1
|
Marrin ME, Foster MR, Santana CM, Choi Y, Jassal AS, Rancic SJ, Greenwald CR, Drucker MN, Feldman DT, Thrall ES. The translesion polymerase Pol Y1 is a constitutive component of the B. subtilis replication machinery. Nucleic Acids Res 2024; 52:9613-9629. [PMID: 39051562 PMCID: PMC11381352 DOI: 10.1093/nar/gkae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Unrepaired DNA damage encountered by the cellular replication machinery can stall DNA replication, ultimately leading to cell death. In the DNA damage tolerance pathway translesion synthesis (TLS), replication stalling is alleviated by the recruitment of specialized polymerases to synthesize short stretches of DNA near a lesion. Although TLS promotes cell survival, most TLS polymerases are low-fidelity and must be tightly regulated to avoid harmful mutagenesis. The gram-negative bacterium Escherichia coli has served as the model organism for studies of the molecular mechanisms of bacterial TLS. However, it is poorly understood whether these same mechanisms apply to other bacteria. Here, we use in vivo single-molecule fluorescence microscopy to investigate the TLS polymerase Pol Y1 in the model gram-positive bacterium Bacillus subtilis. We find significant differences in the localization and dynamics of Pol Y1 in comparison to its E. coli homolog, Pol IV. Notably, Pol Y1 is constitutively enriched at or near sites of replication in the absence of DNA damage through interactions with the DnaN clamp; in contrast, Pol IV has been shown to be selectively enriched only upon replication stalling. These results suggest key differences in the roles and mechanisms of regulation of TLS polymerases across different bacterial species.
Collapse
Affiliation(s)
- McKayla E Marrin
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Michael R Foster
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Chloe M Santana
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Yoonhee Choi
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Avtar S Jassal
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Sarah J Rancic
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Carolyn R Greenwald
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Madeline N Drucker
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Denholm T Feldman
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| | - Elizabeth S Thrall
- Department of Chemistry and Biochemistry, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
2
|
Kasu IR, Reyes-Matte O, Bonive-Boscan A, Derman AI, Lopez-Garrido J. Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. mBio 2024; 15:e0056224. [PMID: 38564667 PMCID: PMC11077977 DOI: 10.1128/mbio.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.
Collapse
Affiliation(s)
- Iqra R. Kasu
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
3
|
Okouakoua FY, Kayath CA, Mokemiabeka SN, Moukala DCR, Kaya-Ongoto MD, Nguimbi E. Involvement of the Bacillus SecYEG Pathway in Biosurfactant Production and Biofilm Formation. Int J Microbiol 2024; 2024:6627190. [PMID: 38725978 PMCID: PMC11081756 DOI: 10.1155/2024/6627190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
With Bacillus species, about 30% of extracellular proteins are translocated through the cytoplasmic membrane, coordinated by the Sec translocase. This system mainly consists of the cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel. The purpose of this work was to investigate the effects of the SecYEG export system on the production of industrial biomolecules, such as biosurfactants, proteases, amylases, and cellulases. Fifty-two isolates of Bacillus species were obtained from traditional fermented foods and then characterized using molecular microbiology methods. The isolates secreted exoenzymes that included cellulases, amylases, and proteases. We present evidence that a biosurfactant-like molecule requires the SecA ATPase and the SecYEG membrane channel for its secretion. In addition, we showed that biomolecules involved in biofilm formation required the SecYEG pathway. This work presents a novel seven-target fragment multiplex PCR assay capable of identification at the species level of Bacillus through a unique SecDF chromosomal gene. The bacterial membrane protein SecDF allowed the discrimination of Bacillus subtilis, B. licheniformis, B. amyloliquefaciens, and B. sonorensis. SecA was able to interact with AprE, AmyE, and TasA. The Rose Bengal inhibitor of SecA crucially affected the interaction of AprE, AmyE, TapA, and TasA with recombinant Gst-SecA. The Rose Bengal prevented Bacillus species from secreting and producing proteases, cellulases, amylases, and biosurfactant-like molecules. It also inhibited the formation of biofilm cell communities. The data support, for the first time, that the SecYEG translocon mediates the secretion of a biosurfactant-like molecule.
