1
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
2
|
Codon-Dependent Transcriptional Changes in Response to Tryptophan Limitation in the Tryptophan Auxotrophic Pathogens Chlamydia trachomatis and Streptococcus pyogenes. mSystems 2021; 6:e0126921. [PMID: 34904862 PMCID: PMC8670374 DOI: 10.1128/msystems.01269-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis and Streptococcus pyogenes are among the most prevalent bacterial pathogens of humans. Interestingly, both pathogens are tryptophan (Trp) auxotrophs and must acquire this essential amino acid from their environment. For Chlamydia, an obligate intracellular bacterium, this means scavenging Trp from the host cell in which they reside. For Streptococcus, a primarily extracellular bacterium, this means scavenging Trp from the local environment. In the course of a natural immune response, both pathogens can be exposed to Trp-limiting conditions through the action of the interferon gamma-inducible IDO1 enzyme, which catabolizes Trp to N-formylkynurenine. How these pathogens respond to Trp starvation is incompletely understood. However, we have previously demonstrated that genes enriched in Trp codons were preferentially transcribed in C. pneumoniae during Trp limitation. Chlamydia, but not Streptococcus, lacks a stringent response, which is a global regulon activated by uncharged tRNAs binding in the A site of the ribosome. We hypothesized that the chlamydial response to Trp limitation is a consequence of lacking a stringent response. To test this, we compared global transcription profiles of C. trachomatis to both wild-type and stringent response mutant strains of Streptococcus during Trp starvation. We observed that both Trp auxotrophs respond with codon-dependent changes in their transcriptional profiles that correlate with Trp codon content but not transcript stability. Importantly, the stringent response had no impact on these transcriptional changes, suggesting an evolutionarily conserved adaptation to Trp starvation. Therefore, we have revealed a novel response of Trp auxotrophic pathogens in response to Trp starvation. IMPORTANCEChlamydia trachomatis and Streptococcus pyogenes are important pathogens of humans. Interestingly, both are auxotrophic for tryptophan and acquire this essential amino acid from the host environment. However, part of the host defense against pathogens includes the degradation of tryptophan pools. Therefore, Chlamydia and Streptococcus are particularly susceptible to tryptophan starvation. Most model bacteria respond to amino acid starvation by using a global regulon called the stringent response. However, Chlamydia lacks a stringent response. Here, we investigated the chlamydial response to tryptophan starvation and compared it to both wild-type and stringent response mutant strains of S. pyogenes to determine what role a functional stringent response plays during tryptophan starvation in these pathogens. We determined that both of these pathogens respond to tryptophan starvation by increasing transcription of tryptophan codon-rich genes. This effect was not dependent on the stringent response and highlights a previously unrecognized and potentially evolutionarily conserved mechanism for surviving tryptophan starvation.
Collapse
|
3
|
Sawyer EB, Phelan JE, Clark TG, Cortes T. A snapshot of translation in Mycobacterium tuberculosis during exponential growth and nutrient starvation revealed by ribosome profiling. Cell Rep 2021; 34:108695. [PMID: 33535039 PMCID: PMC7856553 DOI: 10.1016/j.celrep.2021.108695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, can undergo prolonged periods of non-replicating persistence in the host. The mechanisms underlying this are not fully understood, but translational regulation is thought to play a role. A large proportion of mRNA transcripts expressed in M. tuberculosis lack canonical bacterial translation initiation signals, but little is known about the implications of this for fine-tuning of translation. Here, we perform ribosome profiling to characterize the translational landscape of M. tuberculosis under conditions of exponential growth and nutrient starvation. Our data reveal robust, widespread translation of non-canonical transcripts and point toward different translation initiation mechanisms compared to canonical Shine-Dalgarno transcripts. During nutrient starvation, patterns of ribosome recruitment vary, suggesting that regulation of translation in this pathogen is more complex than originally thought. Our data represent a rich resource for others seeking to understand translational regulation in bacterial pathogens.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Jody E Phelan
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G Clark
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Teresa Cortes
- TB Centre and Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
4
|
Erythromycin has therapeutic efficacy on muscle fatigue acting specifically on orosomucoid to increase muscle bioenergetics and physiological parameters of endurance. Pharmacol Res 2020; 161:105118. [DOI: 10.1016/j.phrs.2020.105118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023]
|
5
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
6
|
The Impact of Leadered and Leaderless Gene Structures on Translation Efficiency, Transcript Stability, and Predicted Transcription Rates in Mycobacterium smegmatis. J Bacteriol 2020; 202:JB.00746-19. [PMID: 32094162 PMCID: PMC7148126 DOI: 10.1128/jb.00746-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5' untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5' UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5' UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5' UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5' UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently.IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium's survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5' untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5' untranslated regions and are unusually prevalent in mycobacteria.
Collapse
|
7
|
Braun F, Durand S, Condon C. Initiating ribosomes and a 5'/3'-UTR interaction control ribonuclease action to tightly couple B. subtilis hbs mRNA stability with translation. Nucleic Acids Res 2017; 45:11386-11400. [PMID: 28977557 PMCID: PMC5737220 DOI: 10.1093/nar/gkx793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
We previously showed that ribosomes initiating translation of the B. subtilis hbs mRNA at a strong Shine–Dalgarno sequence block the 5′ exoribonuclease RNase J1 from degrading into the coding sequence. Here, we identify new and previously unsuspected features of this mRNA. First, we identify RNase Y as the endoribonuclease that cleaves the highly structured 5′-UTR to give access to RNase J1. Cleavage by RNase Y at this site is modulated by a 14-bp long-range interaction between the 5′- and 3-UTRs that partially overlaps the cleavage site. In addition to this maturation/degradation pathway, we discovered a new and ultimately more important RNase Y cleavage site in the very early coding sequence, masked by the initiating ribosome. Thus, two independent pathways compete with ribosomes to tightly link hbs mRNA stability to translation initiation; in one case the initiating ribosome competes directly with RNase J1 and in the other with RNase Y. This is in contrast to prevailing models in Escherichia coli where ribosome traffic over the ORF is the main source of protection from RNases. Indeed, a second RNase Y cleavage site later in the hbs ORF plays no role in its turnover, confirming that for this mRNA at least, initiation is key.
Collapse
Affiliation(s)
- Frédérique Braun
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Durand
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- UMR 8261 (CNRS-Univ. Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
8
|
The Expression of Antibiotic Resistance Methyltransferase Correlates with mRNA Stability Independently of Ribosome Stalling. Antimicrob Agents Chemother 2016; 60:7178-7188. [PMID: 27645242 PMCID: PMC5118997 DOI: 10.1128/aac.01806-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022] Open
Abstract
Members of the Erm methyltransferase family modify 23S rRNA of the bacterial ribosome and render cross-resistance to macrolides and multiple distantly related antibiotics. Previous studies have shown that the expression of erm is activated when a macrolide-bound ribosome stalls the translation of the leader peptide preceding the cotranscribed erm. Ribosome stalling is thought to destabilize the inhibitory stem-loop mRNA structure and exposes the erm Shine-Dalgarno (SD) sequence for translational initiation. Paradoxically, mutations that abolish ribosome stalling are routinely found in hyper-resistant clinical isolates; however, the significance of the stalling-dead leader sequence is largely unknown. Here, we show that nonsense mutations in the Staphylococcus aureus ErmB leader peptide (ErmBL) lead to high basal and induced expression of downstream ErmB in the absence or presence of macrolide concomitantly with elevated ribosome methylation and resistance. The overexpression of ErmB is associated with the reduced turnover of the ermBL-ermB transcript, and the macrolide appears to mitigate mRNA cleavage at a site immediately downstream of the ermBL SD sequence. The stabilizing effect of antibiotics on mRNA is not limited to ermBL-ermB; cationic antibiotics representing a ribosome-stalling inducer and a noninducer increase the half-life of specific transcripts. These data unveil a new layer of ermB regulation and imply that ErmBL translation or ribosome stalling serves as a “tuner” to suppress aberrant production of ErmB because methylated ribosome may impose a fitness cost on the bacterium as a result of misregulated translation.
