1
|
Menezes APJ, Silber AM, Elias MC, da Cunha JPC. Trypanosoma cruzi cell cycle progression exhibits minimal variation in histone PTMs with unique histone H4 acetylation pattern. J Proteomics 2025; 315:105413. [PMID: 40010635 DOI: 10.1016/j.jprot.2025.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Histones are crucial proteins in eukaryotic cells that undergo extensive posttranslational modifications (PTMs) such as methylation, acetylation, and phosphorylation, which are associated to chromatin structure, gene expression, DNA damage/repair and cell cycle. In Trypanosoma cruzi, the primary sequence of histones differs from that of other eukaryotes. Despite this, they display a vast range of PTMs, though their modulation throughout the cell cycle remains largely unexplored. In this study, we investigated the dynamic modulation of histone PTMs across G1/S, S, and G2/M phases of T. cruzi cell cycle using hydroxyurea- synchronized parasites. We applied a workflow that included histone derivatization, trypsin digestion followed by a high-resolution mass spectrometry and data independent analysis. Quantitative analysis of 141 histone peptide isoforms revealed that there are only minor variations in histone PTM levels throughout the cell cycle. The H3K76 trimethylation remained predominant throughout all phases, with an increase in monomethylation during G2/M. Additionally, hyperacetylation of the N-terminal region of histone H4 was observed, particularly at lysine residues 2, 5, and 10, suggesting their importance in cell cycle progression. Striking, acetylation of histone H4 at K2 and K5 increases during the S-phase, mirroring the H4K5acK12ac pattern observed in mammals, which are related to histone nuclear import and chromatin deposition. Overall, the results suggest that the T. cruzi cell cycle maintains stable global levels of histone PTMs, relying on variations in only a few specific PTMs. Further investigations are warranted to elucidate the functional significance of these PTMs and their impact on cell cycle regulation and chromatin dynamics in T. cruzi. SIGNIFICANCE: Histone posttranslational modifications (PTMs) are key regulators of chromatin architecture and cellular processes such as gene expression and cell cycle control. In Trypanosoma cruzi, the etiological agent of Chagas disease, histones have a distinct primary structure compared to other eukaryotes, yet they display a wide variety of PTMs. This study provides a comprehensive analysis of histone PTM dynamics across the G1/S, S, and G2/M phases of the T. cruzi cell cycle, revealing that global histone PTM levels remain largely stable, with variations in a few specific marks. Notably, the study highlights the increased acetylation of histone H4 at lysines 2 and 5 during the S-phase, contrasting with the well-conserved acetylation at lysines 5 and 12 observed in mammals involved in nuclear import and chromatin assembly. These findings underscore the evolutionary divergence and functional specificity of histone modifications and provide a foundation for further investigations into their roles in parasite biology, with potential implications for understanding chromatin dynamics and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- A P J Menezes
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - A M Silber
- Instituto de Ciências Biomédicas - Universidade de São Paulo, Brazil
| | - M C Elias
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| | - J P C da Cunha
- Laboratório Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Hou L, Chen YJ, Zhong Q, Pei J, Liu L, Pi H, Xie M, Zhao G. Function and mechanism of lysine crotonylation in health and disease. QJM 2024; 117:695-708. [PMID: 38390964 DOI: 10.1093/qjmed/hcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine crotonylation is a newly identified posttranslational modification that is different from the widely studied lysine acetylation in structure and function. In the last dozen years, great progress has been made in lysine crotonylation-related studies, and lysine crotonylation is involved in reproduction, development and disease. In this review, we highlight the similarities and differences between lysine crotonylation and lysine acetylation. We also summarize the methods and tools for the detection and prediction of lysine crotonylation. At the same time, we outline the recent advances in understanding the mechanisms of enzymatic and metabolic regulation of lysine crotonylation, as well as the regulating factors that selectively recognize this modification. Particularly, we discussed how dynamic changes in crotonylation status maintain physiological health and result in the development of disease. This review not only points out the new functions of lysine crotonylation but also provides new insights and exciting opportunities for managing various diseases.
Collapse
Affiliation(s)
- L Hou
- Guangzhou Huali Science and Technology Vocational College, Guangzhou, China
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - Y-J Chen
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Q Zhong
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - J Pei
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - L Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - H Pi
- School of basic medicine, Dali University, Dali, China
| | - M Xie
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - G Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| |
Collapse
|
3
|
Nabeel-Shah S, Garg J, Ashraf K, Jeyapala R, Lee H, Petrova A, Burns JD, Pu S, Zhang Z, Greenblatt JF, Pearlman RE, Lambert JP, Fillingham J. Multilevel interrogation of H3.3 reveals a primordial role in transcription regulation. Epigenetics Chromatin 2023; 16:10. [PMID: 37024975 PMCID: PMC10080907 DOI: 10.1186/s13072-023-00484-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Eukaryotic cells can rapidly adjust their transcriptional profile in response to molecular needs. Such dynamic regulation is, in part, achieved through epigenetic modifications and selective incorporation of histone variants into chromatin. H3.3 is the ancestral H3 variant with key roles in regulating chromatin states and transcription. Although H3.3 has been well studied in metazoans, information regarding the assembly of H3.3 onto chromatin and its possible role in transcription regulation remain poorly documented outside of Opisthokonts. RESULTS We used the nuclear dimorphic ciliate protozoan, Tetrahymena thermophila, to investigate the dynamics of H3 variant function in evolutionarily divergent eukaryotes. Functional proteomics and immunofluorescence analyses of H3.1 and H3.3 revealed a highly conserved role for Nrp1 and Asf1 histone chaperones in nuclear influx of histones. Cac2, a putative subunit of H3.1 deposition complex CAF1, is not required for growth, whereas the expression of the putative ortholog of the H3.3-specific chaperone Hir1 is essential in Tetrahymena. Our results indicate that Cac2 and Hir1 have distinct localization patterns during different stages of the Tetrahymena life cycle and suggest that Cac2 might be dispensable for chromatin assembly. ChIP-seq experiments in growing Tetrahymena show H3.3 enrichment over the promoters, gene bodies, and transcription termination sites of highly transcribed genes. H3.3 knockout followed by RNA-seq reveals large-scale transcriptional alterations in functionally important genes. CONCLUSION Our results provide an evolutionary perspective on H3.3's conserved role in maintaining the transcriptional landscape of cells and on the emergence of specialized chromatin assembly pathways.
Collapse
Affiliation(s)
- Syed Nabeel-Shah
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, M5B 2K3, Canada
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jyoti Garg
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, M5B 2K3, Canada
- Department of Biology, York University, 4700 Keele St, Toronto, M3J 1P3, Canada
| | - Kanwal Ashraf
- Department of Biology, York University, 4700 Keele St, Toronto, M3J 1P3, Canada
| | - Renu Jeyapala
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, M5B 2K3, Canada
| | - Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, M5S 1A8, Canada
| | - Alexandra Petrova
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, M5B 2K3, Canada
| | - James D Burns
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Computer Science, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele St, Toronto, M3J 1P3, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center, Big Data Research Center, Université Laval, Quebec City, QC, Canada
- CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec City, QC, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, M5B 2K3, Canada.
| |
Collapse
|
4
|
Plattner H. Ciliate Research. From Myth to Trendsetting Science. J Eukaryot Microbiol 2022; 69:e12926. [PMID: 35608570 DOI: 10.1111/jeu.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
This special issue of the Journal of Eukaryotic Microbiology (JEM) summarizes achievements obtained by generations of researchers with ciliates in widely different disciplines. In fact, ciliates range among the first cells seen under the microscope centuries ago. Their beauty made them an object of scientia amabilis and their manifold reactions made them attractive for college experiments and finally challenged causal analyses at the cellular level. Some of this work was honored by a Nobel Prize. Some observations yielded a baseline for additional novel discoveries, occasionally facilitated by specific properties of some ciliates. This also offers some advantage in the exploration of closely related parasites (malaria). Articles contributed here by colleagues from all over the world encompass a broad spectrum of ciliate life, from genetics to evolution, from molecular cell biology to ecology, from intercellular signaling to epigenetics etc. This introductory chapter, largely based on my personal perception, aims at integrating work presented in this special issue of JEM into a broader historical context up to current research.
