1
|
Feng S, Pozzi A, Stejskal V, Opit G, Yang Q, Shao R, Dowling DK, Li Z. Fragmentation in mitochondrial genomes in relation to elevated sequence divergence and extreme rearrangements. BMC Biol 2022; 20:7. [PMID: 34996453 PMCID: PMC8742463 DOI: 10.1186/s12915-021-01218-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background A single circular mitochondrial (mt) genome is a common feature across most metazoans. The mt-genome includes protein-coding genes involved in oxidative phosphorylation, as well as RNAs necessary for translation of mt-RNAs, whose order and number are highly conserved across animal clades, with few known exceptions of alternative mt-gene order or mt-genome architectures. One such exception consists of the fragmented mitochondrial genome, a type of genome architecture where mt-genes are split across two or more mt-chromosomes. However, the origins of mt-genome fragmentation and its effects on mt-genome evolution are unknown. Here, we investigate these origin and potential mechanisms underlying mt-genome fragmentation, focusing on a genus of booklice, Liposcelis, which exhibits elevated sequence divergence, frequent rearrangement of mt-gene order, and fragmentation of the mt genome, and compare them to other Metazoan clades. Results We found this genus Liposcelis exhibits very low conservation of mt-gene order across species, relative to other metazoans. Levels of gene order rearrangement were, however, unrelated to whether or not mt-genomes were fragmented or intact, suggesting mitochondrial genome fragmentation is not affecting mt-gene order directly. We further investigated possible mechanisms underpinning these patterns and revealed very high conservation of non-coding sequences at the edges of multiple recombination regions across populations of one particular Liposcelis species, supportive of a hypothesis that mt-fragmentation arises from recombination errors between mt-genome copies. We propose these errors may arise as a consequence of a heightened mutation rate in clades exhibiting mt-fragmentation. Consistent with this, we observed a striking pattern across three Metazoan phyla (Arthropoda, Nematoda, Cnidaria) characterised by members exhibiting high levels of mt-gene order rearrangement and cases of mt-fragmentation, whereby the mt-genomes of species more closely related to species with fragmented mt-genomes diverge more rapidly despite experiencing strong purifying selection. Conclusions We showed that contrary to expectations, mt-genome fragmentation is not correlated with the increase in mt-genome rearrangements. Furthermore, we present evidence that fragmentation of the mt-genome may be part of a general relaxation of a natural selection on the mt-genome, thus providing new insights into the origins of mt-genome fragmentation and evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01218-7.
Collapse
Affiliation(s)
- Shiqian Feng
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Vaclav Stejskal
- Crop Research Institute, Drnovská 507, 161 06, Prague, Czech Republic.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00, Prague, Czech Republic
| | - George Opit
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, 74078, USA
| | - Qianqian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Renfu Shao
- GeneCology Research Centre, Centre for Animal Health Innovation, School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4556, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Evolving mtDNA populations within cells. Biochem Soc Trans 2020; 47:1367-1382. [PMID: 31484687 PMCID: PMC6824680 DOI: 10.1042/bst20190238] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes vital respiratory machinery. Populations of mtDNA molecules exist in most eukaryotic cells, subject to replication, degradation, mutation, and other population processes. These processes affect the genetic makeup of cellular mtDNA populations, changing cell-to-cell distributions, means, and variances of mutant mtDNA load over time. As mtDNA mutant load has nonlinear effects on cell functionality, and cell functionality has nonlinear effects on tissue performance, these statistics of cellular mtDNA populations play vital roles in health, disease, and inheritance. This mini review will describe some of the better-known ways in which these populations change over time in different organisms, highlighting the importance of quantitatively understanding both mutant load mean and variance. Due to length constraints, we cannot attempt to be comprehensive but hope to provide useful links to some of the many excellent studies on these topics.
Collapse
|
3
|
Clark AG. DETERMINISTIC THEORY OF HETEROPLASMY. Evolution 2017; 42:621-626. [DOI: 10.1111/j.1558-5646.1988.tb04165.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1987] [Accepted: 12/15/1987] [Indexed: 10/19/2022]
Affiliation(s)
- Andrew G. Clark
- Department of Biology, 208 Mueller Lab; Pennsylvania State University; University Park PA 16802
| |
Collapse
|
4
|
Katz AD, Giordano R, Soto-Adames FN. Operational criteria for cryptic species delimitation when evidence is limited, as exemplified by North AmericanEntomobrya(Collembola: Entomobryidae). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aron D. Katz
- Department of Entomology; University of Illinois; 320 Morrill Hall 505 South Goodwin Avenue Urbana IL 61801 USA
- Illinois Natural History Survey; University of Illinois; 1816 South Oak Street Champaign IL 61820 USA
| | - Rosanna Giordano
- Department of Entomology; University of Illinois; 320 Morrill Hall 505 South Goodwin Avenue Urbana IL 61801 USA
| | - Felipe N. Soto-Adames
- Illinois Natural History Survey; University of Illinois; 1816 South Oak Street Champaign IL 61820 USA
| |
Collapse
|
5
|
Sun S, Kong L, Yu H, Li Q. The complete mitochondrial DNA of Tegillarca granosa and comparative mitogenomic analyses of three Arcidae species. Gene 2014; 557:61-70. [PMID: 25499696 DOI: 10.1016/j.gene.2014.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
To better understand the characteristics and the evolutionary dynamics of mt genomes in Arcidae, the complete mitochondrial genome of Tegillarca granosa was firstly determined and compared with other two Arcidae species (Scapharca broughtonii and Scapharca kagoshimensis). The complete mitochondrial genome of T. granosa was 31,589 bp in length, including 12 protein-coding genes, 2 rRNA genes and 23 tRNA genes, and a major non-coding region. Three tandem repeat fragments were identified in the major non-coding region and the tandem repeat motifs of these fragments can be folded into stem-loop structures. The mitochondrial genome of the three species has several common features such as the AT content, the arrangement of the protein-coding genes, the codon usage of the protein-coding genes and AT/GC skew. However, a high level of variability is presented in the size of the genome, the number of tRNA genes and the length of non-coding sequences in the three mitogenomes. According to the phylogenetic analyses, these mitogenome-level characters are correlated with their phylogenetic relationships. It is the absence of the duplicated tRNAs and large non-coding sequences that are responsible for the length divergence of mitogenomes between T. granosa and other two Arcidae species. The phylogenetic analyses were conducted based on 12 partitioned protein genes, which support the relationship at the family level: (((Pectinidae+Ostreidae)+Mytilidae)+Arcidae).