Collapse
|
9
|
Masters TL, Wachter J, Hill SA. Loop structures in the 5' untranslated region and antisense RNA mediate pilE gene expression in Neisseria gonorrhoeae. MICROBIOLOGY (READING, ENGLAND) 2016; 162:2005-2016. [PMID: 27590250 DOI: 10.1099/mic.0.000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Regulation of the Neisseria gonorrhoeae pilE gene is ill-defined. In this study, post-transcriptional effects on expression were assessed. In silico analysis predicts the formation of three putative stable stem-loop structures with favourable free energies within the 5' untranslated region of the pilE message. Using quantitative reverse transcriptase PCR analyses, we show that each loop structure forms, with introduced destabilizing stem-loop mutations diminishing loop stability. Utilizing a series of pilE translational fusions, deletion of either loop 1 or loop 2 caused a significant reduction of pilE mRNA resulting in reduced expression of the reporter gene. Consequently, the formation of the loops apparently protects the pilE transcript from degradation. Putative loop 3 contains the pilE ribosomal binding site. Consequently, its formation may influence translation. Analysis of a small RNA transcriptome revealed an antisense RNA being produced upstream of the pilE promoter that is predicted to hybridize across the 5' untranslated region loops. Insertional mutants were created where the antisense RNA is not transcribed. In these mutants, pilE transcript levels are greatly diminished, with any residual message apparently not being translated. Complementation of these insertion mutants in trans with the antisense RNA gene facilitates pilE translation yielding a pilus + phenotype. Overall, this study demonstrates a complex relationship between loop-dependent transcript protection and antisense RNA in modulating pilE expression levels.
Collapse
Affiliation(s)
- Thao L Masters
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Jenny Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Stuart A Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
10
|
Chancey ST, Bai X, Kumar N, Drabek EF, Daugherty SC, Colon T, Ott S, Sengamalay N, Sadzewicz L, Tallon LJ, Fraser CM, Tettelin H, Stephens DS. Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other Gram-positive bacteria containing mef/mel(msr(D)) elements. PLoS One 2015; 10:e0116254. [PMID: 25695510 PMCID: PMC4335068 DOI: 10.1371/journal.pone.0116254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/04/2014] [Indexed: 01/30/2023] Open
Abstract
Macrolide resistance, emerging in Streptococcus pneumoniae and other Gram-positive bacteria, is increasingly due to efflux pumps encoded by mef/mel(msr) operons found on discrete mobile genetic elements. The regulation of mef/mel(msr) in these elements is not well understood. We identified the mef(E)/mel transcriptional start, localized the mef(E)/mel promoter, and demonstrated attenuation of transcription as a mechanism of regulation of macrolide-inducible mef-mediated macrolide resistance in S. pneumoniae. The mef(E)/mel transcriptional start site was a guanine 327 bp upstream of mef(E). Consensus pneumococcal promoter -10 (5′-TATACT-3′) and -35 (5′-TTGAAC-3′) boxes separated by 17 bp were identified 7 bp upstream of the start site. Analysis of the predicted secondary structure of the 327 5’ region identified four pairs of inverted repeats R1-R8 predicted to fold into stem-loops, a small leader peptide [MTASMRLR, (Mef(E)L)] required for macrolide induction and a Rho-independent transcription terminator. RNA-seq analyses provided confirmation of transcriptional attenuation. In addition, expression of mef(E)L was also influenced by mef(E)L-dependent mRNA stability. The regulatory region 5’ of mef(E) was highly conserved in other mef/mel(msr)-containing elements including Tn1207.1 and the 5612IQ complex in pneumococci and Tn1207.3 in Group A streptococci, indicating a regulatory mechanism common to a wide variety of Gram-positive bacteria containing mef/mel(msr) elements.
Collapse
Affiliation(s)
- Scott T. Chancey
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| | - Xianhe Bai
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| | - Nikhil Kumar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elliott F. Drabek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sean C. Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas Colon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Luke J. Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
12
|
Kristoffersen SM, Haase C, Weil MR, Passalacqua KD, Niazi F, Hutchison SK, Desany B, Kolstø AB, Tourasse NJ, Read TD, Økstad OA. Global mRNA decay analysis at single nucleotide resolution reveals segmental and positional degradation patterns in a Gram-positive bacterium. Genome Biol 2012; 13:R30. [PMID: 22537947 PMCID: PMC3446304 DOI: 10.1186/gb-2012-13-4-r30] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/15/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022] Open
Abstract
Background Recent years have shown a marked increase in the use of next-generation sequencing technologies for quantification of gene expression (RNA sequencing, RNA-Seq). The expression level of a gene is a function of both its rate of transcription and RNA decay, and the influence of mRNA decay rates on gene expression in genome-wide studies of Gram-positive bacteria is under-investigated. Results In this work, we employed RNA-Seq in a genome-wide determination of mRNA half-lives in the Gram-positive bacterium Bacillus cereus. By utilizing a newly developed normalization protocol, RNA-Seq was used successfully to determine global mRNA decay rates at the single nucleotide level. The analysis revealed positional degradation patterns, with mRNAs being degraded from both ends of the molecule, indicating that both 5' to 3' and 3' to 5' directions of RNA decay are present in B. cereus. Other operons showed segmental degradation patterns where specific ORFs within polycistrons were degraded at variable rates, underlining the importance of RNA processing in gene regulation. We determined the half-lives for more than 2,700 ORFs in B. cereus ATCC 10987, ranging from less than one minute to more than fifteen minutes, and showed that mRNA decay rate correlates globally with mRNA expression level, GC content, and functional class of the ORF. Conclusions To our knowledge, this study presents the first global analysis of mRNA decay in a bacterium at single nucleotide resolution. We provide a proof of principle for using RNA-Seq in bacterial mRNA decay analysis, revealing RNA processing patterns at the single nucleotide level.
Collapse
Affiliation(s)
- Simen M Kristoffersen
- Laboratory for Microbial Dynamics, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PB 1068 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Laalami S, Putzer H. mRNA degradation and maturation in prokaryotes: the global players. Biomol Concepts 2011; 2:491-506. [DOI: 10.1515/bmc.2011.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/26/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe degradation of messenger RNA is of universal importance for controlling gene expression. It directly affects protein synthesis by modulating the amount of mRNA available for translation. Regulation of mRNA decay provides an efficient means to produce just the proteins needed and to rapidly alter patterns of protein synthesis. In bacteria, the half-lives of individual mRNAs can differ by as much as two orders of magnitude, ranging from seconds to an hour. Most of what we know today about the diverse mechanisms of mRNA decay and maturation in prokaryotes comes from studies of the two model organisms Escherichia coli and Bacillus subtilis. Their evolutionary distance provided a large picture of potential pathways and enzymes involved in mRNA turnover. Among them are three ribonucleases, two of which have been discovered only recently, which have a truly general role in the initiating events of mRNA degradation: RNase E, RNase J and RNase Y. Their enzymatic characteristics probably determine the strategies of mRNA metabolism in the organism in which they are present. These ribonucleases are coded, alone or in various combinations, in all prokaryotic genomes, thus reflecting how mRNA turnover has been adapted to different ecological niches throughout evolution.
