1
|
Koeksoy E, Bezuidt OM, Bayer T, Chan CS, Emerson D. Zetaproteobacteria Pan-Genome Reveals Candidate Gene Cluster for Twisted Stalk Biosynthesis and Export. Front Microbiol 2021; 12:679409. [PMID: 34220764 PMCID: PMC8250860 DOI: 10.3389/fmicb.2021.679409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Twisted stalks are morphologically unique bacterial extracellular organo-metallic structures containing Fe(III) oxyhydroxides that are produced by microaerophilic Fe(II)-oxidizers belonging to the Betaproteobacteria and Zetaproteobacteria. Understanding the underlying genetic and physiological mechanisms of stalk formation is of great interest based on their potential as novel biogenic nanomaterials and their relevance as putative biomarkers for microbial Fe(II) oxidation on ancient Earth. Despite the recognition of these special biominerals for over 150 years, the genetic foundation for the stalk phenotype has remained unresolved. Here we present a candidate gene cluster for the biosynthesis and secretion of the stalk organic matrix that we identified with a trait-based analyses of a pan-genome comprising 16 Zetaproteobacteria isolate genomes. The “stalk formation in Zetaproteobacteria” (sfz) cluster comprises six genes (sfz1-sfz6), of which sfz1 and sfz2 were predicted with functions in exopolysaccharide synthesis, regulation, and export, sfz4 and sfz6 with functions in cell wall synthesis manipulation and carbohydrate hydrolysis, and sfz3 and sfz5 with unknown functions. The stalk-forming Betaproteobacteria Ferriphaselus R-1 and OYT-1, as well as dread-forming Zetaproteobacteria Mariprofundus aestuarium CP-5 and Mariprofundus ferrinatatus CP-8 contain distant sfz gene homologs, whereas stalk-less Zetaproteobacteria and Betaproteobacteria lack the entire gene cluster. Our pan-genome analysis further revealed a significant enrichment of clusters of orthologous groups (COGs) across all Zetaproteobacteria isolate genomes that are associated with the regulation of a switch between sessile and motile growth controlled by the intracellular signaling molecule c-di-GMP. Potential interactions between stalk-former unique transcription factor genes, sfz genes, and c-di-GMP point toward a c-di-GMP regulated surface attachment function of stalks during sessile growth.
Collapse
Affiliation(s)
- Elif Koeksoy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States.,Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures), Braunschweig, Germany
| | - Oliver M Bezuidt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Timm Bayer
- Geomicrobiology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States.,School of Marine Sciences and Policy, University of Delaware, Newark, DE, United States
| | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
2
|
Abstract
Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.
Collapse
Affiliation(s)
- Lisa-Marie Nisbett
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-3400
| | - Elizabeth M. Boon
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794-3400
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, 11794-3400
| |
Collapse
|
3
|
|
4
|
|
5
|
|
6
|
A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation. Int J Mol Sci 2013; 14:16473-84. [PMID: 23965964 PMCID: PMC3759921 DOI: 10.3390/ijms140816473] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/26/2013] [Indexed: 01/01/2023] Open
Abstract
Cell signaling plays an important role in the survival of bacterial colonies. They use small molecules to coordinate gene expression in a cell density dependent manner. This process, known as quorum sensing, helps bacteria regulate diverse functions such as bioluminescence, biofilm formation and virulence. In Vibrio harveyi, a bioluminescent marine bacterium, four parallel quorum-sensing systems have been identified to regulate light production. We have previously reported that nitric oxide (NO), through the H-NOX/HqsK quorum sensing pathway contributes to light production in V. harveyi through the LuxU/LuxO/LuxR quorum sensing pathway. In this study, we show that nitric oxide (NO) also regulates flagellar production and enhances biofilm formation. Our data suggest that V. harveyi is capable of switching between lifestyles to be able to adapt to changes in the environment.
Collapse
|
7
|
Colocalization of fast and slow timescale dynamics in the allosteric signaling protein CheY. J Mol Biol 2013; 425:2372-81. [PMID: 23648838 DOI: 10.1016/j.jmb.2013.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 11/21/2022]
Abstract
It is now widely recognized that dynamics are important to consider for understanding allosteric protein function. However, dynamics occur over a wide range of timescales, and how these different motions relate to one another is not well understood. Here, we report an NMR relaxation study of dynamics over multiple timescales at both backbone and side-chain sites upon an allosteric response to phosphorylation. The response regulator, Escherichia coli CheY, allosterically responds to phosphorylation with a change in dynamics on both the microsecond-to-millisecond (μs-ms) timescale and the picosecond-to-nanosecond (ps-ns) timescale. We observe an apparent decrease and redistribution of μs-ms dynamics upon phosphorylation (and accompanying Mg(2+) saturation) of CheY. Additionally, methyl groups with the largest changes in ps-ns dynamics localize to the regions of conformational change measured by μs-ms dynamics. The limited spread of changes in ps-ns dynamics suggests a distinct relationship between motions on the μs-ms and ps-ns timescales in CheY. The allosteric mechanism utilized by CheY highlights the diversity of roles dynamics play in protein function.
Collapse
|
8
|
McDonald LR, Boyer JA, Lee AL. Segmental motions, not a two-state concerted switch, underlie allostery in CheY. Structure 2012; 20:1363-73. [PMID: 22727815 PMCID: PMC3552614 DOI: 10.1016/j.str.2012.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 11/30/2022]
Abstract
The switch between an inactive and active conformation is an important transition for signaling proteins, yet the mechanisms underlying such switches are not clearly understood. Escherichia coli CheY, a response regulator protein from the two-component signal transduction system that regulates bacterial chemotaxis, is an ideal protein for the study of allosteric mechanisms. By using 15N CPMG relaxation dispersion experiments, we monitored the inherent dynamic switching of unphosphorylated CheY. We show that CheY does not undergo a two-state concerted switch between the inactive and active conformations. Interestingly, partial saturation of Mg2+ enhances the intrinsic allosteric motions. Taken together with chemical shift perturbations, these data indicate that the μs-ms timescale motions underlying CheY allostery are segmental in nature. We propose an expanded allosteric network of residues, including W58, that undergo asynchronous, local switching between inactive and active-like conformations as the primary basis for the allosteric mechanism.
Collapse
Affiliation(s)
- Leanna R McDonald
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
9
|
Zarbiv G, Li H, Wolf A, Cecchini G, Caplan SR, Sourjik V, Eisenbach M. Energy complexes are apparently associated with the switch-motor complex of bacterial flagella. J Mol Biol 2011; 416:192-207. [PMID: 22210351 DOI: 10.1016/j.jmb.2011.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/27/2023]
Abstract
Recently, the switch-motor complex of bacterial flagella was found to be associated with a number of non-flagellar proteins, which, in spite of not being known as belonging to the chemotaxis system, affect the function of the flagella. The observation that one of these proteins, fumarate reductase, is essentially involved in electron transport under anaerobic conditions raised the question of whether other energy-linked enzymes are associated with the switch-motor complex as well. Here, we identified two additional such enzymes in Escherichia coli. Employing fluorescence resonance energy transfer in vivo and pull-down assays invitro, we provided evidence for the interaction of F(0)F(1) ATP synthase via its β subunit with the flagellar switch protein FliG and for the interaction of NADH-ubiquinone oxidoreductase with FliG, FliM, and possibly FliN. Furthermore, we measured higher rates of ATP synthesis, ATP hydrolysis, and electron transport from NADH to oxygen in membrane areas adjacent to the flagellar motor than in other membrane areas. All these observations suggest the association of energy complexes with the flagellar switch-motor complex. Finding that deletion of the β subunit in vivo affected the direction of flagellar rotation and switching frequency further implied that the interaction of F(0)F(1) ATP synthase with FliG is important for the function of the switch of bacterial flagella.