Collapse
Affiliation(s)
- Shao'e Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
He XL, Ding CQ, Han JL. Lack of Structural Variation but Extensive Length Polymorphisms and Heteroplasmic Length Variations in the Mitochondrial DNA Control Region of Highly Inbred Crested Ibis, Nipponia nippon. PLoS One 2013; 8:e66324. [PMID: 23805212 PMCID: PMC3689774 DOI: 10.1371/journal.pone.0066324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/03/2013] [Indexed: 01/21/2023] Open
Abstract
The animal mitochondrial DNA (mtDNA) length polymorphism and heteroplasmy are accepted to be universal. Here we report the lack of structural variation but the presence of length polymorphism as well as heteroplasmy in mtDNA control region of an endangered avian species - the Crested Ibis (Nipponia nippon). The complete control region was directly sequenced while the distribution pattern and inheritance of the length variations were examined using both direct sequencing and genotyping of the PCR fragments from captive birds with pedigrees, wild birds and a historical specimen. Our results demonstrated that there was no structural variation in the control region, however, different numbers of short tandem repeats with an identical motif of CA3CA2CA3 at the 3'-end of the control region determined the length polymorphisms among and heteroplasmy within individual birds. There were one to three predominant fragments in every bird; nevertheless multiple minor fragments coexist in all birds. These extremely high polymorphisms were suggested to have derived from the 'replication slippage' of a perfect microsatellite evolution following the step-wise mutational model. The patterns of heteroplasmy were found to be shifted between generations and among siblings but rather stable between blood and feather samples. This study provides the first evidence of a very extensive mtDNA length polymorphism and heteroplasmy in the highly inbred Crested Ibis which carries an mtDNA genome lack of structural genetic diversity. The analysis of pedigreed samples also sheds light on the transmission of mtDNA length heteroplasmy in birds following the genetic bottleneck theory. Further research focusing on the generation and transmission of particular mtDNA heteroplasmy patterns in single germ line of Crested Ibis is encouraged by this study.
Collapse
Affiliation(s)
- Xue-Lian He
- College of Nature Conservation, Beijing Forestry University, Beijing, China
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Chang-Qing Ding
- College of Nature Conservation, Beijing Forestry University, Beijing, China
- * E-mail: (CQD); (JLH)
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Nairobi, Kenya
- * E-mail: (CQD); (JLH)
| |
Collapse
|
7
|
Nunes MDS, Dolezal M, Schlötterer C. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster. Mol Ecol 2013; 22:2106-17. [PMID: 23452233 PMCID: PMC3659417 DOI: 10.1111/mec.12256] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 12/01/2022]
Abstract
Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele-specific real-time quantitative PCR (RT-qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter-selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species.
Collapse
Affiliation(s)
- Maria D S Nunes
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | | | |
Collapse
|
8
|
Population genetics of the cytoplasm and the units of selection on mitochondrial DNA in Drosophila melanogaster. Genetica 2011; 139:685-97. [PMID: 21538136 DOI: 10.1007/s10709-011-9576-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 04/15/2011] [Indexed: 02/03/2023]
Abstract
Biological variation exists across a nested set of hierarchical levels from nucleotides within genes to populations within species to lineages within the tree of life. How selection acts across this hierarchy is a long-standing question in evolutionary biology. Recent studies have suggested that genome size is influenced largely by the balance of selection, mutation and drift in lineages with different population sizes. Here we use population cage and maternal transmission experiments to identify the relative strength of selection at an individual and cytoplasmic level. No significant trends were observed in the frequency of large (L) and small (S) mtDNAs across 14 generations in population cages. In all replicate cages, new length variants were observed in heteroplasmic states indicating that spontaneous length mutations occurred in these experimental populations. Heteroplasmic flies carrying L genomes were more frequent than those carrying S genomes suggesting an asymmetric mutation dynamic from larger to smaller mtDNAs. Mother-offspring transmission of heteroplasmy showed that the L mtDNA increased in frequency within flies both between and within generations despite sampling drift of the same intensity as occurred in population cages. These results suggest that selection for mtDNA size is stronger at the cytoplasmic than at the organismal level. The fixation of novel mtDNAs within and between species requires a transient intracellular heteroplasmic stage. The balance of population genetic forces at the cytoplasmic and individual levels governs the units of selection on mtDNA, and has implications for evolutionary inference as well as for the effects of mtDNA mutations on fitness, disease and aging.
Collapse
|
9
|
Zhang D, Ding G, Wang G, Tang B, Sun H. Structure and variable numbers of tandem repeats (VNTRs) of the mitochondrial control region in mitten crab Eriocheir (Crustacean: Brachyura). Mol Biol Rep 2010; 38:4935-40. [DOI: 10.1007/s11033-010-0636-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/03/2010] [Indexed: 01/25/2023]
|
10
|
Black Iv WC, Bernhardt SA. Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. INSECT MOLECULAR BIOLOGY 2009; 18:705-713. [PMID: 19849722 DOI: 10.1111/j.1365-2583.2009.00925.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A portion of the Aedes aegypti mitochondrial NADH dehydrogenase subunit 4 gene (ND4) was amplified using PCR with a 42 degrees C annealing temperature. Amplified fragments from individual mosquitoes were similar to ND4 but contained multiple segregating sites. We suspected that nuclear copies of mitochondrial origin (NUMTs) exist in the Ae. aegypti genome. A BlastN search in VectorBase with the entire Ae. aegypti mitochondrial genome identified 233 NUMTs comprising 110 178 bp in 145 supercontigs. At a density of 0.080 bp/kb, this represents the second highest density of NUMTs in an insect genome and the highest in Diptera. Analyses of flanking sequences suggested that Ae. aegypti NUMTs arise through mtDNA leakage from damaged mitochondria followed by breakage and nonhomologous recombination, rather than through duplicative processes such as transposition or molecular drive.