Collapse
Affiliation(s)
- Frédéric Yannick Okouakoua
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Christian Aimé Kayath
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Saturnin Nicaise Mokemiabeka
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - David Charles Roland Moukala
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Moïse Doria Kaya-Ongoto
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| | - Etienne Nguimbi
- Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien N'GOUABI, BP. 69, Brazzaville, Congo
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l'Auberge Gascogne, B.P 2400, Brazzaville, Congo
| |
Collapse
|
4
|
Sabra DM, Krin A, Romeral AB, Frieß JL, Jeremias G. Anthrax revisited: how assessing the unpredictable can improve biosecurity. Front Bioeng Biotechnol 2023; 11:1215773. [PMID: 37795173 PMCID: PMC10546327 DOI: 10.3389/fbioe.2023.1215773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
B. anthracis is one of the most often weaponized pathogens. States had it in their bioweapons programs and criminals and terrorists have used or attempted to use it. This study is motivated by the narrative that emerging and developing technologies today contribute to the amplification of danger through greater easiness, accessibility and affordability of steps in the making of an anthrax weapon. As states would have way better preconditions if they would decide for an offensive bioweapons program, we focus on bioterrorism. This paper analyzes and assesses the possible bioterrorism threat arising from advances in synthetic biology, genome editing, information availability, and other emerging, and converging sciences and enabling technologies. Methodologically we apply foresight methods to encourage the analysis of contemporary technological advances. We have developed a conceptual six-step foresight science framework approach. It represents a synthesis of various foresight methodologies including literature review, elements of horizon scanning, trend impact analysis, red team exercise, and free flow open-ended discussions. Our results show a significant shift in the threat landscape. Increasing affordability, widespread distribution, efficiency, as well as ease of use of DNA synthesis, and rapid advances in genome-editing and synthetic genomic technologies lead to an ever-growing number and types of actors who could potentially weaponize B. anthracis. Understanding the current and future capabilities of these technologies and their potential for misuse critically shapes the current and future threat landscape and underlines the necessary adaptation of biosecurity measures in the spheres of multi-level political decision making and in the science community.
Collapse
Affiliation(s)
- Dunja Manal Sabra
- Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF), University of Hamburg, Bogenallee, Hamburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Marathe A, Zarazúa-Osorio B, Srivastava P, Fujita M. The master regulator for entry into sporulation in Bacillus subtilis becomes a mother cell-specific transcription factor for forespore engulfment. Mol Microbiol 2023; 120:439-461. [PMID: 37485800 DOI: 10.1111/mmi.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σE -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription of spoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription of spoIID. The mutated SpoIIID binding site located between the -35 and -10 promoter elements causes increased expression of spoIID and reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell-specific spoIID expression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE -RNAP, for proper sporulation. The conservation of this mechanism across spore-forming species was discussed.
Collapse
Affiliation(s)
- Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
McKeithen-Mead SA, Grossman AD. Timing of integration into the chromosome is critical for the fitness of an integrative and conjugative element and its bacterial host. PLoS Genet 2023; 19:e1010524. [PMID: 36780569 PMCID: PMC9956884 DOI: 10.1371/journal.pgen.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are major contributors to genome plasticity in bacteria. ICEs reside integrated in the chromosome of a host bacterium and are passively propagated during chromosome replication and cell division. When activated, ICEs excise from the chromosome and may be transferred through the ICE-encoded conjugation machinery into a recipient cell. Integration into the chromosome of the new host generates a stable transconjugant. Although integration into the chromosome of a new host is critical for the stable acquisition of ICEs, few studies have directly investigated the molecular events that occur in recipient cells during generation of a stable transconjugant. We found that integration of ICEBs1, an ICE of Bacillus subtilis, occurred several generations after initial transfer to a new host. Premature integration in new hosts led to cell death and hence decreased fitness of the ICE and transconjugants. Host lethality due to premature integration was caused by rolling circle replication that initiated in the integrated ICEBs1 and extended into the host chromosome, resulting in catastrophic genome instability. Our results demonstrate that the timing of integration of an ICE is linked to cessation of autonomous replication of the ICE, and that perturbing this linkage leads to a decrease in ICE and host fitness due to a loss of viability of transconjugants. Linking integration to cessation of autonomous replication appears to be a conserved regulatory scheme for mobile genetic elements that both replicate and integrate into the chromosome of their host.