Collapse
Affiliation(s)
- Gabriel Zarbiv
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
CheY3 of Borrelia burgdorferi is the key response regulator essential for chemotaxis and forms a long-lived phosphorylated intermediate. J Bacteriol 2011; 193:3332-41. [PMID: 21531807 DOI: 10.1128/jb.00362-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Spirochetes have a unique cell structure: These bacteria have internal periplasmic flagella subterminally attached at each cell end. How spirochetes coordinate the rotation of the periplasmic flagella for chemotaxis is poorly understood. In other bacteria, modulation of flagellar rotation is essential for chemotaxis, and phosphorylation-dephosphorylation of the response regulator CheY plays a key role in regulating this rotary motion. The genome of the Lyme disease spirochete Borrelia burgdorferi contains multiple homologues of chemotaxis genes, including three copies of cheY, referred to as cheY1, cheY2, and cheY3. To investigate the function of these genes, we targeted them separately or in combination by allelic exchange mutagenesis. Whereas wild-type cells ran, paused (flexed), and reversed, cells of all single, double, and triple mutants that contained an inactivated cheY3 gene constantly ran. Capillary tube chemotaxis assays indicated that only those strains with a mutation in cheY3 were deficient in chemotaxis, and cheY3 complementation restored chemotactic ability. In vitro phosphorylation assays indicated that CheY3 was more efficiently phosphorylated by CheA2 than by CheA1, and the CheY3-P intermediate generated was considerably more stable than the CheY-P proteins found in most other bacteria. The results point toward CheY3 being the key response regulator essential for chemotaxis in B. burgdorferi. In addition, the stability of CheY3-P may be critical for coordination of the rotation of the periplasmic flagella.
Collapse
|
11
|
Lowenthal AC, Simon C, Fair AS, Mehmood K, Terry K, Anastasia S, Ottemann KM. A fixed-time diffusion analysis method determines that the three cheV genes of Helicobacter pylori differentially affect motility. MICROBIOLOGY-SGM 2009; 155:1181-1191. [PMID: 19332820 DOI: 10.1099/mic.0.021857-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Helicobacter pylori is a chemotactic bacterium that has three CheV proteins in its predicted chemotaxis signal transduction system. CheV proteins contain both CheW- and response-regulator-like domains. To determine the function of these proteins, we developed a fixed-time diffusion method that would quantify bacterial direction change without needing to define particular behaviours, to deal with the many behaviours that swimming H. pylori exhibit. We then analysed mutants that had each cheV gene deleted individually and found that the behaviour of each mutant differed substantially from wild-type and the other mutants. cheV1 and cheV2 mutants displayed smooth swimming behaviour, consistent with decreased cellular CheY-P, similar to a cheW mutant. In contrast, the cheV3 mutation had the opposite effect and the mutant cells appeared to change direction frequently. Additional analysis showed that the cheV mutants displayed aberrant behaviour as compared to the wild-type in the soft-agar chemotaxis assay. The soft-agar assay phenotype was less extreme compared to that seen in the fixed-time diffusion model, suggesting that the cheV mutants are able to partially compensate for their defects under some conditions. Each cheV mutant furthermore had defects in mouse colonization that ranged from severe to modest, consistent with a role in chemotaxis. These studies thus show that the H. pylori CheV proteins each differently affect swimming behaviour.
Collapse
Affiliation(s)
- Andrew C Lowenthal
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christopher Simon
- Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Amber S Fair
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Khalid Mehmood
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Karianne Terry
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Stephanie Anastasia
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Dyer CM, Dahlquist FW. Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. J Bacteriol 2006; 188:7354-63. [PMID: 17050923 PMCID: PMC1636273 DOI: 10.1128/jb.00637-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of Escherichia coli CheY increases its affinity for its target, FliM, 20-fold. The interaction between BeF(3)(-)-CheY, a phosphorylated CheY (CheY approximately P) analog, and the FliM sequence that it binds has been described previously in molecular detail. Although the conformation that unphosphorylated CheY adopts in complex with FliM was unknown, some evidence suggested that it is similar to that of CheY approximately P. To resolve the issue, we have solved the crystallographic structure of unphosphorylated, magnesium(II)-bound CheY in complex with a synthetic peptide corresponding to the target region of FliM (the 16 N-terminal residues of FliM [FliM(16)]). While the peptide conformation and binding site are similar to those of the BeF(3)(-)-CheY-FliM(16) complex, the inactive CheY conformation is largely retained in the unphosphorylated Mg(2+)-CheY-FliM(16) complex. Communication between the target binding site and the phosphorylation site, observed previously in biochemical experiments, is enabled by a network of conserved side chain interactions that partially mimic those observed in BeF(3)(-)-activated CheY. This structure makes clear the active role that the beta4-alpha4 loop plays in the Tyr(87)-Tyr(106) coupling mechanism that enables allosteric communication between the phosphorylation site and the target binding surface. Additionally, this structure provides a high-resolution view of an intermediate conformation of a response regulator protein, which had been generally assumed to be two state.
Collapse
Affiliation(s)
- Collin M Dyer
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, 93106, USA
| | | |
Collapse
|
13
|
Grossman AR, van Waasbergen LG, Kehoe D. Environmental Regulation of Phycobilisome Biosynthesis. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Grossman AR. A molecular understanding of complementary chromatic adaptation. PHOTOSYNTHESIS RESEARCH 2003; 76:207-15. [PMID: 16228579 DOI: 10.1023/a:1024907330878] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photosynthetic activity and the composition of the photosynthetic apparatus are strongly regulated by environmental conditions. Some visually dramatic changes in pigmentation of cyanobacterial cells that occur during changing nutrient and light conditions reflect marked alterations in components of the major light-harvesting complex in these organisms, the phycobilisome. As noted well over 100 years ago, the pigment composition of some cyanobacteria is very sensitive to ambient wavelengths of light; this sensitivity reflects molecular changes in polypeptide constituents of the phycobilisome. The levels of different pigmented polypeptides or phycobiliproteins that become associated with the phycobilisome are adjusted to optimize absorption of excitation energy present in the environment. This process, called complementary chromatic adaptation, is controlled by a bilin-binding photoreceptor related to phytochrome of vascular plants; however, many other regulatory elements also play a role in chromatic adaptation. My perspectives and biases on the history and significance of this process are presented in this essay.