Collapse
Affiliation(s)
- W C Black Iv
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | | |
Collapse
|
11
|
Townsend JP, Rand DM. Mitochondrial genome size variation in New World and Old World populations of Drosophila melanogaster. Heredity (Edinb) 2004; 93:98-103. [PMID: 15138453 DOI: 10.1038/sj.hdy.6800484] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Drosophila melanogaster originated in Africa, spread to Europe and Asia, and is believed to have colonized the New World in the past few hundred years. Levels of genetic variation are typically reduced in New World populations, consistent with a founder event following range expansion out of Africa and the Old World. We describe the patterns of mtDNA length variation within and among several populations of Drosophila melanogaster from the Old and New World. MtDNA length variation is due to insertion and deletion of tandem repeats in the control region (D-loop) of D. melanogaster mitochondrial genome. The distinct mutational dynamics of this system provide an opportunity to compare the patterns of variation in this marker to those of other markers with different mutational pressures and linkage relationships. The data show significantly more length variation in African and Asian samples than in New World samples. New World samples also show more pronounced skew of the length distribution. Our results are distinct from an earlier study that showed significantly higher levels of length variation and heteroplasmy. The level of heteroplasmy is highly correlated with the number of years that samples have been maintained in laboratory culture, suggesting that relaxed selection in small populations permits the accumulation of mtDNA length variation and heteroplasmy. Together, the data indicate that mtDNA length variants retain a signature of founder events and selection, and suggest that further investigation into the mutation-selection dynamics of the D-loop region of mtDNA would provide a distinct and informative marker for analysis of the recent history of populations.
Collapse
Affiliation(s)
- J P Townsend
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
12
|
Coyer JA, Hoarau G, Stam WT, Olsen JL. Geographically specific heteroplasmy of mitochondrial DNA in the seaweed, Fucus serratus (Heterokontophyta: Phaeophyceae, Fucales). Mol Ecol 2004; 13:1323-6. [PMID: 15078467 DOI: 10.1111/j.1365-294x.2004.02128.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of more than one type of mitochondrial DNA within the same organism (mtDNA heteroplasmy) has been reported in vertebrates, invertebrates, basidiomycetes and some angiosperms, but never in marine (macro)algae. We examined sequence differences in a 135-base pair (bp) region of the nad11 gene in mitochondria of the intertidal rockweed, Fucus serratus, using single-strand conformation polymorphism (SSCP). Each of 70 and 22 individuals from Blushøj (Denmark) and Oskarshamn (Sweden), respectively, displayed haplotypes 2, 3, and 4 (= mtDNA heteroplasmy), whereas only haplotype 2 was found in each of 24 individuals from locations in Spain, France, Ireland, Iceland and Norway. As Blushøj and Oskarshamn were among the last areas to emerge from ice cover during the Last Glacial Maximum (18000-20000 years BP), the geographically specific heteroplasmy may represent a founder effect and therefore, a valuable marker for understanding the role of post-Ice Age recolonization. Geographically specific heteroplasmy also has important implications in phylogeographical studies based on mtDNA sequences.
Collapse
Affiliation(s)
- J A Coyer
- Department of Marine Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Kann LM, Rosenblum EB, Rand DM. Aging, mating, and the evolution of mtDNA heteroplasmy in Drosophila melanogaster. Proc Natl Acad Sci U S A 1998; 95:2372-7. [PMID: 9482892 PMCID: PMC19350 DOI: 10.1073/pnas.95.5.2372] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heteroplasmy, the presence of more than one type of mtDNA within cells, is common in animals and has been associated with aging and disease in humans. Changes in the frequencies of mtDNA variants between cell and animal generations thus bears on the evolution of mtDNA and the progression of diverse pathologies. We have used densitometry of Southern blots of individual heteroplasmic Drosophila melanogaster to study the effects of age, increased egg production after mating, and temperature on evolution of heteroplasmy within and between generations. The frequency of the longer mtDNA variant consistently increased between early and late cohorts of F1 offspring derived from 18 independent heteroplasmic mothers as they aged. Neither temperature (flies maintained at 25 degrees C and 18 degrees C) nor the holding of flies as virgins for 10 days before mating had significant effects on transmission patterns. However, at the ends of their lives, flies that had laid eggs at 25 degrees C had a greater frequency of the long mtDNA than did their siblings who had laid eggs at 18 degrees C. The evolution of heteroplasmy within a generation was studied in samples of siblings that either were mated or held as virgins, and then scored for mtDNA haplotype frequencies at two different ages (day 2 and day 14). Mated flies showed a significantly greater increase in the frequency of the long mtDNA variant with age than did the unmated flies. This system provides a model for the joint analysis of generational and chronological age in the transmission dynamics of a molecular polymorphism.
Collapse
Affiliation(s)
- L M Kann
- Department of Ecology and Evolutionary Biology, Brown University, Box G-W, Providence, RI 02912, USA
| | | | | |
Collapse
|
14
|
Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U. Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci U S A 1996; 93:12382-7. [PMID: 8901590 PMCID: PMC38000 DOI: 10.1073/pnas.93.22.12382] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have analyzed the level of intraindividual sequence variability (heteroplasmy) of mtDNA in human brain by denaturing gradient gel electrophoresis and sequencing. Single base substitutions, as well as insertions or deletions of single bases, were numerous in the noncoding control region (D-loop), and 35-45% of the molecules from a single tissue showed sequence differences. By contrast, heteroplasmy in coding regions was not detected. The lower level of heteroplasmy in the coding regions is indicative of selection against deleterious mutations. Similar levels of heteroplasmy were found in two brain regions from the same individual, while no heteroplasmy was detected in blood. Thus, heteroplasmy seems to be more frequent in nonmitotic tissues. We observed a 7.7-fold increase in the frequency of deletions/insertions and a 2.2-fold increase in the overall frequency of heteroplasmic mutations in two individuals aged 96 and 99, relative to an individual aged 28. Our results show that intraindividual sequence variability occurs at a high frequency in the noncoding regions of normal human brain and indicate that small insertions and deletions might accumulate with age at a lower rate than large rearrangements.
