1
|
Thauer RK. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes. Biochemistry 2019; 58:5198-5220. [PMID: 30951290 PMCID: PMC6941323 DOI: 10.1021/acs.biochem.9b00164] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Methyl-coenzyme
M reductase (MCR) catalyzes the methane-forming
step in methanogenic archaea. The active enzyme harbors the nickel(I)
hydrocorphin coenzyme F-430 as a prosthetic group and catalyzes the
reversible reduction of methyl-coenzyme M (CH3–S-CoM)
with coenzyme B (HS-CoM) to methane and CoM-S–S-CoB. MCR is
also involved in anaerobic methane oxidation in reverse of methanogenesis
and most probably in the anaerobic oxidation of ethane, propane, and
butane. The challenging question is how the unreactive CH3–S thioether bond in methyl-coenzyme M and the even more unreactive
C–H bond in methane and the other hydrocarbons are anaerobically
cleaved. A key to the answer is the negative redox potential (Eo′) of the Ni(II)F-430/Ni(I)F-430 couple
below −600 mV and the radical nature of Ni(I)F-430. However,
the negative one-electron redox potential is also the Achilles heel
of MCR; it makes the nickel enzyme one of the most O2-sensitive
enzymes known to date. Even under physiological conditions, the Ni(I)
in MCR is oxidized to the Ni(II) or Ni(III) states, e.g., when in
the cells the redox potential (E′) of the
CoM-S–S-CoB/HS-CoM and HS-CoB couple (Eo′ = −140 mV) gets too high. Methanogens therefore
harbor an enzyme system for the reactivation of inactivated MCR in
an ATP-dependent reduction reaction. Purification of active MCR in
the Ni(I) oxidation state is very challenging and has been achieved
in only a few laboratories. This perspective reviews the function,
structure, and properties of MCR, what is known and not known about
the catalytic mechanism, how the inactive enzyme is reactivated, and
what remains to be discovered.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Strasse 10 , Marburg 35043 , Germany
| |
Collapse
|
2
|
Wrede C, Walbaum U, Ducki A, Heieren I, Hoppert M. Localization of Methyl-Coenzyme M reductase as metabolic marker for diverse methanogenic Archaea. ARCHAEA (VANCOUVER, B.C.) 2013; 2013:920241. [PMID: 23533332 PMCID: PMC3596918 DOI: 10.1155/2013/920241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/09/2013] [Indexed: 11/23/2022]
Abstract
Methyl-Coenzyme M reductase (MCR) as key enzyme for methanogenesis as well as for anaerobic oxidation of methane represents an important metabolic marker for both processes in microbial biofilms. Here, the potential of MCR-specific polyclonal antibodies as metabolic marker in various methanogenic Archaea is shown. For standard growth conditions in laboratory culture, the cytoplasmic localization of the enzyme in Methanothermobacter marburgensis, Methanothermobacter wolfei, Methanococcus maripaludis, Methanosarcina mazei, and in anaerobically methane-oxidizing biofilms is demonstrated. Under growth limiting conditions on nickel-depleted media, at low linear growth of cultures, a fraction of 50-70% of the enzyme was localized close to the cytoplasmic membrane, which implies "facultative" membrane association of the enzyme. This feature may be also useful for assessment of growth-limiting conditions in microbial biofilms.
Collapse
Affiliation(s)
- Christoph Wrede
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- Hannover Medical School, Institute of Functional and Applied Anatomy, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Ulrike Walbaum
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Andrea Ducki
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- School of Veterinary and Biomedical Sciences, Murdoch University, 90 South Street Murdoch, WA 6150, Australia
| | - Iris Heieren
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Michael Hoppert
- Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
- Courant Centre Geobiology, Georg-August-Universität Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Milucka J, Widdel F, Shima S. Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia. Environ Microbiol 2012; 15:1561-71. [PMID: 23095164 DOI: 10.1111/1462-2920.12003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 μm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations.
