagaswamy U, Lee H, Xia Y, Huang HC, Gao X, Fox GE. NMR structure and Mg2+ binding of an RNA segment that underlies the L7/L12 stalk in the E.coli 50S ribosomal subunit. Nucleic Acids Res 2005; 33:3145-53. [PMID: 15939932 PMCID: PMC1143578 DOI: 10.1093/nar/gki621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Helix 42 of Domain II of Escherichia coli 23S ribosomal RNA underlies the L7/L12 stalk in the ribosome and may be significant in positioning this feature relative to the rest of the 50S ribosomal subunit. Unlike the Haloarcula marismortui and Deinococcus radiodurans examples, the lower portion of helix 42 in E.coli contains two consecutive G*A oppositions with both adenines on the same side of the stem. Herein, the structure of an analog of positions 1037-1043 and 1112-1118 in the helix 42 region is reported. NMR spectra and structure calculations support a cis Watson-Crick/Watson-Crick (cis W.C.) G*A conformation for the tandem (G*A)2 in the analog and a minimally perturbed helical duplex stem. Mg2+ titration studies imply that the cis W.C. geometry of the tandem (G*A)2 probably allows O6 of G20 and N1 of A4 to coordinate with a Mg2+ ion as indicated by the largest chemical shift changes associated with the imino group of G20 and the H8 of G20 and A4. A cross-strand bridging Mg2+ coordination has also been found in a different sequence context in the crystal structure of H.marismortui 23S rRNA, and therefore it may be a rare but general motif in Mg2+ coordination.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Uma Nagaswamy
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Hunjoong Lee
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Youlin Xia
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Hung-Chung Huang
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
| | - Xiaolian Gao
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
- Department of Chemistry, University of HoustonHouston, TX 77204-5001, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of HoustonHouston, TX 77204-5001, USA
- To whom correspondence should be addressed. Tel: +1 713 743 8363; Fax: +1 713 743 8351;
| |
Collapse
|
9
|
Tisné C, Roques BP, Dardel F. Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid protein. J Mol Biol 2001; 306:443-54. [PMID: 11178904 DOI: 10.1006/jmbi.2000.4391] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reverse transcription of HIV-1 viral RNA uses human tRNA(Lys)3 as a primer. Recombinant tRNA(Lys)3 was previously overexpressed in Escherichia coli, 15N-labelled and purified for NMR studies. It was shown to be functional for priming of HIV-1 reverse transcription. Using heteronuclear 2D and 3D NMR, we have been able to assign almost all the imino groups in the helical regions and involved in the tertiary base interactions of tRNA(Lys)3. This crucial step enabled us to address the question of the annealing mechanism of tRNA(Lys)3 by the nucleocapsid protein (NC) using heteronuclear NMR. Moreover, structural aspects of the tRNA(Lys)3/(12-53)NCp7 interaction have been characterised. The (12-53)NCp7 protein binds preferentially to the inside of the L-shape of the tRNA(Lys)3, on the acceptor and D stems, and at the level of the tertiary interactions between the D and T-psi-C loops. (12-53)NCp7 binding does not induce the melting of any single base-pair or unwinding of the tRNA(Lys)3 helical domains. Moreover, NMR provides a unique means to investigate the base-pairs that are destabilised by (12-53)NCp7 binding. Indeed, the measurements of the longitudinal relaxation time T1 and of the exchange time of the imino protons revealed two major regions sensitive to catalysis by the protein, namely the G6-U67 and T54(A58) pairs. It is interesting that for the biological role of the NC protein, these pairs could be the starting points of the tRNA melting required for the hybridisation to the viral RNA.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- HIV-1
- Humans
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nitrogen/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Binding
- Protons
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- Viral Proteins
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- C Tisné
- Laboratoire de Cristallographie et RMN Biologiques, EP 2075 CNRS Faculté de Pharmacie, 4 avenue de l'Observatoire, Paris, 75006, France.
| | | | | |
Collapse
|
10
|
Chamberlin SI, Weeks KM. Mapping Local Nucleotide Flexibility by Selective Acylation of 2‘-Amine Substituted RNA. J Am Chem Soc 2000. [DOI: 10.1021/ja9914137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Affiliation(s)
- A. Kettani
- Contribution from the Groupe de Biophysique de l'Ecole Polytechnique et de l'URA D1254 du CNRS, 91128 Palaiseau, France
| | - M. Guéron
- Contribution from the Groupe de Biophysique de l'Ecole Polytechnique et de l'URA D1254 du CNRS, 91128 Palaiseau, France
| | - J.-L. Leroy
- Contribution from the Groupe de Biophysique de l'Ecole Polytechnique et de l'URA D1254 du CNRS, 91128 Palaiseau, France
| |
Collapse
|
12
|
Choi BS, Redfield AG. NMR study of nitrogen-15-labeled Escherichia coli valine transfer RNA. Biochemistry 1992; 31:12799-802. [PMID: 1463750 DOI: 10.1021/bi00166a013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1,3-15N-Labeled uracil was synthesized chemically and used to prepare labeled Escherichia coli tRNA(Val) biosynthetically. 500-MHz measurements of 15N and proton chemical shift were obtained, for all uridine and uridine-related bases, by heteronuclear multiple-quantum coherence spectroscopy. All the uracil NH group resonances were assigned and were in agreement with previous proton-only assignments. The temperature dependence of intensities of resonances was used to infer the relative stability of parts of the molecule. The acceptor stem was the least thermally stable structural feature, while the anticodon and T loop were relatively more stable.