Collapse
Affiliation(s)
- E E Jazin
- Department of Medical Genetics, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
15
|
MARTINEZ-TORRES D, SIMON JC, FERERES A, MOYA A. Genetic variation in natural populations of the aphid Rhopalosiphum padi as revealed by maternally inherited markers. Mol Ecol 1996. [DOI: 10.1111/j.1365-294x.1996.tb00361.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Azeredo-Espin AM, Schroder RF, Roderick GK, Sheppard WS. Intraspecific mitochondrial DNA variation in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biochem Genet 1996; 34:253-68. [PMID: 8894048 DOI: 10.1007/bf02399946] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Restriction endonuclease analyses of mitochondrial DNA (mtDNA) were used to examine genetic variability and population structure in Leptinotarsa decemlineata (Say). A group of three enzymes, EcoRI, HpaI, and PstI, was used to reveal polymorphism both within and among some of the 10 populations tested, yielding 16 haplotypes in combination. The frequencies of these 16 haplotypes differed significantly across geographic regions, indicating some partitioning of mtDNA haplotypes. Estimates of mtDNA sequence divergence (delta) between haplotypes ranged from 0.016 to 0.135%, suggesting local differentiation of mtDNA in some populations. Analysis of these data suggests that Texas was colonized by more than one mtDNA lineage, most likely originating in Mexico. We hypothesize that a larger founder size for the initial introductions or high levels of variability in the parent population at the edge of the CPB expanding range led to the initial partitioning of haplotypes observed in samples from Texas.
Collapse
Affiliation(s)
- A M Azeredo-Espin
- Departameto de Genética e Evoluĉao, Universidade Estadual de Campinas, SP, Brasil
| | | | | | | |
Collapse
|
17
|
Azeredo-Espin AML, Schroder RFW, Roderick GK, Sheppard WS. Intraspecific mitochondrial DNA variation in the Colorado potato beetle,Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biochem Genet 1996. [DOI: 10.1007/pl00020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Brown JR, Beckenbach K, Beckenbach AT, Smith MJ. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 1996; 142:525-35. [PMID: 8852850 PMCID: PMC1206985 DOI: 10.1093/genetics/142.2.525] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications.
Collapse
Affiliation(s)
- J R Brown
- Evolutionary Biology Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
19
|
True JR, Mercer JM, Laurie CC. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 1996; 142:507-23. [PMID: 8852849 PMCID: PMC1206984 DOI: 10.1093/genetics/142.2.507] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Comparisons of the genetic and cytogenetic maps of three sibling species of Drosophila reveal marked differences in the frequency and cumulative distribution of crossovers during meiosis. The maps for two of these species, Drosophila melanogaster and D. simulans, have previously been described, while this report presents new map data for D. mauritiana, obtained using a set of P element markers. A genetic map covering nearly the entire genome was constructed by estimating the recombination fraction for each pair of adjacent inserts. The P-based genetic map of mauritiana is approximately 1.8 times longer than the standard melanogaster map. It appears that mauritiana has higher recombination along the entire length of each chromosome, but the difference is greates in centromere-proximal regions of the autosomes. The mauritiana autosomes show little or no centromeric recombinational suppression, a characteristic that is prominent in melanogaster. D. simulans appears to be intermediate both in terms of total map length and intensity of the autosomal centromeric effect. These interspecific differences in recombination have important evolutionary implications for DNA sequence organization and variability. In particular, mauritiana is expected to differ from melanogaster in patterns and amounts of sequence variation and transposon insertions.
Collapse
Affiliation(s)
- J R True
- Department of Zoology, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
20
|
Lewis DL, Farr CL, Kaguni LS. Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. INSECT MOLECULAR BIOLOGY 1995; 4:263-278. [PMID: 8825764 DOI: 10.1111/j.1365-2583.1995.tb00032.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nucleotide sequence of the regions flanking the A+T region of Drosophila melanogaster mitochondrial DNA (mtDNA) has been determined. Included are the genes encoding the transfer RNAs for valine, isoleucine, glutamine and methionine, the small ribosomal RNA and the 5'-coding sequences of the large ribosomal RNA and NADH dehydrogenase subunit II. This completes the nucleotide sequence of the D. melanogaster mitochondrial genome. The circular mtDNA of D. melanogaster varies in size among different populations largely due to length differences in the control region (Fauron & Wolstenholme, 1976; Fauron & Wolstenholme, 1980a, b); the mtDNA region we have sequenced, combined with those sequenced by others, yields a composite genome that is 19,517 bp in length as compared to 16,019 bp for the mtDNA of D. yakuba. D. melanogaster mtDNA exhibits an extreme bias in base composition; it comprises 82.2% deoxyadenylate and thymidylate residues as compared to 78.6% in D. yakuba mtDNA. All genes encoded in the mtDNA of both species are in identical locations and orientations. Nucleotide substitution analysis reveals that tRNA and rRNA genes evolve at less than half the rate of protein coding genes.
Collapse
Affiliation(s)
- D L Lewis
- Department of Biochemistry, Michigan State University, East Lansing, USA
| | | | | |
Collapse
|
21
|
Andersson SG, Kurland CG. Genomic evolution drives the evolution of the translation system. Biochem Cell Biol 1995; 73:775-87. [PMID: 8721994 DOI: 10.1139/o95-086] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Our thesis is that the characteristics of the translational machinery and its organization are selected in part by evolutionary pressure on genomic traits have nothing to do with translation per se. These genomic traits include size, composition, and architecture. To illustrate this point, we draw parallels between the structure of different genomes that have adapted to intracellular niches independently of each other. Our starting point is the general observation that the evolutionary history of organellar and parasitic bacteria have favored bantam genomes. Furthermore, we suggest that the constraints of the reductive mode of genomic evolution account for the divergence of the genetic code in mitochondria and the genetic organization of the translational system observed in parasitic bacteria. In particular, we associate codon reassignments in animal mitochondria with greatly simplified tRNA populations. Likewise, we relate the organization of translational genes in the obligate intracellular parasite Rickettsia prowazekii to the processes supporting the reductive mode of genomic evolution. Such findings provide strong support for the hypothesis that genomes of organelles and of parasitic bacteria have arisen from the much larger genomes of ancestral bacteria that have been reduced by intrachromosomal recombination and deletion events. A consequence of the reductive mode of genomic evolution is that the resulting translation systems may deviate markedly from conventional systems.