Collapse
Affiliation(s)
- Soumaya Laalami
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Harald Putzer
- CNRS UPR 9073, affiliated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
14
|
Taverniti V, Forti F, Ghisotti D, Putzer H. Mycobacterium smegmatis RNase J is a 5'-3' exo-/endoribonuclease and both RNase J and RNase E are involved in ribosomal RNA maturation. Mol Microbiol 2011; 82:1260-76. [PMID: 22014150 DOI: 10.1111/j.1365-2958.2011.07888.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The presence of very different sets of enzymes, and in particular the presence of RNase E and RNase J, has been used to explain significant differences in RNA metabolism between the two model organisms Escherichia coli and Bacillus subtilis. However, these studies might have somewhat polarized our view of RNA metabolism. Here, we identified a RNase J in Mycobacterium smegmatis that has both 5'-3' exo- and endonucleolytic activity. This enzyme coexists with RNase E in this organism, a configuration that enabled us to study how these two key nucleases collaborate. We demonstrate that RNase E is responsible for the processing of the furA-katG transcript in M. smegmatis and that both RNase E and RNase J are involved in the 5' end processing of all ribosomal RNAs. In contrast to B. subtilis, the activity of RNase J, although required in vivo for 23S rRNA maturation, is not essential in M. smegmatis. We show that the pathways for ribosomal RNA maturation in M. smegmatis are quite different from those observed in E. coli and in B. subtilis. Studying organisms containing different combinations of key ribonucleases can thus significantly broaden our view of the possible strategies that exist to direct RNA metabolism.
Collapse
Affiliation(s)
- Valerio Taverniti
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | |
Collapse
|
15
|
Stazic D, Lindell D, Steglich C. Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection. Nucleic Acids Res 2011; 39:4890-9. [PMID: 21325266 PMCID: PMC3113571 DOI: 10.1093/nar/gkr037] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ecologically important cyanobacterium Prochlorococcus possesses the smallest genome among oxyphototrophs, with a reduced suite of protein regulators and a disproportionately high number of regulatory RNAs. Many of these are asRNAs, raising the question whether they modulate gene expression through the protection of mRNA from RNase E degradation. To address this question, we produced recombinant RNase E from Prochlorococcus sp. MED4, which functions optimally at 12 mM Mg2+, pH 9 and 35°C. RNase E cleavage assays were performed with this recombinant protein to assess enzyme activity in the presence of single- or double-stranded RNA substrates. We found that extraordinarily long asRNAs of 3.5 and 7 kb protect a set of mRNAs from RNase E degradation that accumulate during phage infection. These asRNA–mRNA duplex formations mask single-stranded recognition sites of RNase E, leading to increased stability of the mRNAs. Such interactions directly modulate RNA stability and provide an explanation for enhanced transcript abundance of certain mRNAs during phage infection. Protection from RNase E-triggered RNA decay may constitute a hitherto unknown regulatory function of bacterial cis-asRNAs, impacting gene expression.
Collapse
Affiliation(s)
- Damir Stazic
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany and Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Debbie Lindell
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany and Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany and Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- *To whom correspondence should be addressed. Tel: +49 761 203 6986; Fax: +49 761 203 6996;
| |
Collapse
|
16
|
Lee SJ, Pan JG, Park SH, Choi SK. Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis. J Biotechnol 2010; 149:16-20. [PMID: 20600378 DOI: 10.1016/j.jbiotec.2010.06.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/30/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
Bacillus thuringiensis produces crystal proteins (Cry) that account for up to 25% of the dry cell weight during the stationary phase. The high-level expression and stationary phase-specific autoinduction of the cry gene led to development of a cry promoter-based Bacillus expression system. Among the various cry promoters, cry3Aa promoter was selected by comparing the lacZ expression levels in Bacillus subtilis. An extracellular enzyme cellulase was highly upregulated during the stationary phase while under control of the cry3Aa promoter. Improvement of the cry3Aa promoter was obtained by modification of the promoter sequence. Specifically, a 5-fold increase in lacZ expression was obtained by changing both the -35 and -10 boxes of the cry3Aa promoter to the consensus sequence of the sigma(A)-dependent promoter of B. subtilis. The modified cry3Aa promoter produced a significantly higher yield of AprE, which suggests that the promoter may be useful for high-level protein expression in B. subtilis.
Collapse
Affiliation(s)
- Su-Jin Lee
- Industrial Biotechnology & Bioenergy Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Steglich C, Lindell D, Futschik M, Rector T, Steen R, Chisholm SW. Short RNA half-lives in the slow-growing marine cyanobacterium Prochlorococcus. Genome Biol 2010; 11:R54. [PMID: 20482874 PMCID: PMC2897979 DOI: 10.1186/gb-2010-11-5-r54] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/26/2010] [Accepted: 05/19/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND RNA turnover plays an important role in the gene regulation of microorganisms and influences their speed of acclimation to environmental changes. We investigated whole-genome RNA stability of Prochlorococcus, a relatively slow-growing marine cyanobacterium doubling approximately once a day, which is extremely abundant in the oceans. RESULTS Using a combination of microarrays, quantitative RT-PCR and a new fitting method for determining RNA decay rates, we found a median half-life of 2.4 minutes and a median decay rate of 2.6 minutes for expressed genes - twofold faster than that reported for any organism. The shortest transcript half-life (33 seconds) was for a gene of unknown function, while some of the longest (approximately 18 minutes) were for genes with high transcript levels. Genes organized in operons displayed intriguing mRNA decay patterns, such as increased stability, and delayed onset of decay with greater distance from the transcriptional start site. The same phenomenon was observed on a single probe resolution for genes greater than 2 kb. CONCLUSIONS We hypothesize that the fast turnover relative to the slow generation time in Prochlorococcus may enable a swift response to environmental changes through rapid recycling of nucleotides, which could be advantageous in nutrient poor oceans. Our growing understanding of RNA half-lives will help us interpret the growing bank of metatranscriptomic studies of wild populations of Prochlorococcus. The surprisingly complex decay patterns of large transcripts reported here, and the method developed to describe them, will open new avenues for the investigation and understanding of RNA decay for all organisms.