Collapse
Affiliation(s)
- Saria A. McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Palmer JD, Foster KR. The evolution of spectrum in antibiotics and bacteriocins. Proc Natl Acad Sci U S A 2022; 119:e2205407119. [PMID: 36099299 PMCID: PMC9499554 DOI: 10.1073/pnas.2205407119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
A key property of many antibiotics is that they will kill or inhibit a diverse range of microbial species. This broad-spectrum of activity has its evolutionary roots in ecological competition, whereby bacteria and other microbes use antibiotics to suppress other strains and species. However, many bacteria also use narrow-spectrum toxins, such as bacteriocins, that principally target conspecifics. Why has such a diversity in spectrum evolved? Here, we develop an evolutionary model to understand antimicrobial spectrum. Our first model recapitulates the intuition that broad-spectrum is best, because it enables a microbe to kill a wider diversity of competitors. However, this model neglects an important property of antimicrobials: They are commonly bound, sequestered, or degraded by the cells they target. Incorporating this toxin loss reveals a major advantage to narrow-spectrum toxins: They target the strongest ecological competitor and avoid being used up on less important species. Why then would broad-spectrum toxins ever evolve? Our model predicts that broad-spectrum toxins will be favored by natural selection if a strain is highly abundant and can overpower both its key competitor and other species. We test this prediction by compiling and analyzing a database of the regulation and spectrum of toxins used in inter-bacterial competition. This analysis reveals a strong association between broad-spectrum toxins and density-dependent regulation, indicating that they are indeed used when strains are abundant. Our work provides a rationale for why bacteria commonly evolve narrow-spectrum toxins such as bacteriocins and suggests that the evolution of antibiotics proper is a signature of ecological dominance.
Collapse
Affiliation(s)
- Jacob D. Palmer
- Department of Biology, University of Oxford, Oxford, OX1 3RB, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Kevin R. Foster
- Department of Biology, University of Oxford, Oxford, OX1 3RB, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
8
|
Płachetka M, Krawiec M, Zakrzewska-Czerwińska J, Wolański M. AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae. Microbiol Spectr 2021; 9:e0198121. [PMID: 34878326 PMCID: PMC8653842 DOI: 10.1128/spectrum.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
In members of genus Streptomyces, AdpA is a master transcriptional regulator that controls the expression of hundreds of genes involved in morphological differentiation, secondary metabolite biosynthesis, chromosome replication, etc. However, the function of AdpASv, an AdpA ortholog of Streptomyces venezuelae, is unknown. This bacterial species is a natural producer of chloramphenicol and has recently become a model organism for studies on Streptomyces. Here, we demonstrate that AdpASv is essential for differentiation and antibiotic biosynthesis in S. venezuelae and provide evidence suggesting that AdpASv positively regulates its own gene expression. We speculate that the different modes of AdpA-dependent transcriptional autoregulation observed in S. venezuelae and other Streptomyces species reflect the arrangement of AdpA binding sites in relation to the transcription start site. Lastly, we present preliminary data suggesting that AdpA may undergo a proteolytic processing and we speculate that this may potentially constitute a novel regulatory mechanism controlling cellular abundance of AdpA in Streptomyces. IMPORTANCEStreptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites. Despite extensive studies, the function of AdpA in these processes remains elusive. This work provides insights into the role of a yet unstudied AdpA ortholog of Streptomyces venezuelae, now considered a novel model organism. We found that AdpA plays essential role in morphological differentiation and biosynthesis of chloramphenicol, a broad-spectrum antibiotic. We also propose that AdpA may undergo a proteolytic processing that presumably constitutes a novel mechanism regulating cellular abundance of this master regulator.