Collapse
|
5
|
Ding Q, Lu C, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringo E, Ran C, Zhang Z, Zhou Z. Dietary Succinate Impacts the Nutritional Metabolism, Protein Succinylation and Gut Microbiota of Zebrafish. Front Nutr 2022; 9:894278. [PMID: 35685883 PMCID: PMC9171437 DOI: 10.3389/fnut.2022.894278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Succinate is widely used in the food and feed industry as an acidulant, flavoring additive, and antimicrobial agent. This study investigated the effects of dietary succinate on growth, energy budget, nutritional metabolism, protein succinylation, and gut microbiota composition of zebrafish. Zebrafish were fed a control-check (0% succinate) or four succinate-supplemented diets (0.05, 0.10, 0.15, and 0.2%) for 4 weeks. The results showed that dietary succinate at the 0.15% additive amount (S0.15) can optimally promote weight gain and feed intake. Whole body protein, fat, and energy deposition increased in the S0.15 group. Fasting plasma glucose level decreased in fish fed the S0.15 diet, along with improved glucose tolerance. Lipid synthesis in the intestine, liver, and muscle increased with S0.15 feeding. Diet with 0.15% succinate inhibited intestinal gluconeogenesis but promoted hepatic gluconeogenesis. Glycogen synthesis increased in the liver and muscle of S0.15-fed fish. Glycolysis was increased in the muscle of S0.15-fed fish. In addition, 0.15% succinate-supplemented diet inhibited protein degradation in the intestine, liver, and muscle. Interestingly, different protein succinylation patterns in the intestine and liver were observed in fish fed the S0.15 diet. Intestinal proteins with increased succinylation levels were enriched in the tricarboxylic acid cycle while proteins with decreased succinylation levels were enriched in pathways related to fatty acid and amino acid degradation. Hepatic proteins with increased succinylation levels were enriched in oxidative phosphorylation while proteins with decreased succinylation levels were enriched in the processes of protein processing and transport in the endoplasmic reticulum. Finally, fish fed the S0.15 diet had a higher abundance of Proteobacteria but a lower abundance of Fusobacteria and Cetobacterium. In conclusion, dietary succinate could promote growth and feed intake, promote lipid anabolism, improve glucose homeostasis, and spare protein. The effects of succinate on nutritional metabolism are associated with alterations in the levels of metabolic intermediates, transcriptional regulation, and protein succinylation levels. However, hepatic fat accumulation and gut microbiota dysbiosis induced by dietary succinate suggest potential risks of succinate application as a feed additive for fish. This study would be beneficial in understanding the application of succinate as an aquatic feed additive.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenyao Lu
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringo
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhen Zhang,
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhigang Zhou,
| |
Collapse
|
6
|
Jiang G, Li C, Lu M, Lu K, Li H. Protein lysine crotonylation: past, present, perspective. Cell Death Dis 2021; 12:703. [PMID: 34262024 PMCID: PMC8280118 DOI: 10.1038/s41419-021-03987-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Lysine crotonylation has been discovered in histone and non-histone proteins and found to be involved in diverse diseases and biological processes, such as neuropsychiatric disease, carcinogenesis, spermatogenesis, tissue injury, and inflammation. The unique carbon–carbon π-bond structure indicates that lysine crotonylation may use distinct regulatory mechanisms from the widely studied other types of lysine acylation. In this review, we discussed the regulation of lysine crotonylation by enzymatic and non-enzymatic mechanisms, the recognition of substrate proteins, the physiological functions of lysine crotonylation and its cross-talk with other types of modification. The tools and methods for prediction and detection of lysine crotonylation were also described.
Collapse
Affiliation(s)
- Gaoyue Jiang
- West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
7
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
8
|
The Compact Macronuclear Genome of the Ciliate Halteria grandinella: A Transcriptome-Like Genome with 23,000 Nanochromosomes. mBio 2021; 12:mBio.01964-20. [PMID: 33500338 PMCID: PMC7858049 DOI: 10.1128/mbio.01964-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
How to achieve protein diversity by genome and transcriptome processing is essential for organismal complexity and adaptation. The present work identifies that the macronuclear genome of Halteria grandinella, a cosmopolitan unicellular eukaryote, is composed almost entirely of gene-sized nanochromosomes with extremely short nongenic regions. How to achieve protein diversity by genome and transcriptome processing is essential for organismal complexity and adaptation. The present work identifies that the macronuclear genome of Halteria grandinella, a cosmopolitan unicellular eukaryote, is composed almost entirely of gene-sized nanochromosomes with extremely short nongenic regions. This challenges our usual understanding of chromosomal structure and suggests the possibility of novel mechvanisms in transcriptional regulation. Comprehensive analysis of multiple data sets reveals that Halteria transcription dynamics are influenced by: (i) nonuniform nanochromosome copy numbers correlated with gene-expression level; (ii) dynamic alterations at both the DNA and RNA levels, including alternative internal eliminated sequence (IES) deletions during macronucleus formation and large-scale alternative splicing in transcript maturation; and (iii) extremely short 5′ and 3′ untranslated regions (UTRs) and universal TATA box-like motifs in the compact 5′ subtelomeric regions of most chromosomes. This study broadens the view of ciliate biology and the evolution of unicellular eukaryotes, and identifies Halteria as one of the most compact known eukaryotic genomes, indicating that complex cell structure does not require complex gene architecture.
Collapse
|
9
|
Genome-wide chromatin accessibility is restricted by ANP32E. Nat Commun 2020; 11:5063. [PMID: 33033242 PMCID: PMC7546623 DOI: 10.1038/s41467-020-18821-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels. Chromatin state underlies cellular function, and transcription factor binding patterns along with epigenetic marks define chromatin state. Here the authors show that the histone chaperone ANP32E functions through regulation of H2A.Z to restrict genome-wide chromatin accessibility and to inhibit gene transcriptional activation.
Collapse
|
10
|
Hayashi-Takanaka Y, Kina Y, Nakamura F, Becking LE, Nakao Y, Nagase T, Nozaki N, Kimura H. Histone modification dynamics as revealed by multicolor immunofluorescence-based single-cell analysis. J Cell Sci 2020; 133:jcs243444. [PMID: 32576661 PMCID: PMC7390643 DOI: 10.1242/jcs.243444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
Post-translational modifications on histones can be stable epigenetic marks or transient signals that can occur in response to internal and external stimuli. Levels of histone modifications fluctuate during the cell cycle and vary among different cell types. Here, we describe a simple system to monitor the levels of multiple histone modifications in single cells by multicolor immunofluorescence using directly labeled modification-specific antibodies. We analyzed histone H3 and H4 modifications during the cell cycle. Levels of active marks, such as acetylation and H3K4 methylation, were increased during the S phase, in association with chromatin duplication. By contrast, levels of some repressive modifications gradually increased during G2 and the next G1 phases. We applied this method to validate the target modifications of various histone demethylases in cells using a transient overexpression system. In extracts of marine organisms, we also screened chemical compounds that affect histone modifications and identified psammaplin A, which was previously reported to inhibit histone deacetylases. Thus, the method presented here is a powerful and convenient tool for analyzing the changes in histone modifications.