Collapse
Affiliation(s)
- S G Andersson
- Department of Molecular Biology, Uppsala University, Sweden
| | | |
Collapse
|
22
|
Genetic variability in mitochondrial DNA of the screwworm,Cochliomyia hominivorax (Diptera: Calliphoridae), from Brazil. Biochem Genet 1995. [DOI: 10.1007/bf00553622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Vargas MEI, de Azeredo Espin AML. Genetic variability in mitochondrial DNA of the screwworm,Cochliomyia hominivorax (Diptera: Calliphoridae), from Brazil. Biochem Genet 1995. [DOI: 10.1007/bf02401854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Komiya K, Kondoh T, Aotsuka T. Evolution of the noncoding regions in Drosophila mitochondrial DNA: two intergenic regions. Biochem Genet 1995; 33:73-82. [PMID: 7677731 DOI: 10.1007/bf00557945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sequences of the mitochondrial DNA (mtDNA) segment containing the two intergenic regions were determined for six species belonging to the Drosophila immigrans species group and compared to the corresponding segments of Drosophila species which had been studied previously. We found remarkable differences in the evolutionary rates of the two intergenic regions. The Intergenic I region, which lies between the tRNA(gln) and the tRNA(ile) genes, was found to be highly conserved in terms of both size (30 ntp) and nucleotide sequence among the species studied. In contrast, the sequences of the Intergenic II region, which lies between the tRNA(f-met) and the tRNA(ile) genes, showed considerable variation. The size of the Intergenic II region ranged from 0 to 88 ntp, and accurate alignment was possible only among sequences from geographical strains or very closely related species in the nasuta species subgroup. The observed differences in conservation of the two mtDNA intergenic regions are discussed in light of functional constraints on mtDNA sequences.
Collapse
MESH Headings
- Animals
- Base Sequence
- Biological Evolution
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Drosophila/classification
- Drosophila/genetics
- Genes, Insect
- Molecular Sequence Data
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Met/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- K Komiya
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
25
|
|
26
|
Perez ML, Valverde JR, Batuecas B, Amat F, Marco R, Garesse R. Speciation in the Artemia genus: mitochondrial DNA analysis of bisexual and parthenogenetic brine shrimps. J Mol Evol 1994; 38:156-68. [PMID: 8169960 DOI: 10.1007/bf00166162] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
From the cloned mitochondrial DNAs (mtDNAs) isolated from two bisexual species, one Mediterranean, Artemia salina, and one American, Artemia franciscana, and two parthenogenetic (diploid and tetraploid) strains of Artemia parthenogenetica collected in Spain, physical maps have been constructed and compared. They are extremely different among themselves, much more than the differences between Drosophila melanogaster and D. yakuba and in the same range of different mammalian species such as mouse/rat or man/cow. The nucleotide sequences of two regions of mtDNA encoding parts of the cytochrome c oxidase subunit I (COI) and cytochrome b (Cytb) genes have been determined in the two bisexual species and the two parthenogenetic strains. Comparisons of these sequences have revealed a high degree of divergence at the nucleotide level, averaging more than 15%, in agreement with the differences found in the physical maps. The majority of the nucleotide changes are silent and there is a strong bias toward transitions, with the C<==>T substitutions being highly predominant. The evolutionary distance between the two Artemia parthenogenetica is high and there is no clear relationship with any of the bisexual species, including the one present nowadays in Spain. Using a combination of molecular (mtDNA) and morphological markers it is possible to conclude that all of these Artemia isolates should be actually considered as belonging to different species, even the two Artemia parthenogenetica diploidica and tetraploidica.
Collapse
Affiliation(s)
- M L Perez
- Departamento de Bioquímica, Facultad de Medicina de La Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The patterns of mitochondrial genome-size variation were investigated in endothermic and ectothermic species to examine the role that thermal habit might play in the evolution of animal mitochondrial DNA (mtDNA). Data on mtDNA size (the modal, largest, and smallest mtDNA reported within a species), the percent variation in mtDNA size (the difference in size between the largest and smallest mtDNAs divided by the model genome size for a given species), and the frequency of heteroplasmic individuals (those carrying more than one mtDNA length variant) were tabulated from the literature. Endotherms showed significantly less variation in mtDNA size and tended to have smaller mtDNAs than ectotherms. Further comparisons between endothermic and ectothermic vertebrates revealed that the largest genome and the percent variation in genome size were significantly smaller in the former than the latter. There was no difference between endotherms and ectotherms in the frequency of heteroplasmy. These data are discussed in light of two hypotheses: (1) more intense directional and purifying selection for small genome size in the cytoplasms of species with higher metabolic rates and (2) reduced mutation pressures generating mtDNA size variants in endotherms relative to those in ectotherms. The general trends are consistent with the selection hypothesis but in certain species mtDNA size variation appears to be governed by mutational pressures. To test these competing hypotheses further, comparative studies are proposed where mitochondrial genome size is quantified in sister taxa and tissue types with very different metabolic rates.
Collapse
Affiliation(s)
- D M Rand
- Graduate Program in Ecology and Evolution, Brown University, Providence, RI 02912
| |
Collapse
|
28
|
Ghivizzani SC, Mackay SL, Madsen CS, Laipis PJ, Hauswirth WW. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol 1993; 37:36-7. [PMID: 8360917 DOI: 10.1007/bf00170460] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mitochondrial D-loop region of the pig, Sus scrofa, was found to be several hundred base pairs larger than the corresponding region in cow, a related artiodactyl species, primarily because of an insertion containing the tandemly repeated sequence CGTGCGTACA. Porcine mitochondrial DNA from the tissue of a single animal exhibits a large population of length polymorphs, each member of which may have as few as 14 or as many as 29 of these repeat units. This intracellular variability may be due to the repeated and self-complementary properties of this sequence, which would favor mispairing and lead to replication slippage. The repeat domain is unusual in that symmetry properties suggest it may assume alternative conformations including cruciforms and left-handed (Z) DNA. It also appears to be the longest known, naturally occurring, alternating purine-pyrimidine sequence. In order to understand the functional significance of this heteroplasmic domain that potentially disrupts a key regulatory region in the mitochondrial genome, RNA and DNA mapping studies were conducted which located this region between the H-strand replication origin and the putative L-strand transcriptional start site. H-strand RNA analysis demonstrated that this heteroplasmic region is transcribed and, therefore, that priming for H-strand DNA replication in mitochondria is independent of the primer RNA length or secondary structure.