Collapse
Affiliation(s)
- Arthur R Grossman
- Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA, 94305, USA,
| |
Collapse
|
15
|
Kim C, Jackson M, Lux R, Khan S. Determinants of chemotactic signal amplification in Escherichia coli. J Mol Biol 2001; 307:119-35. [PMID: 11243808 DOI: 10.1006/jmbi.2000.4389] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A well-characterized protein phosphorelay mediates Escherichia coli chemotaxis towards the amino acid attractant aspartate. The protein CheY shuttles between flagellar motors and methyl-accepting chemoreceptor (MCP) complexes containing the linker CheW and the kinase CheA. CheA-CheY phosphotransfer generates phospho-CheY, CheY-P. Aspartate triggers smooth swim responses by inactivation of the CheA bound to the target MCP, Tar; but this mechanism alone cannot explain the observed response sensitivity. Here, we used behavioral analysis of mutants deleted for CheZ, a catalyst of CheY-P dephosphorylation, or the methyltransferase CheR and/or the methylesterase CheB to examine the roles of accelerated CheY-P dephosphorylation and MCP methylation in enhancement of the chemotactic response. The extreme motile bias of the mutants was adjusted towards wild-type values, while preserving much of the aspartate response sensitivity by expressing fragments of the MCP, Tsr, that either activate or inhibit CheA. We then measured responses to small jumps of aspartate, generated by flash photolysis of photo-labile precursors. The stimulus-response relation for Delta cheZ mutants overlapped that for the host strains. Delta cheZ excitation response times increased with stimulus size consistent with formation of an occluded CheA state. Thus, neither CheZ-dependent or independent increases in CheY-P dephosphorylation contribute to the excitation response. In Delta cheB Delta cheR or Delta cheR mutants, the dose for a half-maximal response, [Asp](50), was ca 10 microM; but was elevated to 100 microM in Delta cheB mutants. In addition, the stimulus-response relation for these mutants was linear, consistent with stoichiometric inactivation, in contrast to the non-linear relation for wild-type E. coli. These data suggest that response sensitivity is controlled by differential binding of CheR and/or CheB to distinct MCP signaling conformations.
Collapse
Affiliation(s)
- C Kim
- Laboratory of Cellular Bioenergetics, Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | | | | | | |
Collapse
|
16
|
Abstract
Energy taxis is widespread in motile bacteria and in some species is the only known behavioral response. The bacteria monitor their cellular energy levels and respond to a decrease in energy by swimming to a microenvironment that reenergizes the cells. This is in contrast to classical Escherichia coli chemotaxis in which sensing of stimuli is independent of cellular metabolism. Energy taxis encompasses aerotaxis (taxis to oxygen), phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to a carbon source. All of these responses share a common signal transduction pathway. An environmental stimulus, such as oxygen concentration or light intensity, modulates the flow of reducing equivalents through the electron transport system. A transducer senses the change in electron transport, or possibly a related parameter such as proton motive force, and initiates a signal that alters the direction of swimming. The Aer and Tsr proteins in E. coli are newly recognized transducers for energy taxis. Aer is homologous to E. coli chemoreceptors but unique in having a PAS domain and a flavin-adenine dinucleotide cofactor that is postulated to interact with a component of the electron transport system. PAS domains are energy-sensing modules that are found in proteins from archaea to humans. Tsr, the serine chemoreceptor, is an independent transducer for energy taxis, but its sensory mechanism is unknown. Energy taxis has a significant ecological role in vertical stratification of microorganisms in microbial mats and water columns. It plays a central role in the behavior of magnetotactic bacteria and also appears to be important in plant-microbe interactions.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California 92350, USA.
| | | | | |
Collapse
|
17
|
Barak R, Eisenbach M. Chemotactic-like response of Escherichia coli cells lacking the known chemotaxis machinery but containing overexpressed CheY. Mol Microbiol 1999; 31:1125-37. [PMID: 10096080 DOI: 10.1046/j.1365-2958.1999.01251.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a chemotactic-like response of Escherichia coli strains lacking most of the known chemotaxis machinery but containing high levels of the response regulator CheY. The bacteria accumulated in aspartate-containing capillaries, they formed rings on tryptone-containing semisolid agar, and the probability of counterclockwise flagellar rotation transiently increased in response to stimulation with aspartate (10(-10)-10(-5) M; the response was inverted at > 10(-4) M). The temporal response was partial and delayed, as was the response of a control wild-type strain having a high CheY level. alpha-Methyl-DL-aspartate, a non-metabolizable analogue of aspartate as well as other known attractants of E. Coli, glucose and, to a lesser extent, galactose, maltose and serine caused a similar response. So did low concentrations of acetate and benzoate (which, at higher concentrations, act as repellents for wild-type E. coli). Other tested repellents such as indole, Ni2+ and CO2+ increased the clockwise bias. These observations raise the possibility that, at least when the conventional signal transduction components are missing, a non-conventional chemotactic signal transduction pathway might be functional in E. coli. Potential molecular mechanisms are discussed.
Collapse
Affiliation(s)
- R Barak
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
18
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
19
|
Abouhamad WN, Bray D, Schuster M, Boesch KC, Silversmith RE, Bourret RB. Computer-aided resolution of an experimental paradox in bacterial chemotaxis. J Bacteriol 1998; 180:3757-64. [PMID: 9683468 PMCID: PMC107355 DOI: 10.1128/jb.180.15.3757-3764.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Escherichia coli responds to its environment by means of a network of intracellular reactions which process signals from membrane-bound receptors and relay them to the flagellar motors. Although characterization of the reactions in the chemotaxis signaling pathway is sufficiently complete to construct computer simulations that predict the phenotypes of mutant strains with a high degree of accuracy, two previous experimental investigations of the activity remaining upon genetic deletion of multiple signaling components yielded several contradictory results (M. P. Conley, A. J. Wolfe, D. F. Blair, and H. C. Berg, J. Bacteriol. 171:5190-5193, 1989; J. D. Liu and J. S. Parkinson, Proc. Natl. Acad. Sci. USA 86:8703-8707, 1989). For example, "building up" the pathway by adding back CheA and CheY to a gutted strain lacking chemotaxis genes resulted in counterclockwise flagellar rotation whereas "breaking down" the pathway by deleting chemotaxis genes except cheA and cheY resulted in alternating episodes of clockwise and counterclockwise flagellar rotation. Our computer simulation predicts that trace amounts of CheZ expressed in the gutted strain could account for this difference. We tested this explanation experimentally by constructing a mutant containing a new deletion of the che genes that cannot express CheZ and verified that the behavior of strains built up from the new deletion does in fact conform to both the phenotypes observed for breakdown strains and computer-generated predictions. Our findings consolidate the present view of the chemotaxis signaling pathway and highlight the utility of molecularly based computer models in the analysis of complex biochemical networks.