Collapse
Affiliation(s)
- Yoko Hayashi-Takanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
| | - Yuto Kina
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Fumiaki Nakamura
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, PO Box 338, Bode 36, 6700 AH Wageningen, The Netherlands
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
11
|
Chen R, Zhang M, Zhou Y, Guo W, Yi M, Zhang Z, Ding Y, Wang Y. The application of histone deacetylases inhibitors in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:138. [PMID: 32682428 PMCID: PMC7368699 DOI: 10.1186/s13046-020-01643-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The epigenetic abnormality is generally accepted as the key to cancer initiation. Epigenetics that ensure the somatic inheritance of differentiated state is defined as a crucial factor influencing malignant phenotype without altering genotype. Histone modification is one such alteration playing an essential role in tumor formation, progression, and resistance to treatment. Notably, changes in histone acetylation have been strongly linked to gene expression, cell cycle, and carcinogenesis. The balance of two types of enzyme, histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines the stage of histone acetylation and then the architecture of chromatin. Changes in chromatin structure result in transcriptional dysregulation of genes that are involved in cell-cycle progression, differentiation, apoptosis, and so on. Recently, HDAC inhibitors (HDACis) are identified as novel agents to keep this balance, leading to numerous researches on it for more effective strategies against cancers, including glioblastoma (GBM). This review elaborated influences on gene expression and tumorigenesis by acetylation and the antitumor mechanism of HDACis. Besdes, we outlined the preclinical and clinical advancement of HDACis in GBM as monotherapies and combination therapies.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yangmei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjing Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yanpeng Ding
- Department of Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430030, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
12
|
Wahab S, Saettone A, Nabeel-Shah S, Dannah N, Fillingham J. Exploring the Histone Acetylation Cycle in the Protozoan Model Tetrahymena thermophila. Front Cell Dev Biol 2020; 8:509. [PMID: 32695779 PMCID: PMC7339932 DOI: 10.3389/fcell.2020.00509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic histone acetylation cycle is composed of three classes of proteins, histone acetyltransferases (HATs) that add acetyl groups to lysine amino acids, bromodomain (BRD) containing proteins that are one of the most characterized of several protein domains that recognize acetyl-lysine (Kac) and effect downstream function, and histone deacetylases (HDACs) that catalyze the reverse reaction. Dysfunction of selected proteins of these three classes is associated with human disease such as cancer. Additionally, the HATs, BRDs, and HDACs of fungi and parasitic protozoa present potential drug targets. Despite their importance, the function and mechanisms of HATs, BRDs, and HDACs and how they relate to chromatin remodeling (CR) remain incompletely understood. Tetrahymena thermophila (Tt) provides a highly tractable single-celled free-living protozoan model for studying histone acetylation, featuring a massively acetylated somatic genome, a property that was exploited in the identification of the first nuclear/type A HAT Gcn5 in the 1990s. Since then, Tetrahymena remains an under-explored model for the molecular analysis of HATs, BRDs, and HDACs. Studies of HATs, BRDs, and HDACs in Tetrahymena have the potential to reveal the function of HATs and BRDs relevant to both fundamental eukaryotic biology and to the study of disease mechanisms in parasitic protozoa.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
13
|
Chen Y, Li Y. Site-specific determination of lysine acetylation stoichiometries on the proteome-scale. Methods Enzymol 2019; 626:115-132. [PMID: 31606072 DOI: 10.1016/bs.mie.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Posttranslational modification of proteins (PTMs) offers a versatile mechanism to fine-tune the structure, activity, and interactions of the target proteins. Understanding the dynamics and prevalence of the PTM at the site-specific level will provide mechanistic insight into the physiological significance of the modification pathway in cells and diseases. In this chapter, we describe a highly efficient chemical proteomic workflow for the absolute quantification of lysine acetylation stoichiometry. The strategy is capable of measuring the site-specific prevalence of acetylation in a system-wide and untargeted manner. We highlight the importance of validating the workflow using standard proteins and synthetic peptides. Detailed protocols for global stoichiometric analysis of lysine acetylation from cell lysate are presented.
Collapse
Affiliation(s)
- Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, United States.
| | - Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
14
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
15
|
Functional Analysis of Hif1 Histone Chaperone in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:1993-2006. [PMID: 29661843 PMCID: PMC5982827 DOI: 10.1534/g3.118.200229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Hif1 protein in the yeast Saccharomyces cerevisie is an evolutionarily conserved H3/H4-specific chaperone and a subunit of the nuclear Hat1 complex that catalyzes the acetylation of newly synthesized histone H4. Hif1, as well as its human homolog NASP, has been implicated in an array of chromatin-related processes including histone H3/H4 transport, chromatin assembly and DNA repair. In this study, we elucidate the functional aspects of Hif1. Initially we establish the wide distribution of Hif1 homologs with an evolutionarily conserved pattern of four tetratricopeptide repeats (TPR) motifs throughout the major fungal lineages and beyond. Subsequently, through targeted mutational analysis, we demonstrate that the acidic region that interrupts the TPR2 is essential for Hif1 physical interactions with the Hat1/Hat2-complex, Asf1, and with histones H3/H4. Furthermore, we provide evidence for the involvement of Hif1 in regulation of histone metabolism by showing that cells lacking HIF1 are both sensitive to histone H3 over expression, as well as synthetic lethal with a deletion of histone mRNA regulator LSM1. We also show that a basic patch present at the extreme C-terminus of Hif1 is essential for its proper nuclear localization. Finally, we describe a physical interaction with a transcriptional regulatory protein Spt2, possibly linking Hif1 and the Hat1 complex to transcription-associated chromatin reassembly. Taken together, our results provide novel mechanistic insights into Hif1 functions and establish it as an important protein in chromatin-associated processes.
Collapse
|
16
|
Agudelo Garcia PA, Hoover ME, Zhang P, Nagarajan P, Freitas MA, Parthun MR. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly. Nucleic Acids Res 2017; 45:9319-9335. [PMID: 28666361 PMCID: PMC5766187 DOI: 10.1093/nar/gkx545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Histone acetyltransferase 1 (Hat1) catalyzes the acetylation of newly synthesized histone H4 at lysines 5 and 12 that accompanies replication-coupled chromatin assembly. The acetylation of newly synthesized H4 occurs in the cytoplasm and the function of this acetylation is typically ascribed to roles in either histone nuclear import or deposition. Using cell lines from Hat1+/+ and Hat1−/− mouse embryos, we demonstrate that Hat1 is not required for either histone nuclear import or deposition. We employed quantitative proteomics to characterize Hat1-dependent changes in the composition of nascent chromatin structure. Among the proteins depleted from nascent chromatin isolated from Hat1−/− cells are several bromodomain-containing proteins, including Brg1, Baz1A and Brd3. Analysis of the binding specificity of their bromodomains suggests that Hat1-dependent acetylation of H4 is directly involved in their recruitment. Hat1−/− nascent chromatin is enriched for topoisomerase 2α and 2β. The enrichment of topoisomerase 2 is functionally relevant as Hat1−/− cells are hyper-sensitive to topoisomerase 2 inhibition suggesting that Hat1 is required for proper chromatin topology. In addition, our results indicate that Hat1 is transiently recruited to sites of chromatin assembly, dissociating prior to the maturation of chromatin structure.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael E Hoover
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Pei Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, Qi S, Li J, Colak G, Chen Y, Xia C, Peng C, Ruan H, Kirkey M, Wang D, Jensen LM, Kwon OK, Lee S, Pletcher SD, Tan M, Lombard DB, White KP, Zhao H, Li J, Roeder RG, Yang X, Zhao Y. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Mol Cell 2017; 62:194-206. [PMID: 27105115 DOI: 10.1016/j.molcel.2016.03.036] [Citation(s) in RCA: 443] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 12/16/2022]
Abstract
Here we report the identification and verification of a β-hydroxybutyrate-derived protein modification, lysine β-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated β-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone β-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and diverse functions of β-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.
Collapse
Affiliation(s)
- Zhongyu Xie
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Di Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Dongjun Chung
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhanyun Tang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - He Huang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lunzhi Dai
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shankang Qi
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gozde Colak
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yue Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Chunmei Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chao Peng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Haibin Ruan
- Section of Comparative Medicine and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matt Kirkey
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Danli Wang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lindy M Jensen
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Xiaoyong Yang
- Section of Comparative Medicine and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Biocatalytic Synthesis of Novel Partial Esters of a Bioactive Dihydroxy 4-Methylcoumarin by Rhizopus oryzae Lipase (ROL). Molecules 2016; 21:molecules21111499. [PMID: 27834873 PMCID: PMC6273029 DOI: 10.3390/molecules21111499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 02/02/2023] Open
Abstract
Highly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC) by the lipase from Rhizopus oryzae suspended in tetrahydrofuran (THF) at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.