Collapse
Affiliation(s)
- B S Choi
- Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254
| | | |
Collapse
|
13
|
Walmsley JA, Schneider ML, Farmer PJ, Cave JR, Toth CR, Wilson RM. Cation-dependence of the self-association behavior of guanylyl-(3'-5')-guanosine. J Biomol Struct Dyn 1992; 10:619-38. [PMID: 1492928 DOI: 10.1080/07391102.1992.10508672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aggregation behavior of guanylyl-(3'-5')-guanosine, GpG, in the form of the tetramethylammonium (TMA), Li, Na, and K salts in aqueous solution has been investigated by NMR and FTIR techniques. The salts were prepared by a cation-exchange method. The ability of the cations to induce aggregate formation is TMA+ < Li+ < Na+ < K+, where TMA+ has only a weakly promoting action and K+ has a very strong effect. Three types of aggregates have been observed: (a) small aggregates which are in rapid exchange with respect to the NMR time scale; (b) intermediate-sized aggregates which are slow to exchange; (c) very large aggregates which can only be observed by FTIR. In all cases the aggregated species are held together by base stacking and guanine-guanine hydrogen bonding. A stoichiometry of 2 GpG per K+ has been determined by a 1H NMR titration of TMAGpG with KCl. Models have been proposed for the various-sized species. These include stacked dimers, stacked tetramers (similar to G-tetrads), and species in which K+ ion bridges between phosphates in separate tetramers.
Collapse
Affiliation(s)
- J A Walmsley
- Division of Earth and Physical Sciences, University of Texas, San Antonio 78249
| | | | | | | | | | | |
Collapse
|
14
|
Investigation of Ribosomal 5S Ribonucleic Acid Solution Structure and Dynamics by Means of High-Resolution Nuclear Magnetic Resonance Spectroscopy. ACTA ACUST UNITED AC 1990. [DOI: 10.1007/978-1-4615-6549-9_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
15
|
Van de Ven FJ, Hilbers CW. Nucleic acids and nuclear magnetic resonance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:1-38. [PMID: 3060357 DOI: 10.1111/j.1432-1033.1988.tb14425.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- F J Van de Ven
- Department of Biophysical Chemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
16
|
Abstract
The early NMR research on nucleic acids was of a qualitative nature and was restricted to partial characterization of short oligonucleotides in aqueous solution. Major advances in magnet design, spectrometer electronics, pulse techniques, data analysis and computational capabilities coupled with the availability of pure and abundant supply of long oligonucleotides have extended these studies towards the determination of the 3-D structure of nucleic acids in solution.
Collapse
Affiliation(s)
- D J Patel
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
17
|
Leroy JL, Bolo N, Figueroa N, Plateau P, Guérón M. Internal motions of transfer RNA: a study of exchanging protons by magnetic resonance. J Biomol Struct Dyn 1985; 2:915-39. [PMID: 2855781 DOI: 10.1080/07391102.1985.10507609] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proton exchange is a probe of macromolecular structure and kinetics. Its value is enhanced when the exchanging protons can be identified by nmr. After dilution of tRNA-H2O samples in D2O, slowly exchanging imino protons are observed, with exchange times ranging from minutes to days. In many cases they originate from the dihydro-uracil region. Most slow exchangers are sensitive to buffer catalysis. Extrapolation to infinite buffer concentration yields the life-time of the closed form, in a two-state model of each base-pair. As predicted by the model, the lifetime obtained by extrapolation is independent of the buffer. Typical lifetimes are 14 minutes for CG11 of yeast tRNAPhe at 17 degrees C, or 5 minutes for U8-A14 of yeast tRNA(Asp) at 20 degrees C, without magnesium. For most slow exchangers, magnesium increases the lifetime of the closed form, but moderately, by factors never more than five. The exchange rates of other, fast-exchanging, imino protons, as determined by line-broadening, are found to depend on buffer concentration. Base-pair lifetimes are determined as above. For instance UA6 of yeast tRNA(Phe) has a lifetime of 14 ms at 17 degrees C. Base-pairs 4 and 6 have shorter lifetimes than the rest of the acceptor stem. Imidazole is a good catalyst for proton exchange of both the long-and the short-lived base-pairs, whereas phosphate is not. Tris is efficient except for cases where, possibly, access is impeded by its size; magnesium reduces the efficiency of catalysis by tris buffer. From the variation of exchange time vs buffer concentration, one determines the buffer concentration for which the exchange rate from the open state is equal to the closing rate. Remarquably, this concentration takes comparable values for most base-pairs, whether short-lived or long-lived. Buffer effects have also been observed in poly(rA).poly(rU), for which we derive a lifetime of 2.5 ms at 27 degrees C, and in other polynucleotides. Some of the exchange times identified in the literature as base-pair lifetimes may instead reflect incomplete catalysis.
Collapse
Affiliation(s)
- J L Leroy
- Groupe de Biophysique, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|