1
|
Lipscomb WN. Aspartate transcarbamylase from Escherichia coli: activity and regulation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:67-151. [PMID: 8154326 DOI: 10.1002/9780470123140.ch3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W N Lipscomb
- Department of Chemistry, Harvard University, Cambridge, MA
| |
Collapse
|
2
|
Alam N, Stieglitz KA, Caban MD, Gourinath S, Tsuruta H, Kantrowitz ER. 240s Loop Interactions Stabilize the T State of Escherichia coli Aspartate Transcarbamoylase. J Biol Chem 2004; 279:23302-10. [PMID: 15014067 DOI: 10.1074/jbc.m401637200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here the functional and structural importance of interactions involving the 240s loop of the catalytic chain for the stabilization of the T state of aspartate transcarbamoylase were tested by replacement of Lys-244 with Asn and Ala. For the K244A and K244N mutant enzymes, the aspartate concentration required to achieve half-maximal specific activity was reduced to 8.4 and 4.0 mm, respectively, as compared with 12.4 mM for the wild-type enzyme. Both mutant enzymes exhibited dramatic reductions in homotropic cooperativity and the ability of the heterotropic effectors to modulate activity. Small angle x-ray scattering studies showed that the unligated structure of the mutant enzymes, and the structure of the mutant enzymes ligated with N-phosphonacetyl-L-aspartate, were similar to that observed for the unligated and N-phosphonacetyl-L-aspartateligated wild-type enzyme. A saturating concentration of carbamoyl phosphate alone has little influence on the small angle x-ray scattering of the wild-type enzyme. However, carbamoyl phosphate was able to shift the structure of the two mutant enzymes dramatically toward R, establishing that the mutations had destabilized the T state of the enzyme. The x-ray crystal structure of K244N enzyme showed that numerous local T state stabilizing interactions involving 240s loop residues were lost. Furthermore, the structure established that the mutation induced additional alterations at the subunit interfaces, the active site, the relative position of the domains of the catalytic chains, and the allosteric domain of the regulatory chains. Most of these changes reflect motions toward the R state structure. However, the K244N mutation alone only changes local conformations of the enzyme to an R-like structure, without triggering the quaternary structural transition. These results suggest that loss of cooperativity and reduction in heterotropic effects is due to the dramatic destabilization of the T state of the enzyme by this mutation in the 240s loop of the catalytic chain.
Collapse
Affiliation(s)
- Neelima Alam
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | |
Collapse
|
3
|
Fetler L, Tauc P, Baker DP, Macol CP, Kantrowitz ER, Vachette P. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Protein Sci 2002; 11:1074-81. [PMID: 11967364 PMCID: PMC2373563 DOI: 10.1110/ps.4500102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The available crystal structures of Escherichia coli aspartate transcarbamoylase (ATCase) show that the conserved residue Asp-162 from the catalytic chain interacts with essentially the same residues in both the T- and R-states. To study the role of Asp-162 in the regulatory properties of the enzyme, this residue has been replaced by alanine. The mutant D162A shows a 7700-fold reduction in the maximal observed specific activity, a twofold decrease in the affinity for aspartate, a loss of homotropic cooperativity, and decreased activation by the nucleotide effector adenosine triphosphate (ATP) compared with the wild-type enzyme. Small-angle X-ray scattering (SAXS) measurements reveal that the unliganded mutant enzyme adopts the T-quaternary structure of the wild-type enzyme. Most strikingly, the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) is unable to induce the T to R quaternary structural transition, causing only a small alteration of the scattering pattern. In contrast, addition of the activator ATP in the presence of PALA causes a significant increase in the scattering amplitude, indicating a large quaternary structural change, although the mutant does not entirely convert to the wild-type R structure. Attempts at modeling this new conformation using rigid body movements of the catalytic trimers and regulatory dimers did not yield a satisfactory solution. This indicates that intra- and/or interchain rearrangements resulting from the mutation bring about domain movements not accounted for in the simple model. Therefore, Asp-162 appears to play a crucial role in the cooperative structural transition and the heterotropic regulatory properties of ATCase.