Collapse
Affiliation(s)
- S C Ghivizzani
- Department of Immunology and Medical Microbiology, University of Florida, College of Medicine, Gainesville 32610-0266
| | | | | | | | | |
Collapse
|
29
|
Volz-Lingenhöhl A, Solignac M, Sperlich D. Stable heteroplasmy for a large-scale deletion in the coding region of Drosophila subobscura mitochondrial DNA. Proc Natl Acad Sci U S A 1992; 89:11528-32. [PMID: 1454843 PMCID: PMC50585 DOI: 10.1073/pnas.89.23.11528] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Due to the extremely economic organization of the animal mitochondrial genome, large-scale deletions are rarely found in animal mtDNA. We report the occurrence of a massive deletion in the coding region of mtDNA in Drosophila subobscura. Restriction mapping and nucleotide sequence analysis revealed that the deletion encompasses six protein genes and four tRNAs. All individuals of an isofemale strain proved to be heteroplasmic for normal and deficient mtDNA molecules. This type of heteroplasmy resembles one observed in patients with mitochondrial myopathies but differs in that the fitness of heteroplasmic flies is not significantly reduced even though the mutant mtDNA constitutes 50-80% of total mtDNA in most of the individuals studied. The heteroplasmic strain is genetically stable: despite extensive screening not a single homoplasmic fly was observed since the foundation of the line.
Collapse
|
30
|
Brown JR, Beckenbach AT, Smith MJ. Mitochondrial DNA length variation and heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics 1992; 132:221-8. [PMID: 1398055 PMCID: PMC1205119 DOI: 10.1093/genetics/132.1.221] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Southern blot analysis was used to quantify the extent of mtDNA D-loop length variation in two populations of white sturgeon, Acipenser transmontanus. Over 42% of individuals were heteroplasmic for up to six different mtDNA length variants attributable to varying copy numbers of an 82-bp repeat sequence. Chi-square analyses revealed that the frequencies of length genotypes and the incidence of heteroplasmy were significantly different between Fraser and Columbia River sturgeon populations but not between restriction site haplotypes. Heteroplasmic fish have, on average, higher copy number than homoplasmic fish. Forty-five of 101 homoplasmic individuals carry only a single copy of the repeat, while none of the 73 heteroplasmic fish has the single repeat as the predominant variant. On the basis of differences in frequency distributions of copy number within and between fish, we suggest that (1) heteroplasmy is maintained by high recurrent mutation of multiple copy genomes, favoring increased copy number and (2) the mutation pressure toward higher copy number heteroplasmy is partially offset by selection to reduced genome size and segregation to the homoplasmic condition.
Collapse
Affiliation(s)
- J R Brown
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
31
|
Matsuura ET. Selective transmission of mitochondrial DNA in Drosophila. IDENGAKU ZASSHI 1991; 66:683-700. [PMID: 1814374 DOI: 10.1266/jjg.66.683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E T Matsuura
- Department of Biology, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
32
|
Moritz C. Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic geckos, Heteronotia binoei. Genetics 1991; 129:221-30. [PMID: 1682212 PMCID: PMC1204569 DOI: 10.1093/genetics/129.1.221] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial DNA (mtDNA) from triploid parthenogenetic geckos of the Heteronotia binoei complex varies in size from 17.2 to 27.6 kilobases (kb). Comparisons of long vs. short genomes using restriction endonucleases revealed a series of tandem direct duplications ranging in size from 1.2 to 10.4 kb. This interpretation was supported by transfer-hybridization experiments which also demonstrated that coding sequences were involved. Some of the duplications have been modified by deletion and restriction site changes, but no other rearrangements were detected. Analysis of the phylogenetic and geographic distribution of length variation suggests that duplications have arisen repeatedly within the parthenogenetic form of H. binoei. The parthenogens, and thus the duplications, are of recent origin; modifications of the duplicated sequences, particularly by deletion, has therefore been rapid. The absence of duplications from the mtDNA of the diploid sexual populations of H. binoei reinforces the correlation between nuclear polyploidy and duplication of mtDNA sequences reported for other lizards. In comparison to the genomes of sexual H. binoei and of most other animals, the mtDNA of these parthenogenetic geckos is extraordinarily variable in length and organization.
Collapse
Affiliation(s)
- C Moritz
- Department of Zoology, University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Contrasting patterns of genetic structure and evolutionary history as revealed by rnitochondrial DNA and nuclear gene-enzyme variation betweenDrosophila melanogaster andDrosophila simulans. J Genet 1991. [DOI: 10.1007/bf02927808] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Spicer GS, Fleming JE. Genetic differentiation of Drosophila melanogaster populations as assessed by two-dimensional electrophoresis. Biochem Genet 1991; 29:389-401. [PMID: 1747099 DOI: 10.1007/bf00554145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seven populations of Drosophila melanogaster, representing a worldwide distribution, were compared using two-dimensional protein gel electrophoresis. A total of 611 protein spots was scored, which probably represent a sample of over 500 loci that were surveyed. Of the protein spots scored, 521 spots were found to be invariant, but another 90 spots were found to be variable among the populations. Of these variable protein spots, 12 were found to be present in only one population. All the populations, except one, had at least one protein spot restricted to itself. However, the Japanese population had by far the most, with five protein spots restricted to this one population, which has been observed in previous studies of private alleles in oriental populations. The mean genetic similarity (F) found among the seven populations was 0.965, with a range of between 0.956 and 0.977. This is similar to previous reports of lower variation found in population genetic surveys using two-dimensional electrophoresis. It was found that the historical relationships among these populations was somewhat congruent with the geographic distribution of the populations, but as in previous studies, it was not exactly coincident.
Collapse
Affiliation(s)
- G S Spicer
- Linus Pauling Institute of Science and Medicine, Palo Alto, California 94306
| | | |
Collapse
|
35
|
Matsuura ET, Fukuda H, Chigusa SI. Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Réunion. Genet Res (Camb) 1991; 57:123-6. [PMID: 2055455 DOI: 10.1017/s0016672300029189] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA (mtDNA) variation in Drosophila simulans was studied to determine whether the cytoplasmic state of mtDNA heteroplasmy persists in natural populations in Réunion. For this purpose, 172 isofemale lines, newly collected from two local populations, were examined, among which three types of mtDNA (siII, siIII and siIII') were found, based on the Hpa II restriction pattern. Ten of the lines were heteroplasmic for a combination of siII and siIII, as determined by autoradiography. The same type of heteroplasmy had been noted in one of the two local populations 8 years before (Satta et al. 1988). The present results suggest that the heteroplasmic state occurs recurrently in natural populations of D. simulans in Réunion.