Collapse
Affiliation(s)
- Claudia Steglich
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Yao S, Sharp JS, Bechhofer DH. Bacillus subtilis RNase J1 endonuclease and 5' exonuclease activities in the turnover of DeltaermC mRNA. RNA (NEW YORK, N.Y.) 2009; 15:2331-9. [PMID: 19850915 PMCID: PMC2779671 DOI: 10.1261/rna.1749109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RNase J1, a ribonuclease with 5' exonuclease and endonuclease activities, is an important factor in Bacillus subtilis mRNA decay. A model for RNase J1 endonuclease activity in mRNA turnover has RNase J1 binding to the 5' end and tracking to a target site downstream, where it makes a decay-initiating cleavage. The upstream fragment from this cleavage is degraded by 3' exonucleases; the downstream fragment is degraded by RNase J1 5' exonuclease activity. Previously, DeltaermC mRNA was used to show 5'-end dependence of mRNA turnover. Here we used DeltaermC mRNA to probe RNase J1-dependent degradation, and the results were consistent with aspects of the model. DeltaermC mRNA showed increased stability in a mutant strain that contained a reduced level of RNase J1. In agreement with the tracking concept, insertion of a strong stem-loop structure at +65 resulted in increased stability. Weakening this stem-loop structure resulted in reversion to wild-type stability. RNA fragments containing the 3' end were detected in a strain with reduced RNase J1 expression, but were undetectable in the wild type. The 5' ends of these fragments mapped to the upstream side of predicted stem-loop structures, consistent with an impediment to RNase J1 5' exonuclease processivity. A DeltaermC mRNA deletion analysis suggested that decay-initiating endonuclease cleavage could occur at several sites near the 3' end. However, even in the absence of these sites, stability was further increased in a strain with reduced RNase J1, suggesting alternate pathways for decay that could include exonucleolytic decay from the 5' end.
Collapse
Affiliation(s)
- Shiyi Yao
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, New York, New York 10029, USA
| | | | | |
Collapse
|
19
|
Translational control of the antibiotic inducibility of the PA5471 gene required for mexXY multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 2009; 191:4966-75. [PMID: 19465646 DOI: 10.1128/jb.00073-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PA5471 gene required for induction of the MexXY multidrug efflux system in response to ribosome-targeting antimicrobials was itself shown to be inducible by ribosome-targeting antimicrobials (Y. Morita, M. L. Sobel, and K. Poole, J. Bacteriol. 188:1847-1855, 2006). Using a lacZ transcriptional reporter, drug inducibility of PA5471 was shown to require the entirety of the 367-bp PA5472-PA5471 intergenic region. A constitutive promoter activity was, however, localized to the first 75 bp of this region, within which a single PA5471 transcription initiation site was mapped. That 3' sequences of the intergenic region blocked PA5471 expression and made it antibiotic dependent was suggestive of an attenuation mechanism of control. A 13-amino-acid leader peptide (LP)-encoding open reading frame preceded by a Shine-Dalgarno sequence was identified ca. 250 bp upstream of the PA5471 coding sequence, and its expression and translation were confirmed using a lacZ translational reporter. Alteration of the initiation codon (M1T) or introduction of translational stop signals at codons 3 (Q3Am) and 8 (C8Op) of this LP sequence (PA5471.1) yielded high-level constitutive expression of PA5471, suggesting that interference with LP translation was linked to PA5471 gene expression. Consistent with this, a Q3K mutation in the LP sequence maintained the drug inducibility of PA5471 expression. Introduction of the LP Q3Am mutation into the chromosome of Pseudomonas aeruginosa yielded stronger expression of PA5471 than did antibiotic (chloramphenicol) exposure of wild-type P. aeruginosa, in agreement with lacZ transcriptional fusion data. Still, the Q3Am mutation yielded modest expression of mexXY, less than that seen for antibiotic-treated wild-type P. aeruginosa. These data suggest that PA5471 is not sufficient for MexXY recruitment in response to antibiotic exposure and that additional antibiotic-dependent effects are needed.
Collapse
|
20
|
Bechhofer DH. Messenger RNA decay and maturation in Bacillus subtilis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:231-73. [PMID: 19215774 DOI: 10.1016/s0079-6603(08)00806-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Our understanding of the ribonucleases that act to process and turn over RNA in Bacillus subtilis, a model Gram-positive organism, has increased greatly in recent years. This chapter discusses characteristics of B. subtilis ribonucleases that have been shown to participate in messenger RNA maturation and decay. Distinct features of a recently discovered ribonuclease, RNase J1, are reviewed, and are put in the context of a mechanism for the mRNA decay process in B. subtilis that differs greatly from the classical model developed for E. coli. This chapter is divided according to three parts of an mRNA-5' end, body, and 3' end-that could theoretically serve as sites for initiation of decay. How 5'-proximal elements affect mRNA half-life, and especially how these elements interface with RNase J1, forms the basis for a set of "rules" that may be useful in predicting mRNA stability.
Collapse
Affiliation(s)
- David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| |
Collapse
|
21
|
Daou-Chabo R, Mathy N, Bénard L, Condon C. Ribosomes initiating translation of thehbsmRNA protect it from 5′-to-3′ exoribonucleolytic degradation by RNase J1. Mol Microbiol 2009; 71:1538-50. [DOI: 10.1111/j.1365-2958.2009.06620.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
23
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
24
|
Translational attenuation and mRNA stabilization as mechanisms of erm(B) induction by erythromycin. Antimicrob Agents Chemother 2008; 52:1782-9. [PMID: 18299414 DOI: 10.1128/aac.01376-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translational attenuation has been proposed to be the mechanism by which the erm(B) gene is induced. Here, we report genetic and biochemical evidence, obtained by using erythromycin as the inducing antibiotic, that supports this hypothesis. We also show that erythromycin increases the level of the erm(B) transcript by stalling the ribosome on the leader mRNA and thereby facilitating the stabilization and processing of the mRNA. Erythromycin-induced mRNA stabilization and processing were observed with an ochre stop at codons 11 to 13 of the leader but not with an ochre stop at codon 10. This suggests that erythromycin does not stall the ribosome before codon 11 of the leader reaches the aminoacyl site. Secondary structure analyses of the erm(B) transcripts by in vitro and in vivo chemical probing techniques identified conformational changes in the transcripts that result from induction by erythromycin. These findings demonstrate that stalling of erythromycin-bound ribosomes at leader codon 11 causes the refolding of mRNA into a conformation in which the translational initiation site for the structural gene is unmasked and renders erm(B) translationally active.
Collapse
|
25
|
Structural insights into the dual activity of RNase J. Nat Struct Mol Biol 2008; 15:206-12. [PMID: 18204464 DOI: 10.1038/nsmb.1376] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 12/18/2007] [Indexed: 11/08/2022]
Abstract
The maturation and stability of RNA transcripts is controlled by a combination of endo- and exoRNases. RNase J is unique, as it combines an RNase E-like endoribonucleolytic and a 5'-to-3' exoribonucleolytic activity in a single polypeptide. The structural basis for this dual activity is unknown. Here we report the crystal structures of Thermus thermophilus RNase J and its complex with uridine 5'-monophosphate. A binding pocket coordinating the phosphate and base moieties of the nucleotide in the vicinity of the catalytic center provide a rationale for the 5'-monophosphate-dependent 5'-to-3' exoribonucleolytic activity. We show that this dependence is strict; an initial 5'-PPP transcript cannot be degraded exonucleolytically from the 5'-end. Our results suggest that RNase J might switch promptly from endo- to exonucleolytic mode on the same RNA, a property that has important implications for RNA metabolism in numerous prokaryotic organisms and plant organelles containing RNase J orthologs.