Collapse
Affiliation(s)
- W N Abouhamad
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA
| | | | | | | | | | | |
Collapse
|
20
|
Montrone M, Eisenbach M, Oesterhelt D, Marwan W. Regulation of switching frequency and bias of the bacterial flagellar motor by CheY and fumarate. J Bacteriol 1998; 180:3375-80. [PMID: 9642190 PMCID: PMC107292 DOI: 10.1128/jb.180.13.3375-3380.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effect of CheY and fumarate on switching frequency and rotational bias of the bacterial flagellar motor was analyzed by computer-aided tracking of tethered Escherichia coli. Plots of cells overexpressing CheY in a gutted background showed a bell-shaped correlation curve of Switching frequency and bias centering at about 50% clockwise rotation. Gutted cells (i.e., with cheA to cheZ deleted) with a low CheY level but a high cytoplasmic fumarate concentration displayed the same correlation of switching frequency and bias as cells overexpressing CheY at the wild-type fumarate level. Hence, a high fumarate level can phenotypically mimic CheY overexpression by simultaneously changing the switching frequency and the bias. A linear correlation of cytoplasmic fumarate concentration and clockwise rotation bias was found and predicts exclusively counter-clockwise rotation without switching when fumarate is absent. This suggests that (i) fumarate is essential for clockwise rotation in vivo and (ii) any metabolically induced fluctuation of its cytoplasmic concentration will result in a transient change in bias and switching probability. A high fumarate level resulted in a dose-response curve linking bias and cytoplasmic CheY concentration that was offset but with a slope similar to that for a low fumarate level. It is concluded that fumarate and CheY act additively presumably at different reaction steps in the conformational transition of the switch complex from counterclockwise to clockwise motor rotation.
Collapse
Affiliation(s)
- M Montrone
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
21
|
Bren A, Eisenbach M. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J Mol Biol 1998; 278:507-14. [PMID: 9600834 DOI: 10.1006/jmbi.1998.1730] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A key event in signal transduction during chemotaxis of Salmonella typhimurium and related bacterial species is the interaction between the phosphorylated form of the response regulator CheY (CheY approximately P) and the switch of the flagellar motor, located at its base. The consequence of this interaction is a shift in the direction of flagellar rotation from the default, counterclockwise, to clockwise. The docking site of CheY approximately P at the switch is the protein FliM. The purpose of this study was to identify the CheY-binding domain of FliM. We cloned 17 fliM mutants, each defective in switching and having a point mutation at a different location, and then overexpressed and purified their products. The CheY-binding ability of each of the FliM mutant proteins was determined by chemical crosslinking. All the mutant proteins with an amino acid substitution at the N terminus, FliM6LI, FliM7SY and FliM10EG, bound CheY approximately P to a much lesser extent than did wild-type FliM. CheY approximately P-binding of the other mutant proteins was similar to wild-type FliM. To investigate whether the FliM domain that includes these three mutations is indeed the CheY-binding domain, we synthesized a peptide composed of the first 16 amino acid residues of FliM, including a highly conserved region of FliM (residues 6 to 15). The peptide bound CheY and, to a larger extent, CheY approximately P. It also competed with full-length FliM on CheY approximately P. These results indicate that the CheY-binding domain of FliM is located at the N terminus, within residues 1 to 16, and suggest that FliM monomers can form a complete site for CheY binding.
Collapse
Affiliation(s)
- A Bren
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
22
|
Schuster M, Abouhamad WN, Silversmith RE, Bourret RB. Chemotactic response regulator mutant CheY95IV exhibits enhanced binding to the flagellar switch and phosphorylation-dependent constitutive signalling. Mol Microbiol 1998; 27:1065-75. [PMID: 9535095 DOI: 10.1046/j.1365-2958.1998.00756.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CheY, a response regulator protein in bacterial chemotaxis, mediates swimming behaviour through interaction with the flagellar switch protein, FliM. In its active, phosphorylated state, CheY binds to the motor switch complex and induces a change from counterclockwise (CCW) to clockwise (CW) flagellar rotation. The conformation of a conserved aromatic residue, tyrosine 106, has been proposed to play an important role in this signalling process. Here, we show that an isoleucine to valine substitution in CheY at position 95--in close proximity to residue 106--results in an extremely CW, hyperactive phenotype that is dependent on phosphorylation. Further biochemical characterization of this mutant protein revealed phosphorylation and dephosphorylation rates that were indistinguishable from those of wild-type CheY. CheY95IV, however, exhibited an increased binding affinity to FliM. Taken together, these results show for the first time a correlation between enhanced switch binding and constitutive signalling in bacterial chemotaxis. Considering present structural information, we also propose possible models for the role of residue 95 in the mechanism of CheY signal transduction.
Collapse
Affiliation(s)
- M Schuster
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599-7290, USA
| | | | | | | |
Collapse
|
23
|
Weerasuriya S, Schneider BM, Manson MD. Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar-Tap and Tap-Tar hybrids. J Bacteriol 1998; 180:914-20. [PMID: 9473047 PMCID: PMC106972 DOI: 10.1128/jb.180.4.914-920.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Tap (taxis toward peptides) receptor and the periplasmic dipeptide-binding protein (DBP) of Escherichia coli together mediate chemotactic responses to dipeptides. Tap is a low-abundance receptor. It is present in 5- to 10-fold-fewer copies than high-abundance receptors like Tar and Tsr. Cells expressing Tap as the sole receptor, even from a multicopy plasmid at 5- to 10-fold-overexpressed levels, do not generate sufficient clockwise (CW) signal to tumble and thus swim exclusively smoothly (run). To study the signaling properties of Tap in detail, we constructed reciprocal hybrids between Tap and Tar fused in the linker region between the periplasmic and cytoplasmic domains. The Tapr hybrid senses dipeptides and is a good CW-signal generator, whereas the Tarp hybrid senses aspartate but is a poor CW-signal generator. Thus, the poor CW signaling of Tap is a property of its cytoplasmic domain. Eighteen residues at the carboxyl terminus of high-abundance receptors, including the NWETF sequence that binds the CheR methylesterase, are missing in Tap. The Tart protein, created by removing these 18 residues from Tar, has diminished CW-signaling ability. The Tapl protein, made by adding the last 18 residues of Tar to the carboxyl terminus of Tap, also does not support CW flagellar rotation. However, Tart and Tapl cross-react well with antibody directed against the conserved cytoplasmic region of Tsr, whereas Tap does not cross-react with this antibody. Tap does cross-react, however, with antibody directed against the low-abundance chemoreceptor Trg. The hybrid, truncated, and extended receptors exhibit various levels of methylation. However, Tar and Tapl, which contain a consensus CheR-binding motif (NWETF) at their carboxyl termini, exhibit the highest basal levels of methylation, as expected. We conclude that no simple correlation exists between the abundance of a receptor, its methylation level, and its CW-signaling ability.