Collapse
Affiliation(s)
- L Fetler
- Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (CNRS, CEA, MER), Université Paris-Sud, F-91898 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
4
|
Hack ES, Vorobyova T, Sakash JB, West JM, Macol CP, Hervé G, Williams MK, Kantrowitz ER. Characterization of the aspartate transcarbamoylase from Methanococcus jannaschii. J Biol Chem 2000; 275:15820-7. [PMID: 10748118 DOI: 10.1074/jbc.m909220199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.
Collapse
Affiliation(s)
- E S Hack
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wedler FC, Ley BW, Lee BH, O'Leary MH, Kantrowitz ER. L-aspartate association contributes to rate limitation and induction of the T-->R transition in Escherichia coli aspartate transcarbamoylase. Equilibrium exchanges and kinetic isotope effects with a Vmax-enhanced mutant, Asp-236-->Ala. J Biol Chem 1995; 270:9725-33. [PMID: 7730350 DOI: 10.1074/jbc.270.17.9725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Equilibrium isotope exchange kinetics (EIEK) and kinetic isotope effects have been used to determine the mechanistic basis for the altered kinetic characteristics of a mutant version of Escherichia coli aspartate transcarbamylase in which Asp-236 of the catalytic chain is replaced by alanine (Asp-236-->Ala). The [14C]Asp<--> N-carbamyl-L-aspartate (CAsp) and [14C]CP<-->CAsp exchange rates, observed as a function of various reactant-product pairs, exhibited dramatic increases in maximal rates, along with decreases in substrate half-saturation values and cooperativity. The carbon kinetic isotope effect, 13C versus 12C at the carbonyl group of carbamoyl phosphate, for the Asp-236-->Ala enzyme decreased toward unity as [Asp] increased, as observed for the wild-type enzyme. Both the kinetic isotope effects and EIEK results indicate that the Asp-236-->Ala enzyme operates by the same ordered kinetic mechanism as the wild-type enzyme. Although activation effects by ATP and N-phosphonacetyl-L-aspartate are lost, inhibition by CTP was apparent in equilibrium exchanges. Simulation of the EIEK data indicated that the best fit to the observed changes in saturation curves was obtained by preferentially increasing the rate of the T-->R transition, kappa T-->R, thereby destabilizing the T-state and increasing the equilbrium constant for the T<-->R transition. A multistep model for Asp bindng to aspartate transcarbamoylase is proposed, in which Asp induces the initial conformational changes that in turn trigger the T-->R transition, followed by stepwise filling of the remaining active sites.
Collapse
Affiliation(s)
- F C Wedler
- Department of Biochemistry and Molecular Biology, Althouse Laboratory, Pennsylvania State University, University Park, USA
| | | | | | | | | |
Collapse
|
6
|
Different amino acid substitutions at the same position in the nucleotide-binding site of aspartate transcarbamoylase have diverse effects on the allosteric properties of the enzyme. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54785-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Burz DS, Allewell NM, Ghosaini L, Hu CQ, Sturtevant JM. Differential scanning calorimetric studies of E. coli aspartate transcarbamylase. III. The denaturational thermodynamics of the holoenzyme with single-site mutations in the catalytic chain. Biophys Chem 1990; 37:31-41. [PMID: 2285793 DOI: 10.1016/0301-4622(90)88005-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aspartate transcarbamylase (EC 2.1.3.2) from E. coli is a multimeric enzyme consisting of two catalytic subunits and three regulatory subunits whose activity is regulated by subunit interactions. Differential scanning calorimetric (DSC) scans of the wild-type enzyme consist of two peaks, each comprised of at least two components, corresponding to denaturation of the catalytic and regulatory subunits within the intact holoenzyme (Vickers et al., J. Biol. Chem. 253 (1978) 8493; Edge et al., Biochemistry 27 (1988) 8081). We have examined the effects of nine single-site mutations in the catalytic chains. Three of the mutations (Asp-100-Gly, Glu-86-Gln, and Arg-269-Gly) are at sites at the C1: C2 interface between c chains within the catalytic subunit. These mutations disrupt salt linkages present in both the T and R states of the molecule (Honzatko et al., J. Mol. Biol. 160 (1982) 219; Krause et al., J. Mol. Biol. 193 (1987) 527). The remainder (Lys-164-Ile, Tyr-165-Phe, Glu-239-Gln, Glu-239-Ala, Tyr-240-Phe and Asp-271-Ser) are at the C1: C4 interface between catalytic subunits and are involved in interactions which stabilize either the T or R state. DSC scans of all of the mutants except Asp-100-Gly and Arg-269-Gly consisted of two peaks. At intermediate concentrations, Asp-100-Gly and Arg-269-Gly had only a single peak near the Tm of the regulatory subunit transition in the holoenzyme, although their denaturational profiles were more complex at high and low protein concentrations. The catalytic subunits of Glu-86-Gln, Lys-164-Ile and Asp-271-Ser appear to be significantly destabilized relative to wild-type protein while Tyr-165-Phe and Tyr-240-Phe appear to be stabilized. Values of delta delta G degree cr, the difference between the subunit interaction energy of wild-type and mutant proteins, evaluated as suggested by Brandts et al. (Biochemistry 28 (1989) 8588) range from -3.7 kcal mol-1 for Glu-86-Gln to 2.4 kcal mol-1 for Tyr-165-Phe.
Collapse
Affiliation(s)
- D S Burz
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06457
| | | | | | | | | |
Collapse
|
8
|
Newton CJ, Kantrowitz ER. The regulatory subunit of Escherichia coli aspartate carbamoyltransferase may influence homotropic cooperativity and heterotropic interactions by a direct interaction with the loop containing residues 230-245 of the catalytic chain. Proc Natl Acad Sci U S A 1990; 87:2309-13. [PMID: 2179954 PMCID: PMC53676 DOI: 10.1073/pnas.87.6.2309] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A recent x-ray structure of aspartate carbamoyltransferase (carbamoyl-phosphate: L-aspartate carbamoyl-transferase, EC 2.1.3.2) with phosphonoacetamide bound [Gouaux, J. E. & Lipscomb, W. N. (1990) Biochemistry 29, 389-402] shows an interaction between Asp-236 of the catalytic chain and Lys-143 of the regulatory chain. Asp-236 is part of the loop containing residues 230-245 (240s) of the catalytic chain that undergoes a significant conformational change between the tight and the relaxed states of the enzyme. Furthermore, side-chain interactions between the 240s loop and other portions of the enzyme have been shown to be important for the low activity and low affinity of the tight state and the high activity and high affinity of the relaxed state. To determine whether the intersubunit link between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain is important for either homotropic cooperativity and/or the heterotropic interactions in aspartate carbamoyltransferase, site-specific mutagenesis was used to replace Asp-236 with alanine. The mutant enzyme exhibits full activity and a loss of both homotropic cooperativity and heterotropic interactions. Furthermore, the aspartate concentration at half the maximal observed specific activity is reduced by approximately 8-fold. The mutant enzyme exhibits normal thermal stability but drastically altered reactivity toward p-hydroxymercuribenzoate. The catalytic subunit of the mutant and wild-type enzymes have very similar properties. These results, in conjunction with previous experiments, suggest that the intersubunit link involving Asp-236 is involved in the stabilization of the 240s loop in its tight-state position and that the regulatory subunits exert their effect on the catalytic subunits by influencing the position of the 240s loop.