Collapse
|
26
|
Celesnik H, Deana A, Belasco JG. Initiation of RNA decay in Escherichia coli by 5' pyrophosphate removal. Mol Cell 2007; 27:79-90. [PMID: 17612492 PMCID: PMC2196405 DOI: 10.1016/j.molcel.2007.05.038] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 03/29/2007] [Accepted: 05/25/2007] [Indexed: 01/21/2023]
Abstract
The common belief that endonucleolytic cleavage is the initial, rate-determining step of mRNA decay in Escherichia coli fails to explain the influence of 5' termini on the half-lives of primary transcripts. We have re-examined the initial events of RNA degradation in that organism by devising an assay to probe the 5' phosphorylation state of RNA and by employing a self-cleaving hammerhead ribozyme to investigate the degradative consequences of an unphosphorylated 5' end. These studies have identified a previously unrecognized prior step in decay that triggers subsequent internal cleavage by the endonuclease RNase E and thereby governs RNA longevity: the rate-determining conversion of a triphosphorylated to a monophosphorylated 5' terminus. Our findings redefine the role of RNase E in RNA degradation and explain how unpaired 5'-terminal nucleotides can facilitate access to internal cleavage sites within primary transcripts. Moreover, these results reveal a striking parallel between the mechanisms of mRNA decay in prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
| | | | - Joel G. Belasco
- * Corresponding author. Mailing address: Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016. Tel: (212) 263-5409; Fax: (212) 263-8951; E-mail:
| |
Collapse
|
27
|
Mathy N, Bénard L, Pellegrini O, Daou R, Wen T, Condon C. 5'-to-3' exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5' stability of mRNA. Cell 2007; 129:681-92. [PMID: 17512403 DOI: 10.1016/j.cell.2007.02.051] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/14/2006] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Although the primary mechanism of eukaryotic messenger RNA decay is exoribonucleolytic degradation in the 5'-to-3' orientation, it has been widely accepted that Bacteria can only degrade RNAs with the opposite polarity, i.e. 3' to 5'. Here we show that maturation of the 5' side of Bacillus subtilis 16S ribosomal RNA occurs via a 5'-to-3' exonucleolytic pathway, catalyzed by the widely distributed essential ribonuclease RNase J1. The presence of a 5'-to-3' exoribonuclease activity in B. subtilis suggested an explanation for the phenomenon whereby mRNAs in this organism are stabilized for great distances downstream of "roadblocks" such as stalled ribosomes or stable secondary structures, whereas upstream sequences are never detected. We show that a 30S ribosomal subunit bound to a Shine Dalgarno-like element (Stab-SD) in the cryIIIA mRNA blocks exonucleolytic progression of RNase J1, accounting for the stabilizing effect of this element in vivo.
Collapse
Affiliation(s)
- Nathalie Mathy
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris
| | | | | | | | | | | |
Collapse
|
28
|
Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 2007; 20:79-114. [PMID: 17223624 PMCID: PMC1797629 DOI: 10.1128/cmr.00015-06] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Since antibiotic resistance usually affords a gain of function, there is an associated biological cost resulting in a loss of fitness of the bacterial host. Considering that antibiotic resistance is most often only transiently advantageous to bacteria, an efficient and elegant way for them to escape the lethal action of drugs is the alteration of resistance gene expression. It appears that expression of bacterial resistance to antibiotics is frequently regulated, which indicates that modulation of gene expression probably reflects a good compromise between energy saving and adjustment to a rapidly evolving environment. Modulation of gene expression can occur at the transcriptional or translational level following mutations or the movement of mobile genetic elements and may involve induction by the antibiotic. In the latter case, the antibiotic can have a triple activity: as an antibacterial agent, as an inducer of resistance to itself, and as an inducer of the dissemination of resistance determinants. We will review certain mechanisms, all reversible, that bacteria have elaborated to achieve antibiotic resistance by the fine-tuning of the expression of genetic information.
Collapse
Affiliation(s)
- Florence Depardieu
- Unité des Agents Antibactériens, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
29
|
Schumann W. Production of Recombinant Proteins in Bacillus subtilis. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:137-89. [PMID: 17869605 DOI: 10.1016/s0065-2164(07)62006-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
30
|
Abstract
Studies in pro- and eukaryotes have revealed that translation can determine the stability of a given messenger RNA. In bacteria, intrinsic mRNA signals can confer efficient ribosome binding, whereas translational feedback inhibition or environmental cues can interfere with this process. Such regulatory mechanisms are often controlled by RNA-binding proteins, small noncoding RNAs and structural rearrangements within the 5' untranslated region. Here, we review molecular events occurring in the 5' untranslated region of primarily Escherichia coli mRNAs with regard to their effects on mRNA stability.
Collapse
Affiliation(s)
- Vladimir R Kaberdin
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at Vienna Biocenter, Vienna, Austria.
| | | |
Collapse
|
31
|
Lodato PB, Rogers EJ, Lovett PS. A variation of the translation attenuation model can explain the inducible regulation of the pBC16 tetracycline resistance gene in Bacillus subtilis. J Bacteriol 2006; 188:4749-58. [PMID: 16788184 PMCID: PMC1482984 DOI: 10.1128/jb.01937-05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the tet resistance gene from plasmid pBC16 is induced by the antibiotic tetracycline, and induction is independent of the native promoter for the gene. The nucleotide sequence at the 5' end of the tet mRNA (the leader region) is predicted to assume a complex secondary structure that sequesters the ribosome binding site for the tet gene. A spontaneous, constitutively expressed tet gene variant contains a mutation predicted to provide the tet gene with a nonsequestered ribosome binding site. Lastly, comparable levels of tet mRNA can be demonstrated in tetracycline-induced and uninduced cells. These results are consistent with the idea that the pBC16 tet gene is regulated by translation attenuation, a model originally proposed to explain the inducible regulation of the cat and erm genes in gram-positive bacteria. As with inducible cat and erm genes, the pBC16 tet gene is preceded by a translated leader open reading frame consisting of a consensus ribosome binding site and an ATG initiation codon, followed by 19 sense codons and a stop codon. Mutations that block translation of cat and erm leaders prevent gene expression. In contrast, we show that mutations that block translation of the tet leader result in constitutive expression. We provide evidence that translation of the tet leader peptide coding region blocks tet expression by preventing the formation of a secondary-structure complex that would, in the absence of leader translation, expose the tet ribosome binding site. Tetracycline is proposed to induce tet by blocking or slowing leader translation. The results indicate that tet regulation is a variation of the translation attenuation model.
Collapse
Affiliation(s)
- Patricia B Lodato
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
32
|
Roberts C, Anderson KL, Murphy E, Projan SJ, Mounts W, Hurlburt B, Smeltzer M, Overbeek R, Disz T, Dunman PM. Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. J Bacteriol 2006; 188:2593-603. [PMID: 16547047 PMCID: PMC1428411 DOI: 10.1128/jb.188.7.2593-2603.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens regulate virulence factor expression at both the level of transcription initiation and mRNA processing/turnover. Within Staphylococcus aureus, virulence factor transcript synthesis is regulated by a number of two-component regulatory systems, the DNA binding protein SarA, and the SarA family of homologues. However, little is known about the factors that modulate mRNA stability or influence transcript degradation within the organism. As our entree to characterizing these processes, S. aureus GeneChips were used to simultaneously determine the mRNA half-lives of all transcripts produced during log-phase growth. It was found that the majority of log-phase transcripts (90%) have a short half-life (<5 min), whereas others are more stable, suggesting that cis- and/or trans-acting factors influence S. aureus mRNA stability. In support of this, it was found that two virulence factor transcripts, cna and spa, were stabilized in a sarA-dependent manner. These results were validated by complementation and real-time PCR and suggest that SarA may regulate target gene expression in a previously unrecognized manner by posttranscriptionally modulating mRNA turnover. Additionally, it was found that S. aureus produces a set of stable RNA molecules with no predicted open reading frame. Based on the importance of the S. aureus agr RNA molecule, RNAIII, and small stable RNA molecules within other pathogens, it is possible that these RNA molecules influence biological processes within the organism.