Collapse
Affiliation(s)
- S Weerasuriya
- Department of Biology, Texas A&M University, College Station 77843-3258, USA
| | | | | |
Collapse
|
24
|
Kehoe DM, Grossman AR. New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol 1997; 179:3914-21. [PMID: 9190806 PMCID: PMC179199 DOI: 10.1128/jb.179.12.3914-3921.1997] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Complementary chromatic adaptation appears to be controlled by a complex regulatory system with similarity to four-step phosphorelays. Such pathways utilize two histidine and two aspartate residues for signal transduction. Previous studies of the signaling system controlling complementary chromatic adaptation have uncovered two elements of this pathway, a putative sensor, RcaE, and a response regulator, RcaC. In this work, we describe a second response regulator controlling complementary chromatic adaptation, RcaF, and identify putative DNA binding and histidine phosphoacceptor domains within RcaC. RcaF is a small response regulator with similarity to SpoOF of Bacillus subtilis; the latter functions in the four-step phosphorelay system controlling sporulation. We have also determined that within this phosphorelay pathway, RcaE precedes RcaF, and RcaC is probably downstream of RcaE and RcaF. This signal transduction pathway is novel because it appears to use at least five, instead of four, phosphoacceptor domains in the phosphorelay circuit.
Collapse
Affiliation(s)
- D M Kehoe
- Department of Plant Biology, The Carnegie Institution of Washington, Stanford, California 94305, USA.
| | | |
Collapse
|
25
|
Jiang M, Bourret RB, Simon MI, Volz K. Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.3 A structure of an aspartate to lysine mutant at position 13 of CheY. J Biol Chem 1997; 272:11850-5. [PMID: 9115243 DOI: 10.1074/jbc.272.18.11850] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An aspartate to lysine mutation at position 13 of the chemotaxis regulatory protein CheY causes a constitutive tumbly phenotype when expressed at high copy number in vivo even though the mutant protein is not phosphorylatable. These properties suggest that the D13K mutant adopts the active, signaling conformation of CheY independent of phosphorylation, so knowledge of its structure could explain the activation mechanism of CheY. The x-ray crystallographic structure of the CheY D13K mutant has been solved and refined at 2.3 A resolution to an R-factor of 14.3%. The mutant molecule shows no significant differences in backbone conformation when compared with the wild-type, Mg2+-free structure, but there are localized changes within the active site. The side chain of lysine 13 blocks access to the active site, whereas its epsilon-amino group has no bonding interactions with other groups in the region. Also in the active site, the bond between lysine 109 and aspartate 57 is weakened, and the solvent structure is perturbed. Although the D13K mutant has the inactive conformation in the crystalline form, rearrangements in the active site appear to weaken the overall structure of that region, potentially creating a metastable state of the molecule. If a conformational change is required for signaling by CheY D13K, then it most likely proceeds dynamically, in solution.
Collapse
Affiliation(s)
- M Jiang
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
26
|
Bren A, Welch M, Blat Y, Eisenbach M. Signal termination in bacterial chemotaxis: CheZ mediates dephosphorylation of free rather than switch-bound CheY. Proc Natl Acad Sci U S A 1996; 93:10090-3. [PMID: 8816756 PMCID: PMC38341 DOI: 10.1073/pnas.93.19.10090] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chemotaxis in bacteria is controlled by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein CheY. When phosphorylated, CheY binds to FliM, which is one of the proteins that constitute the "gear box" (or "switch") of the flagellar motor. Consequently, the motor shifts from the default direction of rotation, counterclockwise, to clockwise rotation. This biased rotation is terminated when CheY is dephosphorylated either spontaneously or, faster, by a specific phosphatase, CheZ. Logically, one might expect CheZ to act directly on FliM-bound CheY. However, here we provide direct biochemical evidence that, in contrast to this expectation, phosphorylated CheY (CheY approximately P), bound to FliM, is protected from dephosphorylation by CheZ. The complex between CheY approximately P and FliM was trapped by cross-linking with dimethylsuberimidate, and its susceptibility to CheZ was measured. CheY approximately P complexed with FliM, unlike free CheY approximately P, was not dephosphorylated by CheZ. However, it did undergo spontaneous dephosphorylation. Nonspecific cross-linked CheY dimers, measured as a control, were dephosphorylated by CheZ. No significant binding between CheZ and any of the switch proteins was detected. It is concluded that, in the termination mechanism of signal transduction in bacterial chemotaxis, CheZ acts only on free CheY approximately P. We suggest that CheZ affects switch-bound CheY approximately P by shifting the equilibrium between bound and free CheY approximately P.
Collapse
Affiliation(s)
- A Bren
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
27
|
Abstract
Bacterial chemotaxis, which has been extensively studied for three decades, is the most prominent model system for signal transduction in bacteria. Chemotaxis is achieved by regulating the direction of flagellar rotation. The regulation is carried out by the chemotaxis protein, CheY. This protein is activated by a stimulus-dependent phosphorylation mediated by an autophosphorylatable kinase (CheA) whose activity is controlled by chemoreceptors. Upon phosphorylation, CheY dissociates from its kinase, binds to the switch at the base of the flagellar motor, and changes the motor rotation from the default direction (counter-clockwise) to clockwise. Phosphorylation may also be involved in terminating the response. Phosphorylated CheY binds to the phosphatase CheZ and modulates its oligomeric state and thereby its dephosphorylating activity. Thus CheY phosphorylation appears to be involved in controlling both the excitation and adaptation mechanisms of bacterial chemotaxis. Additional control sites might be involved in bacterial chemotaxis, e.g. lateral control at the receptor level, control at the motor level, or control by metabolites that link central metabolism with chemotaxis.
Collapse
Affiliation(s)
- M Eisenbach
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Blat Y, Eisenbach M. Oligomerization of the phosphatase CheZ upon interaction with the phosphorylated form of CheY. The signal protein of bacterial chemotaxis. J Biol Chem 1996; 271:1226-31. [PMID: 8557654 DOI: 10.1074/jbc.271.2.1226] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Earlier studies have suggested that CheZ, the phosphatase of the signaling protein CheY in bacterial chemotaxis, may be in an oligomeric state both when bound to phosphorylated CheY (CheY approximately P) (Blat, Y., and Eisenbach, M. (1994) Biochemistry 33, 902-906) or free (Stock, A., and Stock, J. B. (1987) J. Bacteriol. 169, 3301-3311). The purpose of the current study was to determine the oligomeric state of free CheZ and to investigate whether it changes upon binding to CheY approximately P. By using either one of two different sets of cross-linking agents, free CheZ was found to be a dimer. The formation of the dimer was specific, as it was prevented by SDS which does not interfere with cross-linking mediated by random collisions. The dimeric form of CheZ was confirmed by sedimentation analysis, a cross-linking-free technique. In the presence of CheY approximately P (but not in the presence of non-phosphorylated CheY), a high molecular size cross-linked complex (90-200 kDa) was formed, in which the CheZ:CheY ratio was 2:1. The size of the oligomeric complex was estimated by fluorescence depolarization to be 4-5-fold larger than the dimer, suggesting that its size is in the order of 200 kDa. These results indicate that CheZ oligomerizes upon interaction with CheY approximately P. This phosphorylation-dependent oligomerization may be a mechanism for regulating CheZ activity.