Collapse
Affiliation(s)
- C J Newton
- Department of Chemistry, Boston College, Chestnut Hill, MA 02167
| | | |
Collapse
|
9
|
Newton CJ, Kantrowitz ER. Importance of domain closure for homotropic cooperativity in Escherichia coli aspartate transcarbamylase. Biochemistry 1990; 29:1444-51. [PMID: 2185840 DOI: 10.1021/bi00458a015] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The importance of the interdomain bridging interactions observed only in the R-state structure of Escherichia coli aspartate transcarbamylase between Glu-50 of the carbamoyl phosphate domain with both Arg-167 and Arg-234 of the aspartate domain has been investigated by using site-specific mutagenesis. Two mutant versions of aspartate transcarbamylase were constructed, one with alanine at position 50 (Glu-50----Ala) and the other with aspartic acid at position 50 (Glu-50----Asp). The alanine substitution totally prevents the interdomain bridging interactions, while the aspartic acid substitution was expected to weaken these interactions. The Glu-50----Ala holoenzyme exhibits a 15-fold loss of activity, no substrate cooperativity, and a more than 6-fold increase in the aspartate concentration at half the maximal observed specific activity. The Glu-50----Asp holoenzyme exhibits a less than 3-fold loss of activity, reduced cooperativity for substrates, and a 2-fold increase in the aspartate concentration at half the maximal observed specific activity. Although the Glu-50----Ala enzyme exhibits no homotropic cooperativity, it is activated by N-(phosphonoacetyl)-L-aspartate (PALA). As opposed to the wild-type enzyme, the Glu-50----Ala enzyme is activated by PALA at saturating concentrations of aspartate. At subsaturating concentrations of aspartate, both mutant enzymes are activated by ATP, but are inhibited less by CTP than is the wild-type enzyme. At saturating concentrations of aspartate, the Glu-50----Ala enzyme is activated by ATP and inhibited by CTP to an even greater extent than at subsaturating concentrations of aspartate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C J Newton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167
| | | |
Collapse
|
10
|
Hsuanyu Y, Wedler FC, Kantrowitz ER, Middleton SA. Site-specific Mutation of Tyr240 → Phe in the Catalytic Chain of Escherichia coli Aspartate Transcarbamylase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71486-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Wedler FC, Hsuanyu YC, Kantrowitz ER, Middleton SA. Regulatory Behavior of Escherichia coli Aspartate Transcarbamylase Altered by Site-specific Mutation of Tyr240 → Phe in the Catalytic Chain. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71487-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Beck D, Kedzie KM, Wild JR. Comparison of the aspartate transcarbamoylases from Serratia marcescens and Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84752-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Cherfils J, Sweet RM, Middleton SA, Kantrowitz ER, Tauc P, Vachette P. Structural consequences of a one atom mutation on aspartate transcarbamylase from E. coli. FEBS Lett 1989; 247:361-6. [PMID: 2653863 DOI: 10.1016/0014-5793(89)81371-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tyr-240 of the catalytic chain of aspartate transcarbamylase from E. coli has been substituted by Phe using site-directed mutagenesis. The regulatory mechanisms of the mutant enzyme have been shown to be slightly less effective than the wild-type enzyme. A study of the structural consequences of the mutation using solution X-ray scattering and computer simulations is reported here. No significant change from the wild-type enzyme is detectable in the quaternary structure. Simulations suggest that the only effect of the mutation is an increased mobility of the mutated side chain.
Collapse
Affiliation(s)
- J Cherfils
- Laboratoire de Biologie Physicochimique, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
14
|
Gouaux JE, Lipscomb WN, Middleton SA, Kantrowitz ER. Structure of a single amino acid mutant of aspartate carbamoyltransferase at 2.5-A resolution: implications for the cooperative mechanism. Biochemistry 1989; 28:1798-803. [PMID: 2719935 DOI: 10.1021/bi00430a056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the many interactions important for stabilizing the T state of aspartate carbamoyltransferase occurs between residues Tyr240 and Asp271 within one catalytic chain. The functional importance of this polar interaction was documented by site-directed mutagenesis in which the tyrosine was replaced by a phenylalanine [Middleton, S. A., & Kantrowitz, E. R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5866-5870]. In the Tyr240----Phe mutant, the aspartate concentration required to achieve half-maximum velocity is reduced to 4.7 from 11.9 mM for the native enzyme. Here, we report an X-ray crystallographic study of the Tyr240----Phe enzyme at 2.5-A resolution. While employing crystallization conditions identical with those used to grow cytidine triphosphate ligated T-state crystals of the native enzyme, we obtain crystals of the mutant enzyme that are isomorphous to those of the native enzyme. Refinement of the mutant structure to an R factor of 0.219 (only eight solvent molecules included) and subsequent comparison to the native T-state structure indicate that the quaternary, tertiary, and secondary structures of the mutant are similar to those for the native T-state enzyme. However, the conformation of Phe240 in one of the two crystallographically independent catalytic chains contained in the asymmetric unit is significantly different from the conformation of Tyr240 in the native T-state enzyme and similar to the conformation of Tyr240 as determined from the R-state structure [Ke, H.-M., Lipscomb, W. N., Cho, Y. J., & Honzatko, R. B. (1988) J. Mol. Biol. (in press)], thereby indicating that the mutant has made a conformational change toward the R state, localized at the site of the mutation in one of the catalytic chains.