Collapse
Affiliation(s)
| | - Michał Krawiec
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
9
|
Klausmann P, Hennemann K, Hoffmann M, Treinen C, Aschern M, Lilge L, Morabbi Heravi K, Henkel M, Hausmann R. Bacillus subtilis High Cell Density Fermentation Using a Sporulation-Deficient Strain for the Production of Surfactin. Appl Microbiol Biotechnol 2021; 105:4141-4151. [PMID: 33991199 PMCID: PMC8140969 DOI: 10.1007/s00253-021-11330-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 01/13/2023]
Abstract
Abstract Bacillus subtilis 3NA is a strain capable of reaching high cell densities. A surfactin producing sfp+ variant of this strain, named JABs32, was utilized in fed-batch cultivation processes. Both a glucose and an ammonia solution were fed to set a steady growth rate μ of 0.1 h-1. In this process, a cell dry weight of up to 88 g L-1 was reached after 38 h of cultivation, and surfactin titers of up to 26.5 g L-1 were detected in this high cell density fermentation process, achieving a YP/X value of 0.23 g g-1 as well as a qP/X of 0.007 g g-1 h-1. In sum, a 21-fold increase in surfactin titer was obtained compared with cultivations in shake flasks. In contrast to fed-batch operations using Bacillus subtilis JABs24, an sfp+ variant derived from B. subtilis 168, JABs32, reached an up to fourfold increase in surfactin titers using the same fed-batch protocol. Additionally, a two-stage feed process was established utilizing strain JABs32. Using an optimized mineral salt medium in this high cell density fermentation approach, after 31 h of cultivation, surfactin titers of 23.7 g L-1 were reached with a biomass concentration of 41.3 g L-1, thus achieving an enhanced YP/X value of 0.57 g g-1 as well as a qP/X of 0.018 g g-1 h-1. The mutation of spo0A locus and an elongation of AbrB in the strain utilized in combination with a high cell density fed-batch process represents a promising new route for future enhancements on surfactin production. Key points • Utilization of a sporulation deficient strain for fed-batch operations • High cell density process with Bacillus subtilis for lipopeptide production was established • High titer surfactin production capabilities confirm highly promising future platform strain
Collapse
Affiliation(s)
- Peter Klausmann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Katja Hennemann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Mareen Hoffmann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Chantal Treinen
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Moritz Aschern
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany.
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology (150), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| |
Collapse
|
10
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
11
|
Jones JM, Grinberg I, Eldar A, Grossman AD. A mobile genetic element increases bacterial host fitness by manipulating development. eLife 2021; 10:65924. [PMID: 33655883 PMCID: PMC8032392 DOI: 10.7554/elife.65924] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Horizontal gene transfer is a major force in bacterial evolution. Mobile genetic elements are responsible for much of horizontal gene transfer and also carry beneficial cargo genes. Uncovering strategies used by mobile genetic elements to benefit host cells is crucial for understanding their stability and spread in populations. We describe a benefit that ICEBs1, an integrative and conjugative element of Bacillus subtilis, provides to its host cells. Activation of ICEBs1 conferred a frequency-dependent selective advantage to host cells during two different developmental processes: biofilm formation and sporulation. These benefits were due to inhibition of biofilm-associated gene expression and delayed sporulation by ICEBs1-containing cells, enabling them to exploit their neighbors and grow more prior to development. A single ICEBs1 gene, devI (formerly ydcO), was both necessary and sufficient for inhibition of development. Manipulation of host developmental programs allows ICEBs1 to increase host fitness, thereby increasing propagation of the element. Many bacteria can ‘have sex’ – that is, they can share their genetic information and trade off segments of DNA. While these mobile genetic elements can be parasites that use the resources of their host to make more of themselves, some carry useful genes which, for example, help bacteria to fight off antibiotics. Integrative and conjugative elements (or ICEs) are a type of mobile segments that normally stay inside the genetic information of their bacterial host but can sometimes replicate and be pumped out to another cell. ICEBs1 for instance, is an element found in the common soil bacterium Bacillus subtilis. Scientists know that ICEBs1 can rapidly spread in biofilms – the slimly, crowded communities where bacteria live tightly connected – but it is still unclear whether it helps or hinders its hosts. Using genetic manipulations and tracking the survival of different groups of cells, Jones et al. show that carrying ICEBs1 confers an advantage under many conditions. When B. subtilis forms biofilms, the presence of the devI gene in ICEBs1 helps the cells to delay the production of the costly mucus that keeps bacteria together, allowing the organisms to ‘cheat’ for a little while and benefit from the tight-knit community without contributing to it. As nutrients become scarce in biofilms, the gene also allows the bacteria to grow for longer before they start to form spores – the dormant bacterial form that can weather difficult conditions. Mobile elements can carry genes that make bacteria resistant to antibiotics, harmful to humans, or able to use new food sources; they could even be used to artificially introduce genes of interest in these cells. The work by Jones et al. helps to understand the way these elements influence the fate of their host, providing insight into how they could be harnessed for the benefit of human health.