Collapse
Affiliation(s)
- Y Blat
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
29
|
Blat Y, Eisenbach M. Mutants with defective phosphatase activity show no phosphorylation-dependent oligomerization of CheZ. The phosphatase of bacterial chemotaxis. J Biol Chem 1996; 271:1232-6. [PMID: 8557655 DOI: 10.1074/jbc.271.2.1232] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CheZ is the phosphatase of CheY, the response regulator in bacterial chemotaxis. The mechanism by which the activity of CheZ is regulated is not known. We used cheZ mutants of Salmonella typhimurium, which had been isolated by Sockett et al. (Sockett, H., Yamaguchi, S., Kihara, M., Irikura, V. M., and Macnab, R. M. (1992) J. Bacteriol. 174, 793-806), for cloning the mutant cheZ genes, overexpressing and purifying their products. We then measured the phosphatase activity, binding to CheY and to phosphorylated CheY (CheY approximately P), and CheY approximately P dependent oligomerization of the mutant CheZ proteins. While all the mutant proteins were defective in their phosphatase activity, they bound to CheY and CheY approximately P as well as wild-type CheZ. However, unlike wild-type CheZ, all the four mutant proteins failed to oligomerize upon interaction with CheY approximately P. On the basis of these and earlier results it is suggested that (i) oligomerization is required for the phosphatase activity of CheZ, (ii) the region defined by residues 141-145 plays an important role in mediating CheZ oligomerization and CheY approximately P dephosphorylation but is not necessary for the binding to CheY approximately P, (iii) the oligomerization and hence the phosphatase activity are regulated by the level of CheY approximately P, and (iv) this regulation plays a role in the adaptation to chemotactic stimuli.
Collapse
Affiliation(s)
- Y Blat
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
30
|
Barak R, Eisenbach M. Regulation of interaction between signaling protein CheY and flagellar motor during bacterial chemotaxis. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:137-58. [PMID: 8646846 DOI: 10.1016/s0070-2137(96)80005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R Barak
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
31
|
Ganguli S, Wang H, Matsumura P, Volz K. Uncoupled Phosphorylation and Activation in Bacterial Chemotaxis. J Biol Chem 1995. [DOI: 10.1074/jbc.270.29.17386] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Welch M, Oosawa K, Aizawa SI, Eisenbach M. Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. Biochemistry 1994; 33:10470-6. [PMID: 8068685 DOI: 10.1021/bi00200a031] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CheY is the response regulator of bacterial chemotaxis. Previously, we showed that CheY binds to the flagellar switch protein FliM and that this binding is increased upon phosphorylation of CheY [Welch, M., Oosawa, K., Aizawa, S.-I., & Eisenbach, M. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8787-8791]. Here, we demonstrate that it is the phosphorylated conformation of CheY, rather than the phosphate group itself, that is recognized and bound by FliM. We found that subsequent to the phosphorylation of CheY, Mg2+ was not required for the binding of CheY to FliM. However, phosphorylation of CheY did cause a change in the coordination properties of Mg2+ in the acid pocket of the protein. This change in the coordination of Mg2+ required the presence of the absolutely conserved residue Lys109. When Lys109 was substituted by arginine, the resulting CheY protein was unable to adopt an active conformation upon phosphorylation, and the protein was not bound by FliM. Surprisingly, the CheY13DK mutant protein, which is active in vivo but cannot be phosphorylated in vitro, exhibited only a low level of FliM binding activity, suggesting that its ability to cause clockwise rotation in the cell is not due to a constitutively high level of FliM binding. On the basis of these findings, we propose a mechanism for CheY activation by phosphorylation.
Collapse
Affiliation(s)
- M Welch
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
33
|
Abstract
The crystal structures of the ligand binding domain of a bacterial aspartate receptor suggest a simple mechanism for transmembrane signaling by the dimer of the receptor. On ligand binding, one domain rotates with respect to the other, and this rotational motion is proposed to be transmitted through the membrane to the cytoplasmic domains of the receptor.
Collapse
Affiliation(s)
- S H Kim
- Department of Chemistry, University of California, Berkeley 94720
| |
Collapse
|
34
|
Welch M, Oosawa K, Aizawa S, Eisenbach M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl Acad Sci U S A 1993; 90:8787-91. [PMID: 8415608 PMCID: PMC47445 DOI: 10.1073/pnas.90.19.8787] [Citation(s) in RCA: 349] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Regulation of the direction of flagellar rotation is central to the mechanism of bacterial chemotaxis. The transitions between counterclockwise and clockwise rotation are controlled by a "switch complex" composed of three proteins (FliG, FliM, and FliN) and located at the base of the flagellar motor. The mechanism of function of the switch is unknown. Here we demonstrate that the diffusible clockwise-signal molecule, the CheY protein, binds to the switch, that the primary docking site is FliM, that the extent of CheY binding to FliM is dependent upon the phosphorylation level of CheY, and that it is unaffected by the other two switch proteins. This study provides a biochemical demonstration of binding of a signal molecule to the bacterial switch and demonstrates directly that phosphorylation regulates the activity of this molecule.
Collapse
Affiliation(s)
- M Welch
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
35
|
Bray D, Bourret RB, Simon MI. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell 1993; 4:469-82. [PMID: 8334303 PMCID: PMC300951 DOI: 10.1091/mbc.4.5.469] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have developed a computer program that simulates the intracellular reactions mediating the rapid (nonadaptive) chemotactic response of Escherichia coli bacteria to the attractant aspartate and the repellent Ni2+ ions. The model is built from modular units representing the molecular components involved, which are each assigned a known value of intracellular concentration and enzymatic rate constant wherever possible. The components are linked into a network of coupled biochemical reactions based on a compilation of widely accepted mechanisms but incorporating several novel features. The computer motor shows the same pattern of runs, tumbles and pauses seen in actual bacteria and responds in the same way as living bacteria to sudden changes in concentration of aspartate or Ni2+. The simulated network accurately reproduces the phenotype of more than 30 mutants in which components of the chemotactic pathway are deleted and/or expressed in excess amounts and shows a rapidity of response to a step change in aspartate concentration similar to living bacteria. Discrepancies between the simulation and real bacteria in the phenotype of certain mutants and in the gain of the chemotactic response to aspartate suggest the existence of additional as yet unidentified interactions in the in vivo signal processing pathway.