Collapse
Affiliation(s)
- J E Gouaux
- Gibbs Chemical Laboratory, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
15
|
Middleton SA, Stebbins JW, Kantrowitz ER. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase. Biochemistry 1989; 28:1617-26. [PMID: 2655696 DOI: 10.1021/bi00430a029] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The allosteric transition of Escherichia coli aspartate transcarbamylase involves significant alterations in structure at both the quaternary and tertiary levels. On the tertiary level, the 240s loop (residues 230-245 of the catalytic chain) repositions, influencing the conformation of Arg-229, a residue near the aspartate binding site. In the T state, Arg-229 is bent out of the active site and may be stabilized in this position by an interaction with Glu-272. In the R state, the conformation of Arg-229 changes, allowing it to interact with the beta-carboxylate of aspartate, and is stabilized in this position by a specific interaction with Glu-233. In order to ascertain the function of Arg-229, Glu-233, and Glu-272 in the catalytic and cooperative interactions of the enzyme, three mutant enzymes were created by site-specific mutagenesis. Arg-229 was replaced by Ala, while both Glu-233 and Glu-272 were replaced by Ser. The Arg-229----Ala and Glu-233----Ser enzymes exhibit 10,000-fold and 80-fold decreases in maximal activity, respectively, and they both exhibit a 2-fold increase in the aspartate concentration at half the maximal observed velocity, [S]0.5. The Arg-229----Ala enzyme still exhibits substantial homotropic cooperativity, but all cooperativity is lost in the Glu-233----Ser enzyme. The Glu-233----Ser enzyme also shows a 4-fold decrease in the carbamyl phosphate [S]0.5, while the Arg-229----Ala enzyme shows no change in the carbamyl phosphate [S]0.5 compared to the wild-type enzyme. The Glu-272 to Ser mutation results in a slight reduction in maximal activity, an increase in [S]0.5 for both aspartate and carbamyl phosphate, and reduced cooperativity. Analysis of the isolated catalytic subunits from these three mutant enzymes reveals that in each case the changes in the kinetic properties of the isolated catalytic subunit are similar to the changes caused by the mutation in the holoenzyme. PALA was able to activate the Glu-233----Ser enzyme, at low aspartate concentrations, even though the mutant holoenzyme did not exhibit any cooperativity, indicating that cooperative interactions still exist between the active sites in this enzyme. It is proposed that Glu-233 of the 240s loop helps create the high-activity-high-affinity R state by positioning the side chain of Arg-229 for aspartate binding while Glu-272 helps stabilize the low-activity-low-affinity T state by positioning the side chain of Arg-229 so that it cannot interact with aspartate.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S A Middleton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167
| | | | | |
Collapse
|
16
|
Newell JO, Markby DW, Schachman HK. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)81638-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Glackin MP, McCarthy MP, Mallikarachchi D, Matthew JB, Allewell NM. Electrostatic interactions in the assembly of Escherichia coli aspartate transcarbamylase. Proteins 1989; 5:66-77. [PMID: 2664765 DOI: 10.1002/prot.340050108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although ionizable groups are known to play important roles in the assembly, catalytic, and regulatory mechanisms of Escherichia coli aspartate transcarbamylase, these groups have not been characterized in detail. We report the application of static accessibility modified Tanford-Kirkwood theory to model electrostatic effects associated with the assembly of pairs of chains, subunits, and the holoenzyme. All of the interchain interfaces except R1-R6 are stabilized by electrostatic interactions by -2 to -4 kcal-m-1 at pH 8. The pH dependence of the electrostatic component of the free energy of stabilization of intrasubunit contacts (C1-C2 and R1-R6) is qualitatively different from that of intersubunit contacts (C1-C4, C1-R1, and C1-R4). This difference may allow the transmission of information across subunit interfaces to be selectively regulated. Groups whose calculated pK or charge changes as a result of protein-protein interactions have been identified and the results correlated with available information about their function. Both the 240s loop of the c chain and the region near the Zn(II) ion of the r chain contain clusters of ionizable groups whose calculated pK values change by relatively large amounts upon assembly. These pK changes in turn extend to regions of the protein remote from the interface. The possibility that networks of ionizable groups are involved in transmitting information between binding sites is suggested.