Collapse
|
19
|
Zhang Q, Chen L, Yu X, Liu H, Akhberdi O, Pan J, Zhu X. A B-type histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxol-producing fungus Pestalotiopsis microspora. J Basic Microbiol 2016; 56:1380-1391. [PMID: 27400176 DOI: 10.1002/jobm.201600131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/18/2016] [Indexed: 11/11/2022]
Abstract
In filamentous fungi, many gene clusters for the biosynthesis of secondary metabolites often stay silent under laboratory culture conditions because of the absence of communication with its natural environment. Epigenetic processes have been demonstrated to be critical in the expression of the genes or gene clusters. Here, we report the identification of a B-type histone acetyltransferase, Hat1, and demonstrate its significant roles in secondary metabolism, conidiation, and the cell wall integrity in the fungus Pestalotiopsis microspora. An hat1 deletion strain shows a dramatic decrease of SMs in this fungus, suggesting hat1 functions as a global regulator on secondary metabolism. Moreover, the mutant strain hat1Δ delays to produce conidia with significantly decreased number of conidia, while shows little effect on vegetative growth, suggesting that it plays a critical role in conidiation. The hypersensitivity of hat1Δ to Congo red demonstrates that disruption of hat1 impairs the integrity of cell wall. Overexpression of the wild-type hat1 allele enhances conidiation by boosting the number of conidia. This is the first report on the role of a B-type histone acetyltransferase in fungal secondary metabolism and cell wall integrity.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Longfei Chen
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Xi Yu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Heng Liu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Oren Akhberdi
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jiao Pan
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Xudong Zhu
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P. R. China.,Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institution of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijin, P. R. China
| |
Collapse
|
20
|
Kim D, Setiaputra D, Jung T, Chung J, Leitner A, Yoon J, Aebersold R, Hebert H, Yip CK, Song JJ. Molecular Architecture of Yeast Chromatin Assembly Factor 1. Sci Rep 2016; 6:26702. [PMID: 27221973 PMCID: PMC4879628 DOI: 10.1038/srep26702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/09/2016] [Indexed: 12/16/2022] Open
Abstract
Chromatin Assembly Complex 1 (CAF-1) is a major histone chaperone involved in deposition of histone H3 and H4 into nucleosome. CAF-1 is composed of three subunits; p150, p60 and p48 for human and Cac1, Cac2 and Cac3 for yeast. Despite of its central role in chromatin formation, structural features of the full CAF-1 in complex with histones and other chaperones have not been well characterized. Here, we dissect molecular architecture of yeast CAF-1 (yCAF-1) by cross-linking mass spectrometry (XL-MS) and negative stain single-particle electron microscopy (EM). Our work revealed that Cac1, the largest subunit of yCAF-1, might serve as a major histone binding platform linking Cac2 and Cac3. In addition, EM analysis showed that yCAF-1 adopts a bilobal shape and Cac1 connecting Cac2 and Cac3 to generate a platform for binding histones. This study provides the first structural glimpse of the full CAF-1 complex and a structural framework to understand histone chaperoning processes.
Collapse
Affiliation(s)
- Daegeun Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Cancer Metastasis Control Center, KAIST, 291 Daehakro Yuseong Daejeon, 34141, Korea
| | - Dheva Setiaputra
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Taeyang Jung
- Department of Biological Sciences, KAIST Institute for the BioCentury, Cancer Metastasis Control Center, KAIST, 291 Daehakro Yuseong Daejeon, 34141, Korea.,Department of Biosciences and Nutrition, Karolinska Institute, and School of Technology and Health, KTH Royal Institute of Technology, Novum, SE-141 57, Sweden
| | - Jaehee Chung
- Department of Biological Sciences, KAIST Institute for the BioCentury, Cancer Metastasis Control Center, KAIST, 291 Daehakro Yuseong Daejeon, 34141, Korea
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jungmin Yoon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Cancer Metastasis Control Center, KAIST, 291 Daehakro Yuseong Daejeon, 34141, Korea
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institute, and School of Technology and Health, KTH Royal Institute of Technology, Novum, SE-141 57, Sweden
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Ji-Joon Song
- Department of Biological Sciences, KAIST Institute for the BioCentury, Cancer Metastasis Control Center, KAIST, 291 Daehakro Yuseong Daejeon, 34141, Korea
| |
Collapse
|
21
|
Zhou T, Chung YH, Chen J, Chen Y. Site-Specific Identification of Lysine Acetylation Stoichiometries in Mammalian Cells. J Proteome Res 2016; 15:1103-13. [DOI: 10.1021/acs.jproteome.5b01097] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Zhou
- Department of Biochemistry,
Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Ying-hua Chung
- Department of Biochemistry,
Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Jianji Chen
- Department of Biochemistry,
Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Yue Chen
- Department of Biochemistry,
Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Zhang P, Liu Y, Jin C, Zhang M, Tang F, Zhou Y. Histone Acetyltransferase GCN5 Regulates Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting NF-κB. J Bone Miner Res 2016; 31:391-402. [PMID: 26420353 DOI: 10.1002/jbmr.2704] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 02/02/2023]
Abstract
As the most well-studied histone acetyltransferase (HAT) in yeast and mammals, general control nonderepressible 5 (GCN5) was documented to play essential roles in various developmental processes. However, little is known about its role in osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we detected the critical function of GCN5 in osteogenic commitment of MSCs. In this role, the HAT activity of GCN5 was not required. Mechanistically, GCN5 repressed nuclear factor kappa B (NF-κB)-dependent transcription and inhibited the NF-κB signaling pathway. The impaired osteogenic differentiation by GCN5 knockdown was blocked by inhibition of NF-κB. Most importantly, the expression of GCN5 was decreased significantly in the bone tissue sections of ovariectomized mice or aged mice. Collectively, these results may point to the GCN5-NF-κB pathway as a novel potential molecular target for stem cell mediated regenerative medicine and the treatment of metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
23
|
Annunziato AT. The Fork in the Road: Histone Partitioning During DNA Replication. Genes (Basel) 2015; 6:353-71. [PMID: 26110314 PMCID: PMC4488668 DOI: 10.3390/genes6020353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
In the following discussion the distribution of histones at the replication fork is examined, with specific attention paid to the question of H3/H4 tetramer "splitting." After a presentation of early experiments surrounding this topic, more recent contributions are detailed. The implications of these findings with respect to the transmission of histone modifications and epigenetic models are also addressed.
Collapse
Affiliation(s)
- Anthony T Annunziato
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
24
|
Yu Z, Liu J, Deng WM, Jiao R. Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cell Mol Life Sci 2015; 72:327-37. [PMID: 25292338 PMCID: PMC11114026 DOI: 10.1007/s00018-014-1748-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
More and more studies have shown chromatin remodelers and histone modifiers play essential roles in regulating developmental patterns by organizing specific chromosomal architecture to establish programmed transcriptional profiles, with implications that histone chaperones execute a coordinating role in these processes. Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved three-subunit protein complex, was identified as a histone chaperone coupled with DNA replication and repair in cultured mammalian cells and yeasts. Interestingly, recent findings indicate CAF-1 may have important regulatory roles during development by interacting with specific transcription factors and epigenetic regulators. In this review, we focus on the essential roles of CAF-1 in regulating heterochromatin organization, asymmetric cell division, and specific signal transduction through epigenetic modulations of the chromatin. In the end, we aim at providing a current image of facets of CAF-1 as a histone chaperone to orchestrate cell proliferation and differentiation during multi-cellular organism development.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295 USA
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| |
Collapse
|
25
|
Soldi M, Cuomo A, Bonaldi T. Improved bottom-up strategy to efficiently separate hypermodified histone peptides through ultra-HPLC separation on a bench top Orbitrap instrument. Proteomics 2014; 14:2212-25. [DOI: 10.1002/pmic.201400075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/06/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology; European Institute of Oncology; Milano Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology; European Institute of Oncology; Milano Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology; European Institute of Oncology; Milano Italy
| |
Collapse
|
26
|
Annunziato AT. Assembling chromatin: the long and winding road. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:196-210. [PMID: 24459722 DOI: 10.1016/j.bbagrm.2011.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been over 35 years since the acceptance of the "chromatin subunit" hypothesis, and the recognition that nucleosomes are the fundamental repeating units of chromatin fibers. Major subjects of inquiry in the intervening years have included the steps involved in chromatin assembly, and the chaperones that escort histones to DNA. The following commentary offers an historical perspective on inquiries into the processes by which nucleosomes are assembled on replicating and nonreplicating chromatin. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
27
|
Abstract
Eukaryotic gene regulation usually involves sequence-specific transcription factors and sequence-nonspecific cofactors. A large effort has been made to understand how these factors affect the average gene expression level among a population. However, little is known about how they regulate gene expression in individual cells. In this work, we address this question by mutating multiple factors in the regulatory pathway of the yeast HO promoter (HOpr) and probing the corresponding promoter activity in single cells using time-lapse fluorescence microscopy. We show that the HOpr fires in an "on/off" fashion in WT cells as well as in different genetic backgrounds. Many chromatin-related cofactors that affect the average level of HO expression do not actually affect the firing amplitude of the HOpr; instead, they affect the firing frequency among individual cell cycles. With certain mutations, the bimodal expression exhibits short-term epigenetic memory across the mitotic boundary. This memory is propagated in "cis" and reflects enhanced activator binding after a previous "on" cycle. We present evidence that the memory results from slow turnover of the histone acetylation marks.