Collapse
Affiliation(s)
- D Bray
- Department of Zoology, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
36
|
Roman SJ, Meyers M, Volz K, Matsumura P. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations. J Bacteriol 1992; 174:6247-55. [PMID: 1400175 PMCID: PMC207694 DOI: 10.1128/jb.174.19.6247-6255.1992] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CheY is the response regulator protein that interacts with the flagellar switch apparatus to modulate flagellar rotation during chemotactic signaling. CheY can be phosphorylated and dephosphorylated in vitro, and evidence indicates that CheY-P is the activated form that induces clockwise flagellar rotation, resulting in a tumble in the cell's swimming pattern. The flagellar switch apparatus is a complex macromolecular structure composed of at least three gene products, FliG, FliM, and FliN. Genetic analysis of Escherichia coli has identified fliG and fliM as genes in which mutations occur that allele specifically suppress cheY mutations, indicating interactions among these gene products. We have generated a class of cheY mutations selected for dominant suppression of fliG mutations. Interestingly, these cheY mutations dominantly suppressed both fliG and fliM mutations; this is consistent with the idea that the CheY protein interacts with both switch gene products during signaling. Biochemical characterization of wild-type and suppressor CheY proteins did not reveal altered phosphorylation properties or evidence for phosphorylation-dependent CheY multimerization. These data indicate that suppressor CheY proteins are specifically altered in the ability to transduce chemotactic signals to the switch at some point subsequent to phosphorylation. Physical mapping of suppressor amino acid substitutions on the crystal structure of CheY revealed a high degree of spatial clustering, suggesting that this region of CheY is a signaling surface that transduces chemotactic signals to the switch.
Collapse
Affiliation(s)
- S J Roman
- Department of Microbiology and Immunology, University of Illinois, Chicago 60680
| | | | | | | |
Collapse
|
37
|
Barak R, Eisenbach M. Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry 1992; 31:1821-6. [PMID: 1737035 DOI: 10.1021/bi00121a034] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation of the chemotaxis protein CheY by its kinase CheA appears to play a central role in the process of signal transduction in bacterial chemotaxis. It is presumed that the role is activation of CheY which results in clockwise (CW) flagellar rotation. The aim of this study was to determine whether this activity of CheY indeed depends on the protein being phosphorylated. Since the phosphorylation of CheY can be detected only in vitro, we studied the ability of CheY to cause CW rotation in an in vitro system, consisting of cytoplasm-free envelopes of Salmonella typhimurium or Escherichia coli having functional flagella. Envelopes containing just buffer rotated only counterclockwise. Inclusion of CheY caused 14% of the rotating envelopes to go CW. This fraction of CW-rotating envelopes was not altered when the phosphate potential in the envelopes was lowered by inclusion of ADP together with CheY in them, indicating that CheY has a certain degree of activity even without being phosphorylated. Attempts to increase the activity of CheY in the envelopes by phosphorylation were not successful. However, when CheY was inserted into partially-lysed cells (semienvelopes) under phosphorylating conditions, the number of CW-rotating cells increased 3-fold. This corresponds to more than a 100-fold increase in the activity of a single CheY molecule upon phosphorylation. It is concluded that nonphosphorylated CheY can interact with the flagellar switch and cause CW rotation, but that this activity is increased by at least 2 orders of magnitude by phosphorylation. This increase in activity requires additional cytoplasmic constituents, the identity of which is not yet known.
Collapse
Affiliation(s)
- R Barak
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
38
|
Barak R, Eisenbach M. Fumarate or a fumarate metabolite restores switching ability to rotating flagella of bacterial envelopes. J Bacteriol 1992; 174:643-5. [PMID: 1729255 PMCID: PMC205763 DOI: 10.1128/jb.174.2.643-645.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Flagella of cytoplasm-free envelopes of Escherichia coli or Salmonella typhimurium can rotate in either the counterclockwise or clockwise direction, but they never switch from one direction of rotation to another. Exogenous fumarate, in the intracellular presence of the chemotaxis protein CheY, restored switching ability to envelopes, with a concomitant increase in clockwise rotation. An increase in clockwise rotation was also observed after fumarate was added to partially lysed cells of E. coli, but the proportion of switching cells remained unchanged.
Collapse
Affiliation(s)
- R Barak
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
39
|
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station 77843-3258
| |
Collapse
|
40
|
Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92982-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Jones CJ, Aizawa S. The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol 1991; 32:109-72. [PMID: 1882727 DOI: 10.1016/s0065-2911(08)60007-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bacterial flagellum is a complex multicomponent structure which serves as the propulsive organelle for many species of bacteria. Rotation of the helical flagellar filament, driven by a proton-powered motor embedded in the cell wall, enables the flagellum to function as a screw propeller. It seems likely that almost all of the genes required for flagellar formation and function have been identified. Continuing analysis of the portions of the genome containing these genes may reveal the existence of a few more. Transcription of the flagellar genes is under the control of the products of a single operon, and so these genes constitute a regulon. Other controls, both transcriptional and post-transcriptional, have been identified. Many of these genes have been sequenced, and the information obtained will aid in the design of experiments to clarify the various regulatory mechanisms of the flagellar regulon. The flagellum is composed of several substructures. The long helical filament is connected via the flexible hook to the complex basal body which is located in the cell wall. The filament is composed of many copies of a single protein, and can adopt a number of distinct helical forms. Structural analyses of the filament are adding to our understanding of this dynamic polymer. The component proteins of the hook and filament have all been identified. Continuing studies on the structure of the basal body have revealed the presence of several hitherto unknown basal-body proteins, whose identities and functions have yet to be elucidated. The proteins essential for energizing the motor, the Mot and switch proteins, are thought to exist as multisubunit complexes peripheral to the basal body. These complexes have yet to be identified biochemically or morphologically. Not surprisingly, flagellar assembly is a complex process, occurring in several stages. Assembly occurs in a proximal-to-distal fashion; the basal body is assembled before the hook, and the hook before the filament. This pattern is also maintained within the filament, with monomers added at the distal end of the polymer; the same is presumably true of the other axial components. An exception to this general pattern is assembly of the Mot proteins into the motor, which appears to be possible at any time during flagellar assembly. With the identification of the genes encoding many of the flagellar proteins, the roles of these proteins in assembly is understood, but the function of a number of gene products in flagellar formation remains unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C J Jones
- ERATO, Research Development Corporation of Japan, Ibaraki
| | | |
Collapse
|
42
|
Lukat GS, Stock AM, Stock JB. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 1990; 29:5436-42. [PMID: 2201404 DOI: 10.1021/bi00475a004] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signal transduction in bacterial chemotaxis involves transfer of a phosphoryl group between the cytoplasmic proteins CheA and CheY. In addition to the established metal ion requirement for autophosphorylation of CheA, divalent magnesium ions are necessary for the transfer of phosphate from CheA to CheY. The work described here demonstrates via fluorescence studies that CheY contains a magnesium ion binding site. This site is a strong candidate for the metal ion site required to facilitate phosphotransfer from phospho-CheA to CheY. The diminished magnesium ion interaction with CheY mutant D13N and the lack of metal ion binding to D57N along with significant reduction in phosphotransfer to these two mutants are in direct contrast to the behavior of wild-type CheY. This supports the hypothesis that the acidic pocket formed by Asp13 and Asp57 is essential to metal binding and phosphotransfer activity. Metal ion is also required for the dephosphorylation reaction, raising the possibility that the phosphotransfer and hydrolysis reactions occur by a common metal-phosphoprotein transition-state intermediate. The highly conserved nature of the proposed metal ion binding site and site of phosphorylation within the large family of phosphorylated regulatory proteins that are homologous to CheY supports the hypothesis that all these proteins function by a similar catalytic mechanism.