Collapse
Affiliation(s)
- M P Glackin
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06457
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Kantrowitz ER, Lipscomb WN. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science 1988; 241:669-74. [PMID: 3041592 DOI: 10.1126/science.3041592] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The x-ray structures of the allosteric enzyme aspartate transcarbamylase from Escherichia coli have been solved and refined for both allosteric forms. The T form was determined in the presence of the heterotropic inhibitor cytidine triphosphate, CTP, while the R form was determined in the presence of the bisubstrate analog N-phosphonacetyl-L-aspartate. These two x-ray structures provide the starting point for an understanding of how allosteric enzymes are able to control the rates of metabolic pathways. Insights into the mechanisms of both catalysis and homotropic cooperativity have been obtained by using site-directed mutagenesis to probe residues thought to be critical to the function of the enzyme based on these x-ray structures.
Collapse
|
20
|
Xu W, Pitts MA, Middleton SA, Kelleher KS, Kantrowitz ER. Propagation of allosteric changes through the catalytic-regulatory interface of Escherichia coli aspartate transcarbamylase. Biochemistry 1988; 27:5507-15. [PMID: 3052579 DOI: 10.1021/bi00415a018] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Each of two previously isolated strains of Escherichia coli containing a single nonsense codon within the pyrB gene was suppressed with four different nonsense suppressors. The kinetic analysis using crude extracts of these nonsense-suppressed strains indicated that the mutant aspartate transcarbamylases had altered cooperativity and affinity for aspartate as judged by the substrate concentration at half of the maximal velocity. Both pyrB genes were cloned and then sequenced. In both cases, a single base change was identified which converted a glutamine GAC codon into a TAC nonsense codon. Both mutations occurred in the catalytic chain of aspartate transcarbamylase and were identified at positions 108 and 246. The glutamine at position 108 in the wild-type structure is located at the interface between the catalytic and regulatory chains and is involved in a number of interactions with backbone and side chains of the regulatory chain. The glutamine at position 246 in the wild-type structure is located in the 240s loop of the enzyme. Two additional mutant versions of aspartate transcarbamylase were created by site-directed mutagenesis to further investigate the 108-position in the structure, a glutamine to tyrosine substitution at position 108 of the catalytic chain, and an asparagine to glycine change at position 113 of the regulatory chain, a residue which interacts directly with glutamine-108 in the wild-type structure. Both mutant enzymes have reduced affinity for aspartate. However, the Tyr-108 mutant enzyme exhibits a reduced Hill coefficient while the Gly-113 enzyme exhibits an increased Hill coefficient. The response to the allosteric effectors ATP and CTP is also changed for both the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Xu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167
| | | | | | | | | |
Collapse
|
21
|
The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol 1988. [PMID: 2832732 DOI: 10.1128/mcb.8.2.655] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the CYC1 upstream activation site, UAS2, and transcription of several other genes encoding respiratory functions requires the product of the regulatory gene HAP2. We report here the isolation and characterization of a second UAS2 regulatory gene, HAP3. Like mutations in HAP2, a mutation in HAP3 abolishes the activity of UAS2 and prevents growth on nonfermentable carbon sources. The HAP3 gene was cloned and, surprisingly, was found to encode two divergently transcribed, overlapping transcripts: a 570-base RNA and a 3-kilobase (kb) RNA. Chromosomal disruption experiments defined the critical region for HAP3 function to a 1.3-kb segment in which the two transcripts overlap. Analysis of the HAP3 DNA sequence showed that the 570-base transcript could encode a protein of 144 amino acids. Synthesis of the 144-amino-acid protein under regulatory control in vivo demonstrated that this protein is essential for activity of UAS2 as well as for growth on nonfermentable carbon sources. The largest open reading frame in the critical region of the 3-kb transcript is only 86 amino acids. Using site-directed mutagenesis, we demonstrated that the 86-amino-acid open reading frame was not involved in UAS2 activity. The possible role of this 3-kb antisense RNA in HAP3 expression or function is discussed.