Collapse
Affiliation(s)
- Corbette Roberts
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The lifetimes of bacterial mRNAs are strongly affected by their association with ribosomes. Events occurring at any stage during translation, including ribosome binding, polypeptide elongation, or translation termination, can influence the susceptibility of mRNA to ribonuclease attack. Ribosomes usually act as protective barriers that impede mRNA cleavage, but in some instances they can instead trigger the decay of the mRNA to which they are bound or send a signal that leads to widespread mRNA destabilization within a cell. The influence of translation on mRNA decay provides a quality-control mechanism for minimizing the use of poorly or improperly translated mRNAs as templates for the production of abnormal proteins that might be toxic to bacteria.
Collapse
Affiliation(s)
- Atilio Deana
- Skirball Institute of Biomolecular Medicine and Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
34
|
Abstract
Previous work showed that a 42-nucleotide sequence from an SP82 bacteriophage early RNA functions as a 5' mRNA stabilizer in Bacillus subtilis. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis of decay of a model mRNA with alterations at the 5'-end was used to elucidate the mechanism of SP82-mediated stability. A predicted 5'-terminal stem-loop structure was essential for stabilization. Increasing the strength of the 5'-terminal structure above a minimum level did not result in increased stability. A thorough analysis of the context in which the stabilizing structure occurred included the effects of distance from 5'-end, translation of downstream coding sequence, and distance between the secondary structure and the ribosome binding site. Our data are consistent with the dominant mRNA decay pathway in B. subtilis being 5'-end dependent.
Collapse
Affiliation(s)
- Josh S Sharp
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine of New York University, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029-6754, USA
| | | |
Collapse
|
35
|
Jäger S, Jäger A, Klug G. CIRCE is not involved in heat-dependent transcription of groESL but in stabilization of the mRNA 5'-end in Rhodobacter capsulatus. Nucleic Acids Res 2004; 32:386-96. [PMID: 14729923 PMCID: PMC373284 DOI: 10.1093/nar/gkh174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The CIRCE element, an inverted DNA repeat, is known to be involved in the temperature-dependent regulation of genes for heat shock proteins in a variety of organisms. The CIRCE element was identified as the target for the HrcA protein, which represses transcription of heat shock genes under normal growth temperature. Our data reveal that the CIRCE element is not involved in the temperature-dependent transcription of the groESL genes in Rhodobacter capsulatus. Apparently, R.capsulatus does not harbour an HrcA protein. The mechanisms of heat shock regulation of the groESL genes in R.capsulatus therefore diverge significantly from the regulatory pathway identified in other organisms. A structural analysis of the CIRCE RNA element revealed a stem of 11 nt pairs and a loop of only 5 nt. This folding differs from a structure with a 9 nt loop suggested previously on the basis of computer analysis. The RNA structure leads to a slight stabilization of the groESL mRNA that is more pronounced at normal growth temperature than under heat shock conditions.
Collapse
Affiliation(s)
- Stephanie Jäger
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | | | | |
Collapse
|
36
|
Abstract
A 254-nucleotide model mRNA, designated deltaermC mRNA, was used to study the effects of translational signals and ribosome transit on mRNA decay in Bacillus subtilis. DeltaermC mRNA features a strong ribosome-binding site (RBS) and a 62-amino-acid-encoding open reading frame, followed by a transcription terminator structure. Inactivation of the RBS or the start codon resulted in a fourfold decrease in the mRNA half-life, demonstrating the importance of ternary complex formation for mRNA stability. Data for the decay of deltaermC mRNAs with stop codons at positions increasingly proximal to the translational start site showed that actual translation--even the formation of the first peptide bond--was not important for stability. The half-life of an untranslated 3.2-kb deltaermC-lacZ fusion RNA was similar to that of a translated deltaermC-lacZ mRNA, indicating that the translation of even a longer RNA was not required for wild-type stability. The data are consistent with a model in which ribosome binding and the formation of the ternary complex interfere with a 5'-end-dependent activity, possibly a 5'-binding endonuclease, which is required for the initiation of mRNA decay. This model is supported by the finding that increasing the distance from the 5' end to the start codon resulted in a 2.5-fold decrease in the mRNA half-life. These results underscore the importance of the 5' end to mRNA stability in B. subtilis.
Collapse
Affiliation(s)
- Josh S Sharp
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York University, New York, New York 10029, USA
| | | |
Collapse
|
37
|
Abstract
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in E. coli and B. subtilis, only 6 are shared, 3 exoribonucleases and 3 endoribonucleases. Some enzymes essential for cell viability in E. coli, such as RNase E and oligoribonuclease, do not have homologs in B. subtilis, and of those enzymes in common, some combinations are essential in one organism but not in the other. The degradation pathways and transcript half-lives have been examined to various degrees for a dozen or so B. subtilis mRNAs. The determinants of mRNA stability have been characterized for a number of these and point to a fundamentally different process in the initiation of mRNA decay. While RNase E binds to the 5' end and catalyzes the rate-limiting cleavage of the majority of E. coli RNAs by looping to internal sites, the equivalent nuclease in B. subtilis, although not yet identified, is predicted to scan or track from the 5' end. RNase E can also access cleavage sites directly, albeit less efficiently, while the enzyme responsible for initiating the decay of B. subtilis mRNAs appears incapable of direct entry. Thus, unlike E. coli, RNAs possessing stable secondary structures or sites for protein or ribosome binding near the 5' end can have very long half-lives even if the RNA is not protected by translation.
Collapse
Affiliation(s)
- Ciarán Condon
- UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
38
|
Abstract
BACKGROUND Regulating mRNA stability is one of the essential mechanisms in gene expression. In order to identify genes from Escherichia coli whole genome whose expression is effectively modulated during the process of mRNA decay, we previously performed differential display-PCR as the first step. In the screening, it was suggested that two mRNAs from the histidine kinase genes, narX and yojN, in a two-component signal transduction system, were extremely unstable. In this study we analysed the stability of sensory kinase mRNAs, e.g. arcB, barA, rcsC, narQ, narX and evgS mRNA. RESULTS The cellular level of the histidine kinase mRNAs was very low and the mRNAs were rapidly degraded in wild-type cells cultured at 37 degrees C in LB medium. Additional experiments using RNase E deficient cells indicated that the mRNAs existed abundantly and expressed a prolonged half-life in the cells. Monocistronic transcripts of the cognate response regulator genes, arcA, rcsB, narP and narL have a half-life of 1.5-3.4 min. CONCLUSIONS mRNAs of the six histidine kinase genes in E. coli are synthesized efficiently, but rapidly degraded in wild-type cells.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachioji, Tokyo 192-8508, Japan
| | | |
Collapse
|
39
|
Drider D, DiChiara JM, Wei J, Sharp JS, Bechhofer DH. Endonuclease cleavage of messenger RNA in Bacillus subtilis. Mol Microbiol 2002; 43:1319-29. [PMID: 11918816 DOI: 10.1046/j.1365-2958.2002.02830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A deletion derivative of the ermC gene was constructed that expresses a 254-nucleotide mRNA. The small size of this mRNA facilitated the detection of processing products that did not differ greatly in size from the full-length transcript. In the presence of erythromycin, which induces ribosome stalling near the 5' end of ermC mRNA, the 254-nucleotide mRNA was cleaved endonucleolytically at the site of ribosome stalling. Only the downstream product of this cleavage was detectable; the upstream product was apparently too unstable to be detected. The downstream cleavage product accumulated at times after rifampicin addition, suggesting that the stalled ribosome at the 5' end conferred stability to this RNA fragment. Neither Bs-RNase III nor RNase M5, the two known narrow-specificity endoribonucleases of Bacillus subtilis, was responsible for this cleavage. These results indicate the presence in B. subtilis of another specific endoribonuclease, which may be ribosome associated.