Collapse
Affiliation(s)
- Jana Milucka
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| | | | | |
Collapse
|
4
|
Blaut M, Müller V, Gottschalk G. Proton translocation coupled to methanogenesis from methanol + hydrogen inMethanosarcina barkeri. FEBS Lett 2002. [DOI: 10.1016/0014-5793(87)80112-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Hoppert M, Mayer F. Principles of macromolecular organization and cell function in bacteria and archaea. Cell Biochem Biophys 2000; 31:247-84. [PMID: 10736750 DOI: 10.1007/bf02738242] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Structural organization of the cytoplasm by compartmentation is a well established fact for the eukaryotic cell. In prokaryotes, compartmentation is less obvious. Most prokaryotes do not need intracytoplasmic membranes to maintain their vital functions. This review, especially dealing with prokaryotes, will point out that compartmentation in prokaryotes is present, but not only achieved by membranes. Besides membranes, the nucleoid, multienzyme complexes and metabolons, storage granules, and cytoskeletal elements are involved in compartmentation. In this respect, the organization of the cytoplasm of prokaryotes is similar to that in the eukaryotic cell. Compartmentation influences properties of water in cells.
Collapse
Affiliation(s)
- M Hoppert
- Abteilung Strukfurelle Mikrobiologie, Georg-August-Universitat, Göttingen, Germany.
| | | |
Collapse
|
6
|
Mayer F, Hoppert M. Functional compartmentalization in bacteria and archaea. A hypothetical interface between cytoplasmic membrane and cytoplasm. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1996; 83:36-9. [PMID: 8637606 DOI: 10.1007/s001140050244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- F Mayer
- Institut für Mikrobiologie der Universität, Göttingen, Germany
| | | |
Collapse
|
7
|
Mayer F, Hoppert M. Functional compartmentalization in bacteria and archaea. Naturwissenschaften 1996. [DOI: 10.1007/bf01139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Vogt B, Berker R, Mayer F. Improved contrast by a simplified post-staining procedure for ultrathin sections of resin-embedded bacterial cells: Application of ruthenium red. J Basic Microbiol 1995. [DOI: 10.1002/jobm.3620350510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Braks IJ, Hoppert M, Roge S, Mayer F. Structural aspects and immunolocalization of the F420-reducing and non-F420-reducing hydrogenases from Methanobacterium thermoautotrophicum Marburg. J Bacteriol 1994; 176:7677-87. [PMID: 8002593 PMCID: PMC197226 DOI: 10.1128/jb.176.24.7677-7687.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The F420-reducing hydrogenase and the non-F420-reducing hydrogenase (EC 1.12.99.1.) were isolated from a crude extract of Methanobacterium thermoautotrophicum Marburg. Electron microscopy of the negatively stained F420-reducing hydrogenase revealed that the enzyme is a complex with a diameter of 15.6 nm. It consists of two ring-like, stacked, parallel layers each composed of three major protein masses arranged in rotational symmetry. Each of these masses appeared to be subdivided into smaller protein masses. Electron microscopy of negatively stained samples taken from intermediate steps of the purification process revealed the presence of enzyme particles bound to inside-out membrane vesicles. Linker particles of 10 to 20 kDa which mediate the attachment of the hydrogenase to the cytoplasmic membrane were seen. Immunogold labelling confirmed that the F420-reducing hydrogenase is a membrane-bound enzyme. Electron microscopy of the negatively stained purified non-F420-reducing hydrogenase revealed that the enzyme is composed of three subunits exhibiting different diameters (5, 4, and 2 to 3 nm). According to immunogold labelling experiments, approximately 70% of the non-F420-reducing hydrogenase protein molecules were located at the cell periphery; the remaining 30% were cytoplasmic. No linker particles were observed for this enzyme.
Collapse
Affiliation(s)
- I J Braks
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
10
|
Abstract
Methanogenic archaea convert a few simple compounds such as H2 + CO2, formate, methanol, methylamines, and acetate to methane. Methanogenesis from all these substrates requires a number of unique coenzymes, some of which are exclusively found in methanogens. H2-dependent CO2 reduction proceeds via carrier-bound C1 intermediates which become stepwise reduced to methane. Methane formation from methanol and methylamines involves the disproportionation of the methyl groups. Part of the methyl groups are oxidized to CO2, and the reducing equivalents thereby gained are subsequently used to reduce other methyl groups to methane. This process involves the same C1 intermediates that are formed during methanogenesis from CO2. Conversion of acetate to methane and carbon dioxide is preceded by its activation to acetyl-CoA. Cleavage of the latter compound yields a coenzyme-bound methyl moiety and an enzyme-bound carbonyl group. The reducing equivalents gained by oxidation of the carbonyl group to carbon dioxide are subsequently used to reduce the methyl moiety to methane. All these processes lead to the generation of transmembrane ion gradients which fuel ATP synthesis via one or two types of ATP synthases. The synthesis of cellular building blocks starts with the central anabolic intermediate acetyl-CoA which, in autotrophic methanogens, is synthesized from two molecules of CO2 in a linear pathway.