Collapse
|
28
|
Bojang P, Ramos KS. The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat Rev 2013; 40:153-69. [PMID: 23831234 DOI: 10.1016/j.ctrv.2013.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/26/2023]
Abstract
Genetic mutations and gross structural defects in the DNA sequence permanently alter genetic loci in ways that significantly disrupt gene function. In sharp contrast, genes modified by aberrant epigenetic modifications remain structurally intact and are subject to partial or complete reversal of modifications that restore the original (i.e. non-diseased) state. Such reversibility makes epigenetic modifications ideal targets for therapeutic intervention. The epigenome of cancer cells is extensively modified by specific hypermethylation of the promoters of tumor suppressor genes relative to the extensive hypomethylation of repetitive sequences, overall loss of acetylation, and loss of repressive marks at microsatellite/repeat regions. In this review, we discuss emerging therapies targeting specific epigenetic modifications or epigenetic modifying enzymes either alone or in combination with other treatment regimens. The limitations posed by cancer treatments elicit unintended epigenetic modifications that result in exacerbation of tumor progression are also discussed. Lastly, a brief discussion of the specificity restrictions posed by epigenetic therapies and ways to address such limitations is presented.
Collapse
Affiliation(s)
- Pasano Bojang
- Department of Biochemistry and Molecular Biology, University of Louisville, 580 South Preston Street, Suite 221, Louisville, KY 40202, USA
| | | |
Collapse
|
29
|
Mocquard-Bucher E, Galvani A, Thiriet C. Histone H4 acetylation links nucleosome turnover and nucleosome assembly: lessons from the slime moldPhysarum polycephalum. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.848241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Kumar A, Ponnan P, Raj HG, Parmar VS, Saso L. Comparative specificities of Calreticulin Transacetylase to O-acetyl, N-acetyl and S-acetyl derivative of 4-methylcoumarins and their inhibitory effect on AFB1-induced genotoxicity in vitro and in vivo. Food Chem Toxicol 2013. [DOI: 10.1016/j.fct.2012.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Schizosaccharomyces pombe Hat1 (Kat1) is associated with Mis16 and is required for telomeric silencing. EUKARYOTIC CELL 2012; 11:1095-103. [PMID: 22771823 DOI: 10.1128/ec.00123-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hat1 histone acetyltransferase has been implicated in the acetylation of histone H4 during chromatin assembly. In this study, we have characterized the Hat1 complex from the fission yeast Schizosaccharomyces pombe and have examined its role in telomeric silencing. Hat1 is found associated with the RbAp46 homologue Mis16, an essential protein. The Hat1 complex acetylates lysines 5 and 12 of histone H4, the sites that are acetylated in newly synthesized H4 in a wide range of eukaryotes. Deletion of hat1 in S. pombe is itself sufficient to cause the loss of silencing at telomeres. This is in contrast to results obtained with an S. cerevisiae hat1Δ strain, which must also carry mutations of specific acetylatable lysines in the H3 tail domain for loss of telomeric silencing to occur. Notably, deletion of hat1 from S. pombe resulted in an increase of acetylation of histone H4 in subtelomeric chromatin, concomitant with derepression of this region. A similar loss of telomeric silencing was also observed after growing cells in the presence of the deacetylase inhibitor trichostatin A. However, deleting hat1 did not cause loss of silencing at centromeres or the silent mating type locus. These results point to a direct link between Hat1, H4 acetylation, and the establishment of repressed telomeric chromatin in fission yeast.
Collapse
|
32
|
Calreticulin Transacetylase mediated activation of human platelet nitric oxide synthase by acetyl group donor compounds. Nitric Oxide 2011; 26:9-19. [PMID: 22100620 DOI: 10.1016/j.niox.2011.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/19/2011] [Accepted: 10/27/2011] [Indexed: 02/02/2023]
Abstract
Polyphenols have attracted immense interest because of their diverse biological and pharmacological activities. Surprisingly, not much is documented about the biological activities of acetoxy derivatives of polyphenol called polyphenolic acetates (PA). In our previous reports, we have conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed activation of neuronal nitric oxide synthase (nNOS) and tumor necrosis factor-α (TNF-α) induced nitric oxide synthase (iNOS) by PA. In the present work, specificity of CRTAase to various classes of PA was characterized in human platelet. The effect of PA, on platelet NOS and intracellular cyclic guanosine monophosphate (cGMP), and adenosine diphosphate (ADP)-induced platelet aggregation were studied in an elaborated manner. Platelet CRTAase exhibited differential specificities to polyphenolic acetates upon incubation with l-arginine leading to activation of NOS. The intraplatelet generation of NO was studied by flowcytometry using DCFH-DA. The differential specificities of CRTAase to PA were found to positively correlate with increased production of NO upon incubation of PRP with PA and l-arginine. Further, the inhibitory effect of l-NAME on PA induced NO formation in platelets substantiated the CRTAase catalyzed activation of NOS. The real-time RT-PCR profile of NOS isoforms confirmed the preponderance of eNOS over iNOS in human platelets on treatment with PA. Western blot analysis also reiterated the differential pattern of acetylation of eNOS by PA. PA were also found effective in increasing the intraplatelet cGMP levels and inhibiting ADP-induced platelet aggregation. It is worth mentioning that the effects of PA were found to be in tune with the specificities of platelet CRTAase to PA as the substrates.
Collapse
|
33
|
Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011; 146:1016-28. [PMID: 21925322 DOI: 10.1016/j.cell.2011.08.008] [Citation(s) in RCA: 1331] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/25/2011] [Accepted: 08/05/2011] [Indexed: 12/16/2022]
Abstract
We report the identification of 67 previously undescribed histone modifications, increasing the current number of known histone marks by about 70%. We further investigated one of the marks, lysine crotonylation (Kcr), confirming that it represents an evolutionarily-conserved histone posttranslational modification. The unique structure and genomic localization of histone Kcr suggest that it is mechanistically and functionally different from histone lysine acetylation (Kac). Specifically, in both human somatic and mouse male germ cell genomes, histone Kcr marks either active promoters or potential enhancers. In male germinal cells immediately following meiosis, Kcr is enriched on sex chromosomes and specifically marks testis-specific genes, including a significant proportion of X-linked genes that escape sex chromosome inactivation in haploid cells. These results therefore dramatically extend the repertoire of histone PTM sites and designate Kcr as a specific mark of active sex chromosome-linked genes in postmeiotic male germ cells.
Collapse
|
34
|
Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BMM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 2011; 10:M111.012658. [PMID: 21908771 DOI: 10.1074/mcp.m111.012658] [Citation(s) in RCA: 562] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein post-translational modifications (PTMs) at the lysine residue, such as lysine methylation, acetylation, and ubiquitination, are diverse, abundant, and dynamic. They play a key role in the regulation of diverse cellular physiology. Here we report discovery of a new type of lysine PTM, lysine malonylation (Kmal). Kmal was initially detected by mass spectrometry and protein sequence-database searching. The modification was comprehensively validated by Western blot, tandem MS, and high-performance liquid chromatography of synthetic peptides, isotopic labeling, and identification of multiple Kmal substrate proteins. Kmal is a dynamic and evolutionarily conserved PTM observed in mammalian cells and bacterial cells. In addition, we demonstrate that Sirt5, a member of the class III lysine deacetylases, can catalyze lysine demalonylation and lysine desuccinylation reactions both in vitro and in vivo. This result suggests the possibility of nondeacetylation activity of other class III lysine deacetylases, especially those without obvious acetylation protein substrates. Our results therefore reveal a new type of PTM pathway and identify the first enzyme that can regulate lysine malonylation and lysine succinylation status.