Collapse
Affiliation(s)
- Djamel Drider
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, Box 1603, 1 Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
40
|
Gulati A, Mahadevan S. The Escherichia coli antiterminator protein BglG stabilizes the 5'region of the bgl mRNA. J Biosci 2001; 26:193-203. [PMID: 11426055 DOI: 10.1007/bf02703643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The beta-glucoside utilization (bgl) genes of Escherichia coli are positively regulated by the product of the bglG gene, which functions as an antiterminator by binding to specific sequences present within the bgl mRNA. BglG is inactivated by phosphorylation in the absence of beta-glucosides by BglF, the bgl-specific component of the phosphotransferase system (PTS). Here, we present evidence for an additional function for BglG, namely the stabilization of the 5' end of the bgl mRNA. Half-life measurements of the promoter-proximal region of the bgl mRNA indicate a five fold enhancement of stability in the presence of active (unphosphorylated) BglG. This enhancement is lost when the binding of BglG to mRNA is prevented by deletion of the binding site. Interestingly, stabilization by BglG does not extend to downstream sequences. The enhanced stability of the upstream sequences suggest that BglG remains bound to its target on the mRNA even after the downstream sequences have been degraded. Implications of these observations for the mechanism of positive regulation of the operon by BglG are discussed.
Collapse
Affiliation(s)
- A Gulati
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
41
|
Pereira Y, Chambert R, Leloup L, Daguer JP, Petit-Glatron MF. Transcripts of the genes sacB, amyE, sacC and csn expressed in Bacillus subtilis under the control of the 5' untranslated sacR region display different stabilities that can be modulated. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1331-1341. [PMID: 11320136 DOI: 10.1099/00221287-147-5-1331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When Bacillus subtilis levanase (SacC), alpha-amylase (AmyE) and chitosanase (Csn) structural genes were expressed under the regulated control of sacR, the inducible levansucrase (SacB) leader region in a degU32(Hy) mutant, it was observed that the production yields of the various extracellular proteins were quite different. This is mainly due to differences in the stabilities of their corresponding mRNAs which lead to discrepancies between the steady-state level of mRNA of sacB and csn on the one hand and amyE and sacC on the other. In contrast to levansucrase mRNA, the decay curves of alpha-amylase and levanase mRNAs obtained by Northern blotting analysis did not match the decay curves of their functional mRNA. This suggested that only a part of the population of the amyE and sacC transcripts was fully translated, while the others were possibly poorly bound to ribosomes and thus were only partially translated or not at all and consequently submitted to rapid endonuclease degradation. This hypothesis was substantiated by the finding that the introduction of a Shine-Dalgarno sequence upstream from the ribosome-binding site in the sacC transcript resulted in a fourfold increase in both the half-life of this transcript and the production of levanase. An additional cause of low-level levanase production is the premature release of mRNA by the polymerase. It was attempted to correlate this event with internal secondary structures of sacC mRNA.
Collapse
Affiliation(s)
- Yannick Pereira
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Régis Chambert
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Laurence Leloup
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Jean-Pierre Daguer
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| | - Marie-Françoise Petit-Glatron
- Institut Jacques Monod CNRS, Universités Paris 6-7, Laboratoire Génétique et Membranes, Tour 43, 2 place Jussieu 75251, Paris Cedex 05, France1
| |
Collapse
|
42
|
Takayama K, Kjelleberg S. The role of RNA stability during bacterial stress responses and starvation. Environ Microbiol 2000; 2:355-65. [PMID: 11234923 DOI: 10.1046/j.1462-2920.2000.00119.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- K Takayama
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia. k.takayama@unsw
| | | |
Collapse
|
43
|
Simon HM, Gosink MM, Roberts GP. Importance of cis determinants and nitrogenase activity in regulated stability of the Klebsiella pneumoniae nitrogenase structural gene mRNA. J Bacteriol 1999; 181:3751-60. [PMID: 10368150 PMCID: PMC93853 DOI: 10.1128/jb.181.12.3751-3760.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Klebsiella pneumoniae nitrogen fixation (nif) mRNAs are unusually stable, with half-lives of 20 to 30 min under conditions favorable to nitrogen fixation (limiting nitrogen, anaerobiosis, temperatures of 30 degrees C). Addition of O2 or fixed nitrogen or temperature increases to 37 degrees C or more result in the dramatic destabilization of the nif mRNAs, decreasing the half-lives by a factor of 3 to 5. A plasmid expression system, independent of nif transcriptional regulation, was used to define cis determinants required for the regulated stability of the 5.2-kb nifHDKTY mRNA and to test the model suggested by earlier work that NifA is required in trans to stabilize nif mRNA under nif-derepressing conditions. O2 regulation of nifHDKTY mRNA stability is impaired in a plasmid containing a deletion of a 499-bp region of nifH, indicating that a site(s) required for the O2-regulated stability of the mRNA is located within this region. The simple model suggested from earlier work that NifA is required for stabilizing nif mRNA under conditions favorable for nitrogen fixation was disproved, and in its place, a more complicated model involving the sensing of nitrogenase activity as a component of the system regulating mRNA stability is proposed. Analysis of nifY mutants and overexpression suggests a possible involvement of the protein in this sensing process.
Collapse
Affiliation(s)
- H M Simon
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
44
|
Bechhofer DH, Wang W. Decay of ermC mRNA in a polynucleotide phosphorylase mutant of Bacillus subtilis. J Bacteriol 1998; 180:5968-77. [PMID: 9811656 PMCID: PMC107672 DOI: 10.1128/jb.180.22.5968-5977.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ermC mRNA decay was examined in a mutant of Bacillus subtilis that has a deleted pnpA gene (coding for polynucleotide phosphorylase). 5'-proximal RNA fragments less than 400 nucleotides in length were abundant in the pnpA strain but barely detectable in the wild type. On the other hand, the patterns of 3'-proximal RNA fragments were similar in the wild-type and pnpA strains. Northern blot analysis with different probes showed that the 5' end of the decay intermediates was the native ermC 5' end. For one prominent ermC RNA fragment, in particular, it was shown that formation of its 3' end was directly related to the presence of a stalled ribosome. 5'-proximal decay intermediates were also detected for transcripts encoded by the yybF gene. These results suggest that PNPase activity, which may be less sensitive to structures or sequences that block exonucleolytic decay, is required for efficient decay of specific mRNA fragments. However, it was shown that even PNPase activity could be blocked in vivo at a particular RNA structure.