Collapse
Affiliation(s)
- E T Matsuura
- Department of Biology, Ochanomizu University, Tokyo, Japan
| | | | | |
Collapse
|
36
|
Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI. Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 1990; 126:657-63. [PMID: 2249764 PMCID: PMC1204221 DOI: 10.1093/genetics/126.3.657] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The possibility of incomplete maternal transmission of mitochondrial DNA (mtDNA) in Drosophila, previously suggested by the presence of heteroplasmy, was examined by intra- and interspecific backcrosses of Drosophila simulans and its closest relative, Drosophila mauritiana. mtDNAs of offspring in these crosses were characterized by Southern hybridization with two alpha-32P-labeled probes that are specific to paternal mtDNAs. This method could detect as little as 0.03% paternal mtDNA, if present, in a sample. Among 331 lines that had been backcrossed for ten generations, four lines from the interspecific cross D. simulans (female) x D. mauritiana (male) showed clear evidence for paternal leakage of mtDNA. In three of these the maternal type was completely replaced while the fourth was heteroplasmic. Since in this experiment the total number of fertilization is known to be 331 x 10 = 3310, the proportion of paternal mtDNA per fertilization was estimated as about 0.1%. The mechanisms and evolutionary significance for paternal leakage are discussed in light of this finding.
Collapse
Affiliation(s)
- R Kondo
- Department of Biology, Ochanomizu University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Gold JR, Richardson LR. Restriction site heteroplasmy in the mitochondrial DNA of the marine fish Sciaenops ocellatus (L.). Anim Genet 1990; 21:313-6. [PMID: 2176440 DOI: 10.1111/j.1365-2052.1990.tb03241.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restriction site heteroplasmy involving the enzymes NcoI and XbaI was detected in the mitochondrial DNAs of two individuals of the marine fish Sciaenops ocellatus. This represents only the sixth documented example of mitochondrial DNA restriction site heteroplasmy in animals. Two heteroplasmic individuals were found in a survey of nearly 750 individuals, suggesting that in most studies the incidence of mitochondrial DNA site heteroplasmy may be too low to be routinely detected.
Collapse
Affiliation(s)
- J R Gold
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station
| | | |
Collapse
|
38
|
Buroker NE, Brown JR, Gilbert TA, O'Hara PJ, Beckenbach AT, Thomas WK, Smith MJ. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 1990; 124:157-63. [PMID: 1968410 PMCID: PMC1203902 DOI: 10.1093/genetics/124.1.157] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extensive length polymorphism and heteroplasmy (multiple forms within an individual) of the D-loop region are observed in mitochondrial DNA of the white sturgeon (Acipenser transmontanus). The nucleotide sequence of this region, for both a short and a long form, shows that the differences are due to variable numbers of a perfect 82-bp direct repeat. We propose a model for the replicative origin of length differences, involving a competitive equilibrium between the heavy strand and the D-loop strand. This model suggests that frequent misalignment in the repeat region prior to elongation, facilitated by a stable secondary structure in the displaced strand, can explain both the polymorphism and heteroplasmy in this species.
Collapse
Affiliation(s)
- N E Buroker
- School of Medicine, Department of Pediatrics, University of Washington, Seattle 98195
| | | | | | | | | | | | | |
Collapse
|
39
|
Roehrdanz RL. Intraspecific genetic variability in mitochondrial DNA of the screwworm fly (Cochliomyia hominivorax). Biochem Genet 1989; 27:551-69. [PMID: 2619711 DOI: 10.1007/bf02396152] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondrial DNA variability has been analyzed in the primary screwworm fly (Cochliomyia hominivorax) using restriction endonuclease fragment patterns and restriction site mapping. A total of 30 different screwworm lines originating from Texas to Costa Rica and the Island of Jamaica was examined using 15 restriction endonucleases. Eleven of the restriction enzymes revealed polymorphism and yielded 16 mitochondrial genotypes or haplotypes. Two of the haplotypes were widely distributed, haplotype 1 being found scattered across southern Mexico and haplotype 2 along the west coast of Mexico. Haplotype 1 also appeared paired with several other haplotypes in mixed lines that were most likely the result of collecting an egg mass to which more than one female had contributed or to some form of contamination by haplotype 1 after introduction into the laboratory. These lines became fixed before single insects were examined and thus it is impossible to rule out heteroplasmy. The other 14 haplotypes were found in only a single locale and 12 of these were found in only one line. The average sequence diversity among 27 mainland lines was about 0.5%. The two Jamaican lines and one east coast mainland line differed from the others by greater than 2%. The pattern of geographical distribution, a small number of apparently recurring haplotypes and a substantial number (75%) of the haplotypes unique, bears similarities to patterns observed in other insects such as Drosophila. The high frequency of unique genotypes in southern Mexico suggests a population with a very reduced gene flow, which may have had a positive effect on the sterile male release control program.
Collapse
Affiliation(s)
- R L Roehrdanz
- United States Department of Agriculture, Biosciences Research Laboratory, State University Station, Fargo, North Dakota 58105
| |
Collapse
|
40
|
Ashley MV, Laipis PJ, Hauswirth WW. Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res 1989; 17:7325-31. [PMID: 2798094 PMCID: PMC334812 DOI: 10.1093/nar/17.18.7325] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
By following the transmission of a heteroplasmic mitochondrial DNA mutation through four generations of Holstein cows, we have documented that substantial shifts in the levels of heteroplasmy can occur between single mammalian generations, that neutral mitochondrial genotypes can segregate in different directions in offspring of the same female, and that a return to homoplasmy may occur in only two or three generations. This apparently rapid rate of mitochondrial DNA segregation in mammals contrasts to the much slower rates observed previously in insects and suggest fundamental differences between taxa regarding the mechanisms of mitochondrial gene transmission.