Collapse
Affiliation(s)
- Chao Peng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Feng Y, Wang J, Asher S, Hoang L, Guardiani C, Ivanov I, Zheng YG. Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J Biol Chem 2011; 286:20323-34. [PMID: 21502321 DOI: 10.1074/jbc.m110.207258] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone H4 undergoes extensive post-translational modifications (PTMs) at its N-terminal tail. Many of these PTMs profoundly affect the on and off status of gene transcription. The molecular mechanism by which histone PTMs modulate genetic and epigenetic processes is not fully understood. In particular, how a PTM mark affects the presence and level of other histone modification marks needs to be addressed and is essential for better understanding the molecular basis of histone code hypothesis. To dissect the interplaying relationship between different histone modification marks, we investigated how individual lysine acetylations and their different combinations at the H4 tail affect Arg-3 methylation in cis. Our data reveal that the effect of lysine acetylation on arginine methylation depends on the site of acetylation and the type of methylation. Although certain acetylations present a repressive impact on PRMT1-mediated methylation (type I methylation), lysine acetylation generally is correlated with enhanced methylation by PRMT5 (type II dimethylation). In particular, Lys-5 acetylation decreases the activity of PRMT1 but increases that of PRMT5. Furthermore, circular dichroism study and computer simulation demonstrate that hyperacetylation increases the content of ordered secondary structures at the H4 tail region. These findings provide new insights into the regulatory mechanism of Arg-3 methylation by H4 acetylation and unravel the complex intercommunications that exist between different the PTM marks in cis. The divergent activities of PRMT1 and PRMT5 with respect to different acetyl-H4 substrates suggest that type I and type II protein-arginine methyltransferases use distinct molecular determinants for substrate recognition and catalysis.
Collapse
Affiliation(s)
- You Feng
- Department of Chemistry and Biology, Program of Molecular Basis of Diseases, Georgia State University, Atlanta, Georgia 30302, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Baghel AS, Tandon R, Gupta G, Kumar A, Sharma RK, Aggarwal N, Kathuria A, Saini NK, Bose M, Prasad AK, Sharma SK, Nath M, Parmar VS, Raj HG. Characterization of protein acyltransferase function of recombinant purified GlnA1 from Mycobacterium tuberculosis: a moon lighting property. Microbiol Res 2011; 166:662-72. [PMID: 21411303 DOI: 10.1016/j.micres.2011.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 01/31/2011] [Accepted: 02/05/2011] [Indexed: 02/02/2023]
Abstract
The protein acetyltransferase (MTAase) function of glutamine synthetase of Mycobacterium smegmatis was established earlier. In this paper, studies were undertaken to examine MTAase function of recombinant glutamine synthetase (rGlnA1) of Mycobacterium tuberculosis, which showed >80% similarity with M. smegmatis GlnA. The specificity of MTAase to several acyl derivative of coumarins was examined. The results clearly indicated that MTAase exhibited differential specificities to several acyloxycoumarins. Further, MTAase was also found capable of transferring propionyl and butyryl groups from propoxy and butoxy derivatives of 4-methylcoumarin. These observations characterized MTAase in general as a protein acyltransferase. MTAase catalyzed acetylation of GST by 7,8-diacetoxy-4-methylcoumarin (DAMC), a model acetoxy coumarin was confirmed by MALDI-TOF-MS as well as western blot analysis using acetylated lysine polyclonal antibody. In order to validate the active site of rGlnA1 for TAase activity, effect of DAMC and L-methionine-S-sulfoximine (MSO) on GS and TAase activity of rGlnA1 were studied. The results indicated that the active sites of GS and TAase were found different. Acetyl CoA, a universal biological acetyl group donor, was also found to be a substrate for MTAase. These results appropriately characterize glutamine synthetase of Mtb exhibiting transacylase action as a moonlighting protein.
Collapse
Affiliation(s)
- Anil S Baghel
- Department of Biochemistry, VP Chest Institute, University of Delhi, Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 2010; 7:58-63. [PMID: 21151122 DOI: 10.1038/nchembio.495] [Citation(s) in RCA: 704] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/21/2010] [Indexed: 01/08/2023]
Abstract
Of the 20 ribosomally coded amino acid residues, lysine is the most frequently post-translationally modified, which has important functional and regulatory consequences. Here we report the identification and verification of a previously unreported form of protein post-translational modification (PTM): lysine succinylation. The succinyllysine residue was initially identified by mass spectrometry and protein sequence alignment. The identified succinyllysine peptides derived from in vivo proteins were verified by western blot analysis, in vivo labeling with isotopic succinate, MS/MS and HPLC coelution of their synthetic counterparts. We further show that lysine succinylation is evolutionarily conserved and that this PTM responds to different physiological conditions. Our study also implies that succinyl-CoA might be a cofactor for lysine succinylation. Given the apparent high abundance of lysine succinylation and the significant structural changes induced by this PTM, it is expected that lysine succinylation has important cellular functions.
Collapse
|
38
|
Singh U, Kumar A, Sinha R, Manral S, Arora S, Ram S, Mishra RK, Gupta P, Bansal SK, Prasad AK, Biswal S, Parmar VS, Raj HG. Calreticulin transacetylase catalyzed modification of the TNF-α mediated pathway in the human peripheral blood mononuclear cells by polyphenolic acetates. Chem Biol Interact 2010; 185:263-70. [DOI: 10.1016/j.cbi.2010.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 02/02/2023]
|
39
|
Peng X, Pentassuglia L, Sawyer DB. Emerging anticancer therapeutic targets and the cardiovascular system: is there cause for concern? Circ Res 2010; 106:1022-34. [PMID: 20360265 DOI: 10.1161/circresaha.109.211276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The race for a cure to cancer continues, fueled by unprecedented discoveries of fundamental biology underlying carcinogenesis and tumorigenesis. The expansion of the target list and tools to approach them is moving the oncology community extraordinarily rapidly to clinical trials, bringing new hope for cancer patients. This effort is also propelling biological discoveries in cardiovascular research, because many of the targets being explored in cancer play fundamental roles in the heart and vasculature. The combined efforts of cardiovascular and cancer biologists, along with clinical investigators in these fields, will be needed to understand how to safely exploit these efforts. Here, we discuss a few of the many research foci in oncology where we believe such collaboration will be particularly important.
Collapse
Affiliation(s)
- Xuyang Peng
- Cardiovascular Medicine, Vanderbilt University Medical Center, PRB 359B Pierce Ave., Nashville, TN 37232, USA.
| | | | | |
Collapse
|
40
|
Rampakakis E, Di Paola D, Chan MK, Zannis-Hadjopoulos M. Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation. J Cell Biochem 2009; 108:400-7. [PMID: 19585526 DOI: 10.1002/jcb.22266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome duplication relies on the timely activation of multiple replication origins throughout the genome during S phase. Each origin is marked by the assembly of a multiprotein pre-replication complex (pre-RC) and the recruitment of the replicative machinery, which can gain access to replication origins on the DNA through the barrier of specific chromatin structures. Inheritance of the genetic information is further accompanied by maintenance and inheritance of the epigenetic marks, which are accomplished by the activity of histone and DNA modifying enzymes traveling with the replisome. Here, we studied the changes in the chromatin structure at the loci of three replication origins, the early activated human lamin B2 (LB2) and monkey Ors8 (mOrs8) origins and the late-activated human homologue of the latter (hOrs8), during their activation, by measuring the abundance of post-translationally modified histone H3. The data show that dynamic changes in the levels of acetylated, methylated and phosphorylated histone H3 occur during the initiation of DNA replication at these three origin loci, which differ between early- and late-firing origins as well as between human- and monkey-derived cell lines. These results suggest that specific histone modifications are associated with origin firing, temporal activation and replication fork progression and underscore the importance of species specificity.
Collapse
Affiliation(s)
- E Rampakakis
- Rosalind and Morris Goodman Cancer Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A3
| | | | | | | |
Collapse
|
41
|
Bandyopadhyay K, Banères JL, Martin A, Blonski C, Parello J, Gjerset RA. Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer-specific chemo- and radiosensitization. Cell Cycle 2009; 8:2779-88. [PMID: 19652528 DOI: 10.4161/cc.8.17.9416] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acetyl group turnover on specific lysine epsilon-amino groups of the core chromosomal histones regulates DNA accessibility function, and the acetylating and deacetylating enzymes that govern the turnover provide important targets for the development of anti-cancer drugs. Histone deacetylase (HDAC) inhibitors have been developed and evaluated extensively in clinical trials, while the development of inhibitors of histone acetyltransferase (HAT) has proceeded more slowly. Here we have examined the cellular effects of an S-substituted coenzyme A (CoA) inhibitor of histone acetylation, consisting of spermidine (Spd) linked to the S-terminus of CoA through a thioglycolic acid linkage (adduct abbreviated as Spd-CoA), as well as the effects of a truncated Spd-CoA derivative lacking the negatively charged portion of the CoA moiety. While exposure of cancer cells to Spd-CoA has little effect on cell viability, it causes a rapid inhibition of histone acetylation that correlates with a transient arrest of DNA synthesis, a transient delay in S-phase progression, and an inhibition of nucleotide excision repair and DNA double strand break repair. These effects correlate with increased cellular sensitivity to the DNA-targeted chemotherapeutic drugs, cisplatin (Platinol()) and 5-fluorouracil, to the DNA damaging drug, camptothecin, and to UV-C irradiation. The sensitization effects of Spd-CoA are not observed in normal cells due to a barrier to uptake. The truncated Spd-CoA derivative displays similar but enhanced chemosensitization effects, suggesting that further modifications of the Spd-CoA structure could further improve potency. The results demonstrate that Spd-CoA and its truncated version are efficiently and selectively internalized into cancer cells, and suggest that the resulting inhibition of acetylation-dependent DNA repair enhances cellular sensitivity to DNA damage. These and related inhibitors of histone acetylation could therefore constitute a novel class of potent therapy sensitizers applicable to a broad range of conventional cancer treatments.