Collapse
Affiliation(s)
- D H Bechhofer
- Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, New York, New York 10029, USA.
| | | |
Collapse
|
45
|
Abstract
We undertook the study of the decay process of the cry1Aa mRNA of Bacillus thuringiensis expressed in B. subtilis. The cry1Aa transcript is a 3.7-kb mRNA expressed during sporulation whose transcriptional control has previously been studied in both B. subtilis and B. thuringiensis. We found that the cry1Aa mRNA has a half-life of around 9 min and that its decay occurs through endoribonucleolytic cleavages which result in three groups of high-molecular-weight mRNA intermediates ranging in size from 2.7 to 0.5 kb. A comparative study carried out with Escherichia coli showed a similar pattern of degradation intermediates. Primer extension analysis carried out on RNA from B. subtilis revealed that most cleavages occur within two regions located toward the 5' and 3' ends of the mRNA. The most prominent processing site observed for the cry1Aa mRNA isolated from B. subtilis is only two bases away from that occurring on RNA isolated from E. coli. Most cleavage sites occur at seemingly single-stranded RNA segments rich in A and U nucleotides, suggesting that a common and conserved mechanism may process the cry1Aa mRNA.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Bacillus thuringiensis/genetics
- Bacillus thuringiensis/metabolism
- Bacillus thuringiensis Toxins
- Bacterial Proteins/genetics
- Bacterial Toxins
- Base Composition
- Blotting, Northern
- Cloning, Molecular
- Endoribonucleases/metabolism
- Endotoxins/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Hemolysin Proteins
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spores, Bacterial
Collapse
Affiliation(s)
- C Vázquez-Cruz
- Departamento de Ingeniería Genética, CINVESTAV IPN, Unidad Irapuato, Guanajuato, México
| | | |
Collapse
|
46
|
Abstract
To study the role of mRNA termination in the regulation of ermK, we introduced mismatches into terminators by in vitro mutagenesis. In wild-type ermK, only truncated transcription products were detected in the absence of induction. In contrast, only the full-length transcript was synthesized in the terminator 1 and terminator 2 double mutants, even in the absence of erythromycin. These results indicate that the expression of ermK is primarily regulated by transcriptional attenuation rather than translational attenuation. We also tested the possible contribution of translational attenuation control to the regulation of ermK by constructing a triple mutant (terminator 1 plus terminator 2 plus the methylase Shine-Dalgarno region). A higher level of beta-galactosidase synthesis was seen in the triple mutant. Therefore, unlike with previously described attenuators, it can be concluded that both transcriptional and translational attenuation contribute to the regulation of ermK, although transcriptional attenuation plays a larger role.
Collapse
Affiliation(s)
- S S Choi
- College of Pharmacy, Seoul National University, Korea
| | | | | | | |
Collapse
|
47
|
Abstract
Progress in our understanding of several biological processes promises to broaden the usefulness of Escherichia coli as a tool for gene expression. There is an expanding choice of tightly regulated prokaryotic promoters suitable for achieving high-level gene expression. New host strains facilitate the formation of disulfide bonds in the reducing environment of the cytoplasm and offer higher protein yields by minimizing proteolytic degradation. Insights into the process of protein translocation across the bacterial membranes may eventually make it possible to achieve robust secretion of specific proteins into the culture medium. Studies involving molecular chaperones have shown that in specific cases, chaperones can be very effective for improved protein folding, solubility, and membrane transport. Negative results derived from such studies are also instructive in formulating different strategies. The remarkable increase in the availability of fusion partners offers a wide range of tools for improved protein folding, solubility, protection from proteases, yield, and secretion into the culture medium, as well as for detection and purification of recombinant proteins. Codon usage is known to present a potential impediment to high-level gene expression in E. coli. Although we still do not understand all the rules governing this phenomenon, it is apparent that "rare" codons, depending on their frequency and context, can have an adverse effect on protein levels. Usually, this problem can be alleviated by modification of the relevant codons or by coexpression of the cognate tRNA genes. Finally, the elucidation of specific determinants of protein degradation, a plethora of protease-deficient host strains, and methods to stabilize proteins afford new strategies to minimize proteolytic susceptibility of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- S C Makrides
- Department of Molecular Biology, T Cell Sciences, Inc., Needham, Massachusetts 02194, USA
| |
Collapse
|
48
|
Heck C, Rothfuchs R, Jäger A, Rauhut R, Klug G. Effect of the pufQ-pufB intercistronic region on puf mRNA stability in Rhodobacter capsulatus. Mol Microbiol 1996; 20:1165-78. [PMID: 8809769 DOI: 10.1111/j.1365-2958.1996.tb02637.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Differential expression of genes localized within the polycistronic puf operon of Rhodobacter capsulatus is partly due to altered stabilities of individual mRNA segments. We show that the 5' untranslated region (UTR) of pufB contributes to the unusual longevity of the 0.5 kb light-harvesting (LH) I specific pufBA mRNA and of the 2.7 kb pufBALMX mRNA. Three stem-loop structures have been identified within the pufQ-pufB intercistronic region by means of RNA secondary-structure analysis in vitro and in vivo. Deletion analysis of the pufB 5' UTR indicates that the complete set of secondary structures is required to maintain wild-type levels of pufBA mRNA stability. A phylogenetic comparison of pufB 5' UTRs of other photosynthetic bacteria reveals an evolutionary conservation of the base-pairing potential despite sequence divergence. Comparison of puf mRNA decay in Escherichia coli strains with or without endoribonuclease E (RNase E) activity suggests that the pufB 5' secondary structures protect the downstream mRNA segment against degradation by RNase E. Removal of the 117-nucleotide pufQ-pufB intercistronic region results in loss of stability for the pufBA and pufBALMX mRNAs with concomitant stabilization of the full-length puf primary transcript (QBALMX). We therefore conclude that the deleted sequence functions both as a stabilizing element for pufBALMX and pufBA segments and as a target site for initial rate-limiting decay of the unstable pufQBALMX mRNA.
Collapse
Affiliation(s)
- C Heck
- Institut für Mikrobiologie und Molekularbiologie, Justus Liebig Universität Giessen, Germany
| | | | | | | | | |
Collapse
|
49
|
Björnsson A, Isaksson LA. Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res 1996; 24:1753-7. [PMID: 8649996 PMCID: PMC145836 DOI: 10.1093/nar/24.9.1753] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A RNA fragment which is protected from degradation by ribosome pausing at a stop codon has been identified in growing Escherichia coli. The fragment is 261 nt long and corresponds to the 3'-end of the mRNA expressed from a semi-synthetic model gene. The 5'-end of the RNA fragment, denoted rpRNA (ribosomal pause RNA), is located 13 bases upstream of the stop codon. In vivo decay of the complete mRNA and accumulation of rpRNA are dependent on the nature of the stop codon and its codon context. The data indicate that the rpRNA fragment arises from interrupted decay of the S3A'mRNA in the 5'-->m3'direction, in connection with a ribosomal pause at the stop codon. RF-2 decoding of UGA is less efficient than RF-1 decoding of UAG in identical codon contexts, as judged from rpRNA steady-state levels. The half-life of UGA-containing rpRNAs is at least 5 min, indicating that ribosomal pausing can be a major factor in stabilising downstream regions of messenger RNAs.
Collapse
Affiliation(s)
- A Björnsson
- Department of Microbiology, Stockholm University, Sweden
| | | |
Collapse
|
50
|
Nierlich DP, Murakawa GJ. The decay of bacterial messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:153-216. [PMID: 8821261 DOI: 10.1016/s0079-6603(08)60967-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D P Nierlich
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024, USA
| | | |
Collapse
|