Collapse
Affiliation(s)
- M Blaut
- Institut für Mikrobiologie, Universität Göttingen, Germany
| |
Collapse
|
11
|
Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK. Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:587-95. [PMID: 8223602 DOI: 10.1111/j.1432-1033.1993.tb18281.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methyl-coenzyme M reductase (MCR) catalyses the methane-forming step in the energy metabolism of methanogenic Archaea. It brings about the reduction of methyl-coenzyme M (CH3-S-CoM) by 7-mercaptoheptanoylthreonine phosphate (H-S-HTP). Methanobacterium thermoautotrophicum contains two isoenzymes of MCR, designated MCR I and MCR II, which are expressed differentially under different conditions of growth. These two isoenzymes have been separated, purified and their catalytic and spectroscopic properties determined. Initial-velocity measurements of the two-substrate reaction showed that the kinetic mechanism for both isoenzymes involved ternary-complex formation. Double reciprocal plots of initial rates versus the concentration of either one of the two substrates at different constant concentrations of the other substrate were linear and intersected on the abcissa to the left of the 1/v axis. The two purified isoenzymes differed in their Km values for H-S-HTP and for CH3-S-CoM and in Vmax. MCR I displayed a Km for H-S-HTP of 0.1-0.3 mM, a Km for CH3-S-CoM of 0.6-0.8 mM and a Vmax of about 6 mumol.min-1 x mg-1 (most active preparation). MCR II showed a Km for H-S-HTP of 0.4-0.6 mM, a Km for CH3-S-CoM of 1.3-1.5 mM and a Vmax of about 21 mumol.min-1 x mg-1 (most active preparation). The pH optimum of MCR I was 7.0-7.5 and that of MCR II 7.5-8.0. Both isoenzymes exhibited very similar temperature activity optima and EPR properties. The location of MCR I and of MCR II within the cell, determined via immunogold labeling, was found to be essentially identical. The possible basis for the existence of MCR isoenzymes in M. thermoautotrophicum is discussed.
Collapse
Affiliation(s)
- L G Bonacker
- Max-Planck-Institut für Terrestrische Mikrobiologie Marburg, Germany
| | | | | | | | | |
Collapse
|
12
|
Chapter 4 Bioenergetics and transport in methanogens and related thermophilic archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
|
14
|
Aldrich HC, McDowell L, Barbosa MF, Yomano LP, Scopes RK, Ingram LO. Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis. J Bacteriol 1992; 174:4504-8. [PMID: 1320611 PMCID: PMC206239 DOI: 10.1128/jb.174.13.4504-4508.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gold-labeled antibodies were used to examine the subcellular locations of 11 glycolytic and fermentative enzymes in Zymomonas mobilis. Glucose-fructose oxidoreductase was clearly localized in the periplasmic region. Phosphogluconate lactonase and alcohol dehydrogenase I were concentrated in the cytoplasm near the plasma membrane. The eight remaining enzymes were more evenly distributed within the cytoplasmic matrix. Selected enzyme pairs were labeled on opposite sides of the same thin section to examine the frequency of colocalization. Results from these experiments provide evidence that glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and alcohol dehydrogenase I form an enzyme complex.
Collapse
Affiliation(s)
- H C Aldrich
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611-0116
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.