Collapse
|
42
|
Rider SD, Zhu G. An apicomplexan ankyrin-repeat histone deacetylase with relatives in photosynthetic eukaryotes. Int J Parasitol 2008; 39:747-54. [PMID: 19136004 DOI: 10.1016/j.ijpara.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/21/2008] [Accepted: 11/23/2008] [Indexed: 11/19/2022]
Abstract
Cryptosporidium parvum is a member of the Apicomplexa that lacks a plastid and associated nuclear-encoded genes, which has hampered its use in evolutionary comparisons with algae and eliminated a pool of potentially useful drug targets. Here we show that apicomplexan parasites possess an unusual family of class II histone deacetylase (HDAC) proteins with orthologues that are present in other chromalveolates and primitive algae. A striking feature of these HDAC proteins is the presence of ankyrin repeats in the amino-terminus that appear to be required for enzyme activity. In vitro and in vivo analyses of the C. parvum orthologue indicate that this subclass of chromatin-remodelling proteins is targeted by the anti-cancer drug suberoylanilide hydroxamic acid and that these proteins are most likely involved in the essential process of H4 histone deacetylation that coincides with DNA replication. We propose that members of this novel class of histone deacetylase can serve as promising new targets for treatments against debilitating diseases such as cryptosporidosis, toxoplasmosis and malaria.
Collapse
Affiliation(s)
- S Dean Rider
- Department of Pathobiology, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
43
|
Shechter D, Nicklay JJ, Chitta RK, Shabanowitz J, Hunt DF, Allis CD. Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. J Biol Chem 2008; 284:1064-74. [PMID: 18957438 DOI: 10.1074/jbc.m807273200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone proteins contain epigenetic information that is encoded both in the relative abundance of core histones and variants and particularly in the post-translational modification of these proteins. We determined the presence of such variants and covalent modifications in seven tissue types of the anuran Xenopus laevis, including oocyte, egg, sperm, early embryo equivalent (pronuclei incubated in egg extract), S3 neurula cells, A6 kidney cells, and erythrocytes. We first developed a new robust method for isolating the stored, predeposition histones from oocytes and eggs via chromatography on heparin-Sepharose, whereas we isolated chromatinized histones via conventional acid extraction. We identified two previously unknown H1 isoforms (H1fx and H1B.Sp) present on sperm chromatin. We immunoblotted this global collection of histones with many specific post-translational modification antibodies, including antibodies against methylated histone H3 on Lys(4), Lys(9), Lys(27), Lys(79), Arg(2), Arg(17), and Arg(26); methylated histone H4 on Lys(20); methylated H2A and H4 on Arg(3); acetylated H4 on Lys(5), Lys(8), Lys(12), and Lys(16) and H3 on Lys(9) and Lys(14); and phosphorylated H3 on Ser(10) and H2A/H4 on Ser(1). Furthermore, we subjected a subset of these histones to two-dimensional gel analysis and subsequent immunoblotting and mass spectrometry to determine the global remodeling of histone modifications that occurs as development proceeds. Overall, our observations suggest that each metazoan cell type may have a unique histone modification signature correlated with its differentiation status.
Collapse
Affiliation(s)
- David Shechter
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
44
|
Nicklay JJ, Shechter D, Chitta RK, Garcia BA, Shabanowitz J, Allis CD, Hunt DF. Analysis of histones in Xenopus laevis. II. mass spectrometry reveals an index of cell type-specific modifications on H3 and H4. J Biol Chem 2008; 284:1075-85. [PMID: 18957437 DOI: 10.1074/jbc.m807274200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epigenetic information is hypothesized to be encoded in histone variants and post-translational modifications. Varied cell- and locus-specific combinations of these epigenetic marks are likely contributors to regulation of chromatin-templated transactions, including transcription, replication, recombination, and repair. Therefore, the relative abundance of histone modifications in a given cell type is a potential index of cell fate and specificity. Here, we utilize mass spectrometry techniques to characterize the relative abundance index of cell type-specific modifications on histones H3 and H4 in distinct cell types from the frog Xenopus laevis, including the sperm, the stored predeposition histones in the egg, the early embryo equivalent pronuclei, cultured somatic cells, and erythrocytes. We used collisionally associated dissociation to identify the modifications present on histone H3 in a variety of cell types, resolving 26 distinctly modified H3 peptides. We employed the electron transfer dissociation fragmentation technique in a "middle-down" approach on the H4 N-terminal tail to explore the overlap of post-translational modifications. We observed 66 discrete isoforms of the H4 1-23 fragment in four different cell types. Isolation of the stored, predeposition histone H4 from the frog egg also revealed a more varied pattern of modifications than the previously known diacetylation on Lys(5) and Lys(12). The developmental transitions of modifications on H3 and H4 were strikingly varied, implying a strong correlation of the histone code with cell type and fate. Our results are consistent with a histone code index for each cell type and uncover potential cross-talk between modifications on a single tail.
Collapse
Affiliation(s)
- Joshua J Nicklay
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2008; 41:185-98. [PMID: 18804549 DOI: 10.1016/j.biocel.2008.08.027] [Citation(s) in RCA: 532] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 12/27/2022]
Abstract
This review focuses on the posttranslational acetylation of non-histone proteins, which determines vital regulatory processes. The recruitment of histone acetyltransferases and histone deacetylases to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation and differentiation. A steadily growing number of identified acetylated non-histone proteins demonstrate that reversible lysine acetylation affects mRNA stability, and the localisation, interaction, degradation and function of proteins. Interestingly, most non-histone proteins targeted by acetylation are relevant for tumourigenesis, cancer cell proliferation and immune functions. Therefore inhibitors of histone deacetylases are considered as candidate drugs for cancer therapy. Histone deacetylase inhibitors alter histone acetylation and chromatin structure, which modulates gene expression, as well as promoting the acetylation of non-histone proteins. Here, we summarise the complex effects of dynamic alterations in the cellular acetylome on physiologically relevant pathways.
Collapse
Affiliation(s)
- Stephanie Spange
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
46
|
Abstract
Saccharomyces cerevisiae Hat1, together with Hat2 and Hif1, forms the histone acetyltransferase B (HAT-B) complex. Previous studies performed with synthetic N-terminal histone H4 peptides found that whereas the HAT-B complex acetylates only Lys12, recombinant Hat1 is able to modify Lys12 and Lys5. Here we demonstrate that both Lys12 and Lys5 of soluble, non-chromatin-bound histone H4 are in vivo targets of acetylation for the yeast HAT-B enzyme. Moreover, coimmunoprecipitation assays revealed that Lys12/Lys5-acetylated histone H4 is bound to the HAT-B complex in the soluble cell fraction. Both Hat1 and Hat2, but not Hif1, are required for the Lys12/Lys5-specific acetylation and for histone H4 binding. HAT-B-dependent acetylation of histone H4 was detected in the soluble fraction of cells at distinct cell cycle stages, and increased when cells accumulated excess histones. Strikingly, histone H3 was not found in any of the immunoprecipitates obtained with the different components of the HAT-B enzyme, indicating the possibility that histone H3 is not together with histone H4 in this complex. Finally, the exchange of Lys for Arg at position 12 of histone H4 did not interfere with histone H4 association with the complex, but prevented acetylation on Lys5 by the HAT-B enzyme, in vivo as well as in vitro.