Collapse
Affiliation(s)
- G S Lukat
- Department of Biology and Chemistry, Princeton University, New Jersey 08544
| | | | | |
Collapse
|
43
|
Abstract
The linkage map of Escherichia coli K-12 depicts the arrangement of genes on the circular chromosome of this organism. The basic units of the map are minutes, determined by the time-of-entry of markers from Hfr into F- strains in interrupted-conjugation experiments. The time-of-entry distances have been refined over the years by determination of the frequency of cotransduction of loci in transduction experiments utilizing bacteriophage P1, which transduces segments of DNA approximately 2 min in length. In recent years, the relative positions of many genes have been determined even more precisely by physical techniques, including the mapping of restriction fragments and the sequencing of many small regions of the chromosome. On the whole, the agreement between results obtained by genetic and physical methods has been remarkably good considering the different levels of accuracy to be expected of the methods used. There are now few regions of the map whose length is still in some doubt. In some regions, genetic experiments utilizing different mutant strains give different map distances. In other regions, the genetic markers available have not been close enough to give accurate cotransduction data. The chromosome is now known to contain several inserted elements apparently derived from lambdoid phages and other sources. The nature of the region in which the termination of replication of the chromosome occurs is now known to be much more complex than the picture given in the previous map. The present map is based upon the published literature through June of 1988. There are now 1,403 loci placed on the linkage group, which may represent between one-third and one-half of the genes in this organism.
Collapse
Affiliation(s)
- B J Bachmann
- Department of Biology, Yale University, New Haven, Connecticut 06511-7444
| |
Collapse
|
44
|
Golden KJ, Bernlohr RW. Defects in the nutrient-dependent methylation of a membrane-associated protein in spo mutants of Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1989; 220:1-7. [PMID: 2514344 DOI: 10.1007/bf00260847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methylation of a membrane-associated protein with an apparent molecular mass of 40,000 daltons has been observed in Bacillus subtilis. The methylation was nutrient dependent and occurred with a doubling time of 4 +/- 1 min. In wild-type strains, the half-life of turnover of the methyl group(s) was 17 +/- 6 min. Several isogenic strains of B. subtilis containing spo0 mutations (spo0A and spo0H) were found to be normal in glutamate-dependent methylation of the protein and turnover of the methyl group(s). In strains containing spo0B and spo0E mutations, the methyl group(s) were incorporated in response to glutamate addition but turnover was not at a normal rate. The half-life of methyl group turnover was extended to 45 +/- 3 min in these strains. In a spo0K mutant and in spoIIJ and spoIIF mutants, the protein was not significantly methylated. The methylation of a 40,000 dalton protein was also found to be dependent on phosphate. This methylation was observed in wild-type and spo0A and spo0H strains with a doubling time of 4 +/- 1 min and a half-life of turnover of the methyl group(s) of 11 +/- 3 min. In strains containing spo0B, spo0E, and spo0F mutations, the phosphate-dependent incorporation of the methyl group(s) was normal (5 +/- 1 min) but the turnover half-life was extended to 46 +/- 8 min. It is not known whether the nitrogen-dependent and phosphate-dependent systems methylated the same protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K J Golden
- Department of Molecular and Cell Biology, Penn State University, University Park 16802
| | | |
Collapse
|
45
|
Sanders DA, Gillece-Castro BL, Stock AM, Burlingame AL, Koshland DE. Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(20)88250-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Abstract
By means of a computerized video processing system, the flagellar motors of Escherichia coli were shown to have multiple kinetic states for each rotational direction. High-resolution analysis of flagellar motors revealed new kinetic states both in wild-type cells and in a strain deleted of other signal-transducing genes to which CheY had been introduced. This strain, RP1091, retained residual kinase activity that could phosphorylate CheY, complicating the biochemical identification of certain kinetic states. The behavioral effect of CheY on single flagellar motors was ultrasensitive, with an apparent Hill coefficient of 5.5 +/- 1.9 (SD) and a half-maximal effect at 10.1 +/- 0.5 (SD) microM CheY. Based on the CheY concentration dependence, a two-state model is clearly excluded, even for the simpler system of CheY-induced rotational reversals in the deletion strain. The data are best described by a four-state model, with two clockwise and two counterclockwise states.
Collapse
Affiliation(s)
- S C Kuo
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
47
|
Liu JD, Parkinson JS. Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci U S A 1989; 86:8703-7. [PMID: 2682657 PMCID: PMC298356 DOI: 10.1073/pnas.86.22.8703] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chemotactic behavior in Escherichia coli is mediated by membrane-associated chemoreceptors that transmit sensory signals to the flagellar motors through an intracellular signaling system, which appears to involve a protein phosphorylation cascade. This study concerns the role of CheW, a cytoplasmic protein, in coupling methyl-accepting chemotaxis proteins (MCPs), the major class of membrane receptors, to the intracellular signaling system. Steady-state flagellar rotation behavior was examined in a series of strains with different combinations and relative amounts of CheW, MCPs, and other signaling components. At normal expression levels, CheW stimulated clockwise rotation, and receptors appeared to enhance this stimulatory effect. At high expression levels, MCPs inhibited clockwise rotation, and CheW appeared to augment this inhibitory effect. Since overexpression of CheW or MCP molecules had the same behavioral effect as their absence, chemoreceptors probably use CheW to modulate two distinct signals, one that stimulates and one that inhibits the intracellular phosphorylation cascade.
Collapse
Affiliation(s)
- J D Liu
- Biology Department, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
48
|
Sanders DA, Mendez B, Koshland DE. Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence. J Bacteriol 1989; 171:6271-8. [PMID: 2681160 PMCID: PMC210499 DOI: 10.1128/jb.171.11.6271-6278.1989] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cheW gene from Escherichia coli has been cloned an inducible promoter, and the effects of the overproduction of the CheW protein on chemotactic behavior and receptor covalent modification have been examined. Plasmids that contain the cheW gene behind a regulatable promoter complement a cheW mutation when the CheW protein is produced at low levels. However, when the CheW protein is greatly overproduced in either a wild-type strain or a cheW mutant, chemotaxis is greatly inhibited, cheW null mutant cells swim smoothly as if they were constantly responding to an attractant. Surprisingly, cells in which the CheW protein is overproduced also swim smoothly. The behavioral defect produced by overproduction of the CheW protein does not require the presence of the cheR, cheB, or cheZ gene. Receptor demethylation is also inhibited by overproduction of the CheW protein, as it is by a mutation in the cheW gene or a response to an attractant. In all respects, therefore, overproduction of the CheW protein has the same consequences as does a mutation in the cheW gene or a response to an attractant. A model involving two states of the CheW protein is proposed to explain its role in bacterial chemotaxis.
Collapse
Affiliation(s)
- D A Sanders
- Department of Biochemistry, University of California, Berkeley 94704
| | | | | |
Collapse
|
49
|
Lupas A, Stock J. Phosphorylation of an N-terminal Regulatory Domain Activates the CheB Methylesterase in Bacterial Chemotaxis. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71497-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Stueland CS, Gorden K, LaPorte DC. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77658-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|