Collapse
Affiliation(s)
- J G Ferry
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305
| |
Collapse
|
16
|
Jablonski PE, Ferry JG. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila. J Bacteriol 1991; 173:2481-7. [PMID: 2013570 PMCID: PMC207811 DOI: 10.1128/jb.173.8.2481-2487.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila TM-1 was purified 16-fold from a cell extract to apparent homogeneity as determined by native polyacrylamide gel electrophoresis. Ninety-four percent of the methylreductase activity was recovered in the soluble fraction of cell extracts. The estimated native molecular weight of the enzyme was between 132,000 (standard deviation [SD], 1,200) and 141,000 (SD, 1,200). Denaturing polyacrylamide gel electrophoresis revealed three protein bands corresponding to molecular weights of 69,000 (SD, 1,200), 42,000 (SD, 1,200), and 33,000 (SD, 1,200) and indicated a subunit configuration of alpha 1 beta 1 gamma 1. As isolated, the enzyme was inactive but could be reductively reactivated with titanium (III) citrate or reduced ferredoxin. ATP stimulated enzyme reactivation and was postulated to be involved in a conformational change of the inactive enzyme from an unready state to a ready state that could be reductively reactivated. The temperature and pH optima for enzyme activity were 60 degrees C and between 6.5 and 7.0, respectively. The active enzyme contained 1 mol of coenzyme F430 per mol of enzyme (Mr, 144,000). The Kms for 2-(methylthio)ethane-sulfonate and 7-mercaptoheptanoylthreonine phosphate were 3.3 mM and 59 microM, respectively.
Collapse
Affiliation(s)
- P E Jablonski
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305
| | | |
Collapse
|
17
|
Immunocytochemical localization of the coenzyme F420-reducing hydrogenase in Methanosarcina barkeri Fusaro. J Bacteriol 1991; 173:978-84. [PMID: 1991734 PMCID: PMC207214 DOI: 10.1128/jb.173.3.978-984.1991] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cytological localization of the 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing hydrogenase of Methanosarcina barkeri Fusaro was determined by immunoelectron microscopy, using a specific polyclonal rabbit antiserum raised against the homogeneous deazaflavin-dependent enzyme. In Western blot (immunoblot) experiments this antiserum reacted specifically with the native coenzyme F420-reducing hydrogenase, but did not cross-react with the coenzyme F420-nonreducing hydrogenase activity also detectable in crude extracts prepared from methanol-grown Methanosarcina cells. Immunogold labelling of ultrathin sections of anaerobically fixed methanol-grown cells from the exponential growth phase revealed that the coenzyme F420-reducing hydrogenase was predominantly located in the vicinity of the cytoplasmic membrane. From this result we concluded that the deazaflavin-dependent hydrogenase is associated with the cytoplasmic membrane in intact cells of M. barkeri during growth on methanol as the sole methanogenic substrate, and a possible role of this enzyme in the generation of the electrochemical proton gradient is discussed.
Collapse
|
18
|
Chapter 4 Biochemistry of coenzyme F430, a nickel porphinoid involved in methanogenesis. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0167-7306(08)60111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Hoppert M, Mayer F. Electron microscopy of native and artificial methylreductase high-molecular-weight complexes in strain Gö 1 and Methanococcus voltae. FEBS Lett 1990; 267:33-7. [PMID: 2365088 DOI: 10.1016/0014-5793(90)80281-m] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The preparation of inside-out vesicles from methanogenic bacteria with protein cell walls was improved with regard to the preservation of structure and localization of membrane-bound proteins. Complexes similar to the methanoreductosome in the methanogenic bacterium Gö 1 were also found attached to the inner aspect of the cytoplasmic membrane of Methanococcus voltae. Methanoreductosomes were purified from crude extracts of Gö 1-cells by affinity chromatography. Under specific conditions at high protein concentrations methyl-CoM-methylreductase molecules isolated from Gö 1-cells could be reassociated to spherical complexes of various sizes, with an appearance similar to that of methanoreductosomes isolated from strain Gö 1.