Collapse
|
22
|
Wales ME, Hoover TA, Wild JR. Site-specific substitutions of the Tyr-165 residue in the catalytic chain of aspartate transcarbamoylase promotes a T-state preference in the holoenzyme. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68756-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Hahn S, Pinkham J, Wei R, Miller R, Guarente L. The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol 1988; 8:655-63. [PMID: 2832732 PMCID: PMC363191 DOI: 10.1128/mcb.8.2.655-663.1988] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Activation of the CYC1 upstream activation site, UAS2, and transcription of several other genes encoding respiratory functions requires the product of the regulatory gene HAP2. We report here the isolation and characterization of a second UAS2 regulatory gene, HAP3. Like mutations in HAP2, a mutation in HAP3 abolishes the activity of UAS2 and prevents growth on nonfermentable carbon sources. The HAP3 gene was cloned and, surprisingly, was found to encode two divergently transcribed, overlapping transcripts: a 570-base RNA and a 3-kilobase (kb) RNA. Chromosomal disruption experiments defined the critical region for HAP3 function to a 1.3-kb segment in which the two transcripts overlap. Analysis of the HAP3 DNA sequence showed that the 570-base transcript could encode a protein of 144 amino acids. Synthesis of the 144-amino-acid protein under regulatory control in vivo demonstrated that this protein is essential for activity of UAS2 as well as for growth on nonfermentable carbon sources. The largest open reading frame in the critical region of the 3-kb transcript is only 86 amino acids. Using site-directed mutagenesis, we demonstrated that the 86-amino-acid open reading frame was not involved in UAS2 activity. The possible role of this 3-kb antisense RNA in HAP3 expression or function is discussed.
Collapse
Affiliation(s)
- S Hahn
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
24
|
Profy AT, Schimmel P. Complementary use of chemical modification and site-directed mutagenesis to probe structure-activity relationships in enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1988; 35:1-26. [PMID: 3065821 DOI: 10.1016/s0079-6603(08)60608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Huygen R, Crabeel M, Glansdorff N. Nucleotide sequence of the ARG3 gene of the yeast Saccharomyces cerevisiae encoding ornithine carbamoyltransferase. Comparison with other carbamoyltransferases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:371-7. [PMID: 3038540 DOI: 10.1111/j.1432-1033.1987.tb13525.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The complete nucleotide sequence of the ARG3 structural gene encoding the monomer of the trimeric ornithine carbamoyltransferase (OTCase) (EC 2.1.3.3) has been determined. It consists of 338 codons with a corresponding molecular mass of 37842 Da. Comparing OTCases from Escherichia coli, yeast, Aspergillus, rat and man emphasizes peculiarities of the yeast enzyme but also brings to light an important degree of conservation between these proteins. Comparing the various OTCases with E. coli aspartate carbamoyltransferase (ATCase) (EC 2.1.3.2) confirms the evolutionary relationship previously noted between the two types of carbamoyltransferases and points to residues probably involved in catalysis and structural folding in OTCases.
Collapse
|