Collapse
Affiliation(s)
- Joshua M Jones
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Ilana Grinberg
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avigdor Eldar
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
12
|
Mertaoja A, Nowakowska MB, Mascher G, Heljanko V, Groothuis D, Minton NP, Lindström M. CRISPR-Cas9-Based Toolkit for Clostridium botulinum Group II Spore and Sporulation Research. Front Microbiol 2021; 12:617269. [PMID: 33584620 PMCID: PMC7873358 DOI: 10.3389/fmicb.2021.617269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
The spores of Clostridium botulinum Group II strains pose a significant threat to the safety of modern packaged foods due to the risk of their survival in pasteurization and their ability to germinate into neurotoxigenic cultures at refrigeration temperatures. Moreover, spores are the infectious agents in wound botulism, infant botulism, and intestinal toxemia in adults. The identification of factors that contribute to spore formation is, therefore, essential to the development of strategies to control related health risks. Accordingly, development of a straightforward and versatile gene manipulation tool and an efficient sporulation-promoting medium is pivotal. Our strategy was to employ CRISPR-Cas9 and homology-directed repair (HDR) to replace targeted genes with mutant alleles incorporating a unique 24-nt "bookmark" sequence that could act as a single guide RNA (sgRNA) target for Cas9. Following the generation of the sporulation mutant, the presence of the bookmark allowed rapid generation of a complemented strain, in which the mutant allele was replaced with a functional copy of the deleted gene using CRISPR-Cas9 and the requisite sgRNA. Then, we selected the most appropriate medium for sporulation studies in C. botulinum Group II strains by measuring the efficiency of spore formation in seven different media. The most effective medium was exploited to confirm the involvement of a candidate gene in the sporulation process. Using the devised sporulation medium, subsequent comparisons of the sporulation efficiency of the wild type (WT), mutant and "bookmark"-complemented strain allowed the assignment of any defective sporulation phenotype to the mutation made. As a strain generated by complementation with the WT gene in the original locus would be indistinguishable from the parental strain, the gene utilized in complementation studies was altered to contain a unique "watermark" through the introduction of silent nucleotide changes. The mutagenesis system and the devised sporulation medium provide a solid basis for gaining a deeper understanding of spore formation in C. botulinum, a prerequisite for the development of novel strategies for spore control and related food safety and public health risk management.
Collapse
Affiliation(s)
- Anna Mertaoja
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria B. Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gerald Mascher
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Daphne Groothuis
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Gauvry E, Mathot AG, Couvert O, Leguérinel I, Coroller L. Effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1. Int J Food Microbiol 2020; 337:108915. [PMID: 33152569 DOI: 10.1016/j.ijfoodmicro.2020.108915] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 07/15/2020] [Accepted: 10/04/2020] [Indexed: 11/27/2022]
Abstract
Spore-forming bacteria are implicated in cases of food spoilage or food poisoning. In their sporulated form, they are resistant to physical and chemical treatments applied in the food industry and can persist throughout the food chain. The sporulation leads to an increase in the concentration of resistant forms in final products or food processing equipment. In order to identify sporulation environments in the food industry, it is necessary to be able to predict bacterial sporulation according to environmental factors. As sporulation occurs after bacterial growth, a kinetic model of growth-sporulation was used to describe the evolution of vegetative cells and spores through time. The effects of temperature, pH and water activity on the growth and the sporulation abilities of Bacillus subtilis BSB1 were modelled. The values of the growth boundaries were used as inputs to predict these effects. The good description of the sporulation kinetics by growth parameters suggests that the impact of the studied environmental factors is the same on both physiological process. Suboptimal conditions for growth delay the appearance of the first spores, and spores appear more synchronously in suboptimal conditions for growth. The developed model was also applicable to describe the growth and sporulation curves in changing temperature and pH conditions over time.
Collapse
Affiliation(s)
- Emilie Gauvry
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ALTER'IX, F-29000 Quimper, France
| | - Anne-Gabrielle Mathot
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ALTER'IX, F-29000 Quimper, France
| | - Olivier Couvert
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ALTER'IX, F-29000 Quimper, France
| | - Ivan Leguérinel
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ALTER'IX, F-29000 Quimper, France
| | - Louis Coroller
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, UMT ALTER'IX, F-29000 Quimper, France.
| |
Collapse
|
14
|
Summers DK, Perry DS, Rao B, Madhani HD. Coordinate genomic association of transcription factors controlled by an imported quorum sensing peptide in Cryptococcus neoformans. PLoS Genet 2020; 16:e1008744. [PMID: 32956370 PMCID: PMC7537855 DOI: 10.1371/journal.pgen.1008744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/06/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Qsp1 is a secreted quorum sensing peptide required for virulence of the fungal meningitis pathogen Cryptococcus neoformans. Qsp1 functions to control cell wall integrity in vegetatively growing cells and also functions in mating. Rather than acting on a cell surface receptor, Qsp1 is imported to act intracellularly via the predicted oligopeptide transporter Opt1. Here, we identify a transcription factor network as a target