Collapse
Affiliation(s)
- M Hoppert
- Institut für Mikrobiologie, Göttingen, FRG
| | | |
Collapse
|
20
|
Sherf BA, Reeve JN. Identification of the mcrD gene product and its association with component C of methyl coenzyme M reductase in Methanococcus vannielii. J Bacteriol 1990; 172:1828-33. [PMID: 2180905 PMCID: PMC208675 DOI: 10.1128/jb.172.4.1828-1833.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A mcrD-lacZ gene fusion has been constructed and expressed under lacP control in Escherichia coli. Antibodies raised against the product of this gene fusion have been used in Western blotting (immunoblotting) to demonstrate the gene product of mcrD (gpmcrD) in Methanococcus vannielii. The alpha, beta, and gamma subunit polypeptides of component C of methyl coenzyme M reductase (MR) were coprecipitated with gpmcrD when bound by antibodies raised either against MR or against gpmcrD-lacZ. This association of MR and gpmcrD did not withstand polyacrylamide gel electrophoresis under nondenaturing conditions.
Collapse
Affiliation(s)
- B A Sherf
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
21
|
te Brömmelstroet BW, Hensgens CM, Keltjens JT, van der Drift C, Vogels GD. Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain delta H. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39907-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Deppenmeier U, Blaut M, Gottschalk G. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:317-23. [PMID: 2513188 DOI: 10.1111/j.1432-1033.1989.tb15211.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methane formation from 2-(methylthio)-ethanesulfonate (methyl-CoM) and H2 by the soluble fraction from the methanogenic bacterium strain Gö1 was stimulated up to tenfold by the addition of the membrane fraction. This stimulation was observed with membranes from various methanogenic species belonging to different phylogenetic families, but not with membranes from Escherichia coli or Acetobacterium woodii. Treatment of the membranes with strong oxidants, i.e. O2 and K3[Fe(CN)6], or with SH reagents, i.e. Ag+, p-chloromercuribenzoate or iodoacetamide, caused an irreversible decrease or loss in stimulatory activity, as did heat treatment at temperatures above 78 degrees C. Methanogenesis from methyl-CoM with formaldehyde instead of H2 as electron donor depended similarly on the membrane fraction. With membranes, 1 mol HCHO was oxidized to 1 mol CO2 and allowed the formation of 2 mol CH4 from 2 mol CH3-CoM. Without membranes, per mol of HCHO oxidized 1 mol H2 was formed and 1 mol CH4 was produced from CH3-CoM; the rate was 10-20% of that in the presence of membranes. When methyl-CoM was replaced by an artificial electron acceptor system consisting of methylviologen and metronidazole, the formaldehyde-oxidizing activity was no longer stimulated by the membrane fraction. These results demonstrate for the first time an essential function of membrane components in methanogenic electron transfer.
Collapse
Affiliation(s)
- U Deppenmeier
- Institut für Mikrobiologie, Georg-August-Universität, Göttingen, FRG
| | | | | |
Collapse
|
23
|
Peinemann S, Blaut M, Gottschalk G. ATP synthesis coupled to methane formation from methyl-CoM and H2 catalyzed by vesicles of the methanogenic bacterial strain Gö1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:175-80. [PMID: 2557206 DOI: 10.1111/j.1432-1033.1989.tb15192.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methanogenesis from methyl-CoM and H2, as catalyzed by inside-out vesicle preparations of the methanogenenic bacterium strain Gö1, was associated with ATP synthesis. That this ATP synthesis proceeded via an uncoupler-sensitive transmembrane proton gradient was concluded from the following results: 1. Various inhibitors that affected methane formation (e.g. 2-bromomethanesulfonate) also prevented ATP synthesis. 2. The protonophore 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile, in combination with the K+ ionophore valinomycin, inhibited ATP synthesis completely without affecting methanogenesis. 3. The ATP synthase inhibitor diethylstilbestrol inhibited ATP synthesis. 4. Addition of the detergent sulfobetaine inhibited both methane formation and ATP synthesis; the former but not the latter could be restored by adding titanium(III) citrate as electron donor. In addition it was shown that ATP synthesis could also be driven by transmembrane proton gradients artificially imposed on the vesicles. Furthermore net methanogenesis-dependent ATP formation was shown by measuring [32P]phosphate incorporation.