Collapse
Affiliation(s)
- M V Ashley
- Department of Immunology and Medical Microbiology, University of Florida, College of Medicine, Gainesville 32610-0266
| | | | | |
Collapse
|
41
|
Birky CW, Fuerst P, Maruyama T. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 1989; 121:613-27. [PMID: 2714640 PMCID: PMC1203645 DOI: 10.1093/genetics/121.3.613] [Citation(s) in RCA: 330] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We developed stochastic population genetic theory for mitochondrial and chloroplast genes, using an infinite alleles model appropriate for molecular genetic data. We considered the effects of mutation, random drift, and migration in a finite island model on selectively neutral alleles. Recurrence equations were obtained for the expectation of gene diversities within zygotes, within colonies, and between colonies. The variables are number and sizes of colonies, migration rates, sex ratios, degree of paternal transmission, number of germ line cell divisions, effective number of segregating organelle genomes, and mutation rate. Computer solutions of the recurrence equations were used to study the approach to equilibrium. Gene diversities equilibrate slowly, while GST, used to measure population subdivision, equilibrates rapidly. Approximate equilibrium equations for gene diversities and GST can be obtained by substituting Neo and me, simple functions of the numbers of breeding or migrating males and females and of the degree of paternal transmission, for the effective numbers of genes and migration rates in the corresponding equations for nuclear genes. The approximate equations are not valid when the diversity within individuals is large compared to that between individuals, as is often true for the D-loop of animal mtDNA. We used the exact equations to verify that organelle genes often show more subdivision than nuclear genes; however, we also identified the range of breeding and migrating sex ratios for which population subdivision is greater for nuclear genes. Finally, we show that gene diversities are higher for nuclei than for organelles over a larger range of sex ratios in a subdivided population than in a panmictic population.
Collapse
Affiliation(s)
- C W Birky
- Department of Molecular Genetics, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
42
|
De Giorgi C, Saccone C. Mitochondrial genome in animal cells. Structure, organization, and evolution. CELL BIOPHYSICS 1989; 14:67-78. [PMID: 2465087 DOI: 10.1007/bf02797392] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the past decade, the development of new DNA, RNA, and protein technologies has greatly incremented the knowledge about the organization and expression of mitochondrial DNA. The complete base sequence of mitochondrial DNA of several animals is known and many data are rapidly accumulating on the mitochondrial genomes of other systems. Here we discuss the results so far obtained that disclosed unexpected features of mitochondrial genetics. Furthermore, mitochondrial DNA has become established as a powerful tool for evolutionary studies in animals. Evidences are presented demonstrating that the evolution of mitochondrial DNA has proceeded in different ways in the various taxonomic groups. Data on heteroplasmic animals, which demonstrate the rapid evolution of mitochondrial DNA, are also presented.
Collapse
Affiliation(s)
- C De Giorgi
- Dipartimento di Biochimica e Biologia Molecolare, University of Bari, Italy
| | | |
Collapse
|
43
|
Baba-Aïssa F, Solignac M, Dennebouy N, David JR. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races. Heredity (Edinb) 1988; 61 ( Pt 3):419-26. [PMID: 2906636 DOI: 10.1038/hdy.1988.133] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleotide variability of mtDNA extracted from 144 isofemale lines collected in the whole range of D. simulans was analysed with 10-15 restriction enzymes and 73 lines were studied using one or a few enzymes. All clones were distributed into 3 mitochondrial genomes, siI, siII and siIII. These types are allopatric and can define geographic races. Mixed populations occur only in Madagascar and Réunion, where siII and siIII are found together. Among 40 sites detected with 10 enzymes, the variability of the coding region is extremely low, with one or no polymorphic restriction sites depending on the type. The control A + T-rich region is more variable in length and in restriction sites, and allows subtypes to be designated. Several lines were heteroplasmic for the length of the genome. These results are relevant to the evolutionary history of the species, its recent worldwide extension and to probable founder effects at the origin of each of the three types.
Collapse
Affiliation(s)
- F Baba-Aïssa
- Laboratoire de Biologie et Génétique Evolutives, CNRS, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
44
|
Laipis PJ, Van de Walle MJ, Hauswirth WW. Unequal partitioning of bovine mitochondrial genotypes among siblings. Proc Natl Acad Sci U S A 1988; 85:8107-10. [PMID: 2460862 PMCID: PMC282364 DOI: 10.1073/pnas.85.21.8107] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two polymorphic mitochondrial DNA genomes, differing by a single Hpa II restriction site, are present at significantly different levels in tissue of three sibling dairy cows. The relative ratio of the two heteroplasmic molecules varies 3-fold among these three animals and documents a rapid segregation of mitochondrial genotypes in mammals. DNA sequencing shows the difference is due to a single guanine at position 364 in bovine mitochondrial DNA. A model involving unequal partitioning of the two amplified mitochondrial DNA species during the early cell divisions of the embryo can explain the appearance of such variation in heteroplasmic sibling animals. The model provides a basis for understanding the rapid DNA sequence variation observed in vertebrate mitochondrial DNA despite its high copy number and strict maternal inheritance.
Collapse
Affiliation(s)
- P J Laipis
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
45
|
Nigro L. Natural populations of Drosophila simulans show great uniformity of the mitochondrial DNA restriction map. Genetica 1988; 77:133-6. [PMID: 3215515 DOI: 10.1007/bf00057763] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitochondrial DNA of 21 Drosophila simulans isofemale lines of different geographic origins was digested with seven restriction endonucleases. All the lines, with one exception for one line and one enzyme, showed the same restriction patterns. The results confirm previous investigations showing great uniformity of the mtDNA genome in D. simulans.
Collapse
Affiliation(s)
- L Nigro
- Dipartimento di Biologia, Padova, Italia
| |
Collapse
|
46
|
Identification of cytoplasmically transferred mitochondrial DNA in female germlines of Drosophila and its propagation in the progeny. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00425689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Moritz C, Brown WM. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci U S A 1987; 84:7183-7. [PMID: 3478691 PMCID: PMC299254 DOI: 10.1073/pnas.84.20.7183] [Citation(s) in RCA: 213] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Size, location, gene content, and incidence were determined for 10 lizard mitochondrial DNA duplications. These range from 0.8 to 8.0 kilobases (kb) and account for essentially all of the observed size variation (17-25 kb). Cleavage-site mapping and transfer-hybridization experiments indicate that each duplication is tandem and direct, includes at least one protein or rRNA gene, and is adjacent to or includes the D loop-containing control region. Duplication boundaries are nonrandomly distributed, and most appear to align with tRNA genes, suggesting that these may play a role in the duplication process. Duplications are infrequent and usually restricted to particular individuals or populations. They appear to be ephemeral; in no case is the same duplication shared by mitochondrial DNAs from closely related species. Mitochondrial DNA duplications occur significantly more often in triploid than diploid lizards and at similar frequencies in hybrids and nonhybrids.
Collapse
Affiliation(s)
- C Moritz
- Laboratory of Molecular Systematics, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|