Collapse
Affiliation(s)
- Ana Poveda
- Departament de Bioquímica i Biología Molecular, Universitat de València, Spain
| | | |
Collapse
|
47
|
A class II histone deacetylase acts on newly synthesized histones in Tetrahymena. EUKARYOTIC CELL 2008; 7:471-82. [PMID: 18178773 DOI: 10.1128/ec.00409-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Newly synthesized histones are acetylated prior to their deposition into nucleosomes. Following nucleosome formation and positioning, they are rapidly deacetylated, an event that coincides with further maturation of the chromatin fiber. The histone deacetylases (HDACs) used for histone deposition and de novo chromatin formation are poorly understood. In the ciliate Tetrahymena thermophila, transcription-related deacetylation in the macronucleus is physically separated from deposition-related deacetylation in the micronucleus. This feature was utilized to identify an HDAC named Thd2, a class II HDAC that acts on newly synthesized histones to remove deposition-related acetyl moieties. The THD2 transcript is alternatively spliced, and the major form contains a putative inositol polyphosphate kinase (IPK) domain similar to Ipk2, an enzyme that promotes chromatin remodeling by SWI/SNF remodeling complexes. Cells lacking Thd2, which retain deposition-related acetyl moieties on new histones, exhibit chromatin and cytological phenotypes indicative of a role for Thd2 in chromatin maturation, including the proteolytic processing of histone H3.
Collapse
|
48
|
Parker K, Maxson J, Mooney A, Wiley EA. Class I histone deacetylase Thd1p promotes global chromatin condensation in Tetrahymena thermophila. EUKARYOTIC CELL 2007; 6:1913-24. [PMID: 17715364 PMCID: PMC2043386 DOI: 10.1128/ec.00217-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Class I histone deacetylases (HDACs) regulate DNA-templated processes such as transcription. They act both at specific loci and more generally across global chromatin, contributing to acetylation patterns that may underlie large-scale chromatin dynamics. Although hypoacetylation is correlated with highly condensed chromatin, little is known about the contribution of individual HDACs to chromatin condensation mechanisms. Using the ciliated protozoan Tetrahymena thermophila, we investigated the role of a specific class I HDAC, Tauhd1p, in the reversible condensation of global chromatin. In this system, the normal physiological response to cell starvation includes the widespread condensation of the macronuclear chromatin and general repression of gene transcription. We show that the chromatin in Thd1p-deficient cells failed to condense during starvation. The condensation failure correlated with aberrant hyperphosphorylation of histone H1 and the overexpression of CDC2, encoding the major histone H1 kinase. Changes in the rate of acetate turnover on core histones and in the distribution of acetylated lysines 9 and 23/27 on histone H3 isoforms that were found to correlate with normal chromatin condensation were absent from Thd1p mutant cells. These results point to a role for a class I HDAC in the formation of reversible higher-order chromatin structures and global genome compaction through mechanisms involving the regulation of H1 phosphorylation and core histone acetylation/deacetylation kinetics.
Collapse
Affiliation(s)
- Kathryn Parker
- Joint Science Department, W M Keck Science Center, Claremont, CA 91711, USA
| | | | | | | |
Collapse
|
49
|
Walfridsson J, Khorosjutina O, Matikainen P, Gustafsson CM, Ekwall K. A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly. EMBO J 2007; 26:2868-79. [PMID: 17510629 PMCID: PMC1894767 DOI: 10.1038/sj.emboj.7601728] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/26/2007] [Indexed: 01/05/2023] Open
Abstract
Chromatin remodelling factors and histone chaperones were previously shown to cooperatively affect nucleosome assembly and disassembly processes in vitro. Here, we show that Schizosaccharomyces pombe CHD remodellers, the Hrp1 and Hrp3 paralogs physically interact with the histone chaperone Nap1. Genome-wide analysis of Hrp1, Hrp3 and Nap1 occupancy, combined with nucleosome density measurements revealed that the CHD factors and Nap1 colocalized in particular to promoter regions where they remove nucleosomes near the transcriptional start site. Hrp1 and Hrp3 also regulate nucleosome density in coding regions, where they have redundant roles to stimulate transcription. Previously, DNA replication-dependent and -independent nucleosome disassembly processes have been described. We found that nucleosome density increased in the hrp1 mutant in the absence of DNA replication. Finally, regions where nucleosome density increased in hrp1, hrp3 and nap1 mutants also showed nucleosome density and histone modification changes in HDAC and HAT mutants. Thus, this study revealed an important in vivo role for CHD remodellers and Nap1 in nucleosome disassembly at promoters and coding regions, which are linked to changes in histone acetylation.
Collapse
Affiliation(s)
- Julian Walfridsson
- Karolinska Institutet, Department of Biosciences and Medical Nutrition/School of Life Sciences, University College Sodertorn, Huddinge, Sweden
- School of Life Sciences, University College Sodertorn, Alfred Nobel's Allé 7, 141 89 Huddinge, Sweden. Tel.: +46 8 608 4713; Fax: +46 8 608 4510; E-mail: or Tel.: +46 8 608 4713; +46 8 608 4709; E-mail:
| | - Olga Khorosjutina
- Division of Metabolic Disorders, Department of Laboratory Medicine, Karolinska Institutet, Novum, Huddinge Sweden
| | - Paulina Matikainen
- Division of Metabolic Disorders, Department of Laboratory Medicine, Karolinska Institutet, Novum, Huddinge Sweden
| | - Claes M Gustafsson
- Division of Metabolic Disorders, Department of Laboratory Medicine, Karolinska Institutet, Novum, Huddinge Sweden
| | - Karl Ekwall
- Karolinska Institutet, Department of Biosciences and Medical Nutrition/School of Life Sciences, University College Sodertorn, Huddinge, Sweden
- School of Life Sciences, University College Sodertorn, Alfred Nobel's Allé 7, 141 89 Huddinge, Sweden. Tel.: +46 8 608 4713; Fax: +46 8 608 4510; E-mail: or Tel.: +46 8 608 4713; +46 8 608 4709; E-mail:
| |
Collapse
|
50
|
Kumari R, Gupta G, Saluja D, Kumar A, Goel S, Tyagi YK, Gulati R, Vinocha A, Muralidhar K, Dwarakanth BS, Rastogi RC, Parmar VS, Patkar SA, Raj HG. Characterization of protein transacetylase from human placenta as a signaling molecule calreticulin using polyphenolic peracetates as the acetyl group donors. Cell Biochem Biophys 2007; 47:53-64. [PMID: 17420526 DOI: 10.1385/cbb:47:1:53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/02/2023]
Abstract
We have earlier shown that a unique membrane-bound enzyme mediates the transfer of acetyl group(s) from polyphenolic peracetates (PA) to functional proteins, which was termed acetoxy drug: protein transacetylase (TAase) because it acted upon several classes of PA. Here, we report the purification of TAase from human placental microsomes to homogeneity with molecular mass of 60 kDa, exhibiting varying degrees of specificity to several classes of PA confirming the structure-activity relationship for the microsome-bound TAase. The TAase catalyzed protein acetylation by a model acetoxy drug, 7,8-diacetoxy-4-methyl coumarin (DAMC) was established by the demonstration of immunoreactivity of the acetylated target protein with anti-acetyl lysine antibody. TAase activity was severely inhibited in calcium-aggregated microsomes as well as when Ca2+ was added to purified TAase, suggesting that TAase could be a calcium binding protein. Furthermore, the N-terminal sequence analysis of purified TAase (EPAVYFKEQFLD) using Swiss Prot Database perfectly matched with calreticulin (CRT), a major microsomal calcium binding protein of the endoplasmic reticulum (ER). The identity of TAase with CRT was substantiated by the observation that the purified TAase avidly reacted with commercially available antibody raised against the C-terminus of human CRT (13 residues peptide, DEEDATGQAKDEL). Purified TAase also showed Ca2+ binding and acted as a substrate for phosphorylation catalyzed by protein kinase C (PKC), which are hallmark characteristics of CRT. Further, purified placental CRT as well as the commercially procured pure CRT yielded significant TAase catalytic activity and were also found effective in mediating the acetylation of the target protein NADPH cytochrome P-450 reductase by DAMC as detected by Western blot using anti-acetyl lysine antibody. These observations for the first time convincingly attribute the transacetylase function to CRT. Hence, this transacetylase function of CRT is designated calreticulin transacetylase (CRTAase). We envisage that CRTAase plays an important role in protein modification by way of acetylation independent of Acetyl CoA.
Collapse
|