Collapse
Affiliation(s)
- S Peinemann
- Institut für Mikrobiologie der Georg-August-Universität, Göttingen, FRG
| | | | | |
Collapse
|
24
|
Abstract
In this review, I focus on the bioenergetics of the methanogenic bacteria, with particular attention directed to the roles of transmembrane electrochemical gradients of sodium and proton. In addition, the mechanism of coupling ATP synthesis to methanogenic electron transfer is addressed. Evidence is reviewed which suggests that the methanogens possess great diversity in their bioenergetic machinery. In particular, in some methanogens the primary ion which is translocated coupled to metabolic energy is the proton, while others appear to utilize sodium. In addition, ATP synthesis driven by methanogenic electron transfer is accomplished in some organisms by a chemiosmotic mechanism and is coupled by a more direct mechanism in others. A possible explanation for this diversity (which is consistent with the relatedness of these organisms to each other and to other members of the Archaebacteria as determined by molecular biological techniques) is discussed.
Collapse
Affiliation(s)
- J R Lancaster
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322-0300
| |
Collapse
|
25
|
Fiebig K, Friedrich B. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro). EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 184:79-88. [PMID: 2550229 DOI: 10.1111/j.1432-1033.1989.tb14992.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing and methyl-viologen-reducing hydrogenase of the anaerobic methanogenic archaebacterium Methanosarcina barkeri strain Fusaro has been purified 64-fold to apparent electrophoretic homogeneity. The purified enzyme had a final specific activity of 11.5 mumol coenzyme F420 reduced.min-1.mg protein-1 and the yield was 4.8% of the initial deazaflavin-reducing activity. The hydrogenase exists in two forms with molecular masses of approximately 845 kDa and 198 kDa. Both forms reduce coenzyme F420 and methyl viologen and are apparently composed of the same three subunits with molecular masses of 48 kDa (alpha), 33 kDa (beta) and 30 kDa (gamma). The aerobically purified enzyme was catalytically inactive. Conditions for anaerobic reductive activation in the presence of hydrogen, 2-mercaptoethanol and KCl or methyl viologen were found to yield maximal hydrogenase activity. Determination of the apparent Km of coenzyme F420 and methyl viologen gave values of 25 microM and 3.3 mM, respectively. The respective turnover numbers of the high molecular mass form of the hydrogenase are 353 s-1 and 9226 s-1.
Collapse
Affiliation(s)
- K Fiebig
- Institut für Pflanzenphysiologie, Zellbiologie und Mikrobiologie der Freien Universität Berlin
| | | |
Collapse
|
26
|
Immunocytochemical localization of proteins P1, P2, P3 of glycine decarboxylase and of the selenoprotein PA of glycine reductase, all involved in anaerobic glycine metabolism of Eubacterium acidaminophilum. Arch Microbiol 1989. [DOI: 10.1007/bf00456099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Baron SF, Williams DS, May HD, Patel PS, Aldrich HC, Ferry JG. Immunogold localization of coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase in Methanobacterium formicicum. Arch Microbiol 1989. [DOI: 10.1007/bf00406556] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Affiliation(s)
- K F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
29
|
Klein A, Allmansberger R, Bokranz M, Knaub S, Müller B, Muth E. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:409-20. [PMID: 3185509 DOI: 10.1007/bf00339610] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sequence of the gene cluster encoding the methyl coenzyme M reductase (MCR) in Methanococcus voltae was determined. It contains five open reading frames (ORF), three of which encode the known enzyme subunits. Putative ribosome binding sites were found in front of all ORFs. They differ in their degrees of complementarity to the 3' end of the 16 S rRNA, which is discussed in terms of different translation efficiencies of the respective genes. The codon usage bias is different in the subunit encoding genes compared with the two other ORFs in the cluster and two other known genes of Mc. voltae. This is interpreted in terms of increased translational accuracy of the highly expressed MCR subunit genes. The derived polypeptide sequences encoded by the five ORFs of the MCR cluster were compared to those of the respective genes in Methanobacterium thermoautotrophicum Marburg and Methanosarcina barkeri. Conserved regions were detected in the enzyme subunits, which are candidates for factor binding domains. Conserved hydrophobic sequences found in the alpha and beta subunits are discussed with respect to the membrane association of the enzyme.
Collapse
Affiliation(s)
- A Klein
- Molekulargenetik, Fachbereich Biologie, Philipps-Universität, Marburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
30
|
Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species. Arch Microbiol 1988. [DOI: 10.1007/bf00407795] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
|
32
|
Muth E. Localization of the F420-reducing hydrogenase in Methanococcus voltae cells by immuno-gold technique. Arch Microbiol 1988. [DOI: 10.1007/bf00425164] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Mayer F, Rohde M, Salzmann M, Jussofie A, Gottschalk G. The methanoreductosome: a high-molecular-weight enzyme complex in the methanogenic bacterium strain Gö1 that contains components of the methylreductase system. J Bacteriol 1988; 170:1438-44. [PMID: 3350787 PMCID: PMC210986 DOI: 10.1128/jb.170.4.1438-1444.1988] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The methanogenic bacterium strain Gö1 harbors a high-molecular-weight enzyme complex containing methyl coenzyme M methylreductase as revealed by immunoelectron microscopy. This complex consists of a spherelike, hollow head piece, in the wall of which a number of copies of the methyl coenzyme M methylreductase are located. It is named Rc (c indicates collector). Intimately bound to it is a group of additional subunits of unknown composition referred to as Rm (m indicates mediator). Electron microscopy of negatively stained samples indicated that Rm contains a functional pore or channel which connects the internal volume of Rc with the outside. The RcRm complex is named Rs (s indicates spherelike). This complex was often found detached from the inside of the cytoplasmic membrane when membrane vesicles were investigated. However, Rs was also seen attached to a third component of the complex located in the membrane, the attachment being mediated by Rm. This membrane part of the complex is designated Rt (t indicates translocator). It consists of subunits with unknown composition. When Rs is attached to the membrane, the pore in Rm appears to be plugged by Rt. This indicates that the internal volume in Rc is in contact, via the pore in Rm, with Rt. The RcRmRt complex is referred to as methanoreductosome. Functional implications of the structural organization of the methylreductase system are discussed in view of methane formation and the creation of a transmembrane proton gradient used by the cell for ATP synthesis.
Collapse
Affiliation(s)
- F Mayer
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
34
|
Ellermann J, Hedderich R, Böcher R, Thauer RK. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 172:669-77. [PMID: 3350018 DOI: 10.1111/j.1432-1033.1988.tb13941.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Methyl-coenzyme M reductase (= component C) from Methanobacterium thermoautotrophicum (strain Marburg) was highly purified via anaerobic fast protein liquid chromatography on columns of Mono Q and Superose 6. The enzyme was found to catalyze the reduction of methylcoenzyme M (CH3-S-CoM) with N-7-mercaptoheptanoylthreonine phosphate (H-S-HTP = component B) to CH4. The mixed disulfide of H-S-CoM and H-S-HTP (CoM-S-S-HTP) was the other major product formed. The specific activity was up to 75 nmol min-1 mg protein-1. In the presence of dithiothreitol and of reduced corrinoids or titanium(III) citrate the specific rate of CH3-S-CoM reduction to CH4 with H-S-HTP increased to 0.5-2 mumol min-1 mg protein-1. Under these conditions the CoM-S-S-HTP formed from CH3-S-CoM and H-S-HTP was completely reduced to H-S-CoM and H-S-HTP. Methyl-CoM reductase was specific for H-S-HTP as electron donor. Neither N-6-mercaptohexanoylthreonine phosphate (H-S-HxoTP) nor N-8-mercaptooctanoylthreonine phosphate (H-S-OcoTP) nor any other thiol compound could substitute for H-S-HTP. On the contrary, H-S-HxoTP (apparent Ki = 0.1 microM) and H-S-OcoTP (apparent Ki = 15 microM) were found to be effective inhibitors of methyl-CoM reductase, inhibition being non-competitive with CH3-S-CoM and competitive with H-S-HTP.
Collapse
Affiliation(s)
- J Ellermann
- Fachbereich Biologie, Mikrobiologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
35
|
Schulz H, Albracht SP, Coremans JM, Fuchs G. Purification and some properties of the corrinoid-containing membrane protein from Methanobacterium thermoautotrophicum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:589-97. [PMID: 2831054 DOI: 10.1111/j.1432-1033.1988.tb13829.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cytoplasmic membrane of the methanogenic archaebacterium Methanobacterium thermoautotrophicum does not contain cytochromes, but did contain a corrinoid protein of molecular mass about 33 kDa which, after treatment with 10 mg Triton X-100/mg protein, was contained in a protein complex of about 500 kDa. Washed membranes from 1 g dry cells contained about 70 nmol of the cobamide factor III (5-hydroxybenzimidazolyl cobamide) as the sole corrinoid. The corrinoid-containing protein complex was purified and some of its properties were studied. According to several criteria it is an integral membrane protein complex. The corrinoid-protein complex, after about 100-fold purification, gave a single band on native PAGE and still had molecular mass of about 500 kDa. In SDS-PAGE several subunits were observed: in addition to the corrinoid-carrying subunit of about 33 kDa, other polypeptides of approximately 28 kDa, 26 kDa, and possibly 23 kDa were present. One mole of the purified 500-kDa protein complex contained greater than or equal to eight moles of the cobamide factor III. It was estimated that the corrinoid-protein complex accounts for 8% of the membrane protein of M. thermoautotrophicum. The visible spectrum of the oxidized protein exhibited absorbance maxima at 547 nm, 511 nm, and a shoulder at 468 nm, which disappeared upon reduction with dithionite. The midpoint potential of this transition was around -145 mV (pH 7). With EPR a Co2+ signal was observed within -50 mV and -350 mV with a maximum around -200 mV. Possible reasons for the disappearance of the Co2+ signal at low redox potentials are discussed. The line shape of the Co2+ signal was similar to that of Co2+ in free corrinoids. The signal of Co2+ could also be evoked by reduction with 5 mM dithiothreitol. From the redox properties of the corrinoid membrane protein it may be expected that in vivo the cobalt may become reduced and reoxidized. Its possible function as an electron-mediating membrane protein in the metabolism of methanogenic bacteria is discussed.
Collapse
Affiliation(s)
- H Schulz
- Abteilung Angewandte Mikrobiologie, Universität Ulm, Federal Republic of Germany
| | | | | | | |
Collapse
|
36
|
Muth E, Mörschel E, Klein A. Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 169:571-7. [PMID: 3121317 DOI: 10.1111/j.1432-1033.1987.tb13647.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A methylviologen and 8-hydroxy-5-deazaflavin(F420)-reducing hydrogenase was purified over 800-fold to near homogeneity from the archaebacterium Methanococcus voltae with 10 U mg-1 F420-reducing activity. It is the only hydrogenase in this organism. The enzyme showed Km values of 16 microM for F420 and 1.2 mM for methylviologen. A turnover number of 1050 min-1 was calculated for the minimal active unit. The protein tends to aggregate. The molecular mass of the minimal active unit is 105 kDa. Larger molecules of 745 kDa were regularly observed. The enzyme was resolved into subunits with molecular masses of 55 kDa, 45 kDa, 37 kDa and 27 kDa by SDS/polyacrylamide gel electrophoresis. Reversible conversion of an anionic into an uncharged form was observed by DEAE-cellulose chromatography with concomitant changes in substrate specificities. The methylviologen-reducing activity was heat-resistant up to 65 degrees C and was not affected by antiserum raised against the native enzyme, while F420 reduction was inactivated by both treatments. Nickel and selenium contents were determined as 0.6-0.7 mol each, FAD content as 1 mol and iron as 4.5 mol/mol protein (105 kDa), respectively. Electron micrographs taken from the purified enzyme show ring-shaped molecules of 18 nm diameter, which represent the high-molecular-mass species of the enzyme.
Collapse
Affiliation(s)
- E Muth
- Molecular Genetics, Philipps University, Marburg, Federal Republic of Germany
| | | | | |
Collapse
|
37
|
Thomas I, Dubourguier HC, Prensier G, Debeire P, Albagnac G. Purification of component C from Methanosarcina mazei and immunolocalization in Methanosarcinaceae. Arch Microbiol 1987. [DOI: 10.1007/bf00414811] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
|
39
|
Aldrich HC, Beimborn DB, Bokranz M, Sch�nheit P. Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Arch Microbiol 1987. [DOI: 10.1007/bf00415283] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Jussofie A, Mayer F, Gottschalk G. Methane formation from methanol and molecular hydrogen by protoplasts of new methanogenic isolates and inhibition by dicyckohexylcarbodiimide. Arch Microbiol 1986. [DOI: 10.1007/bf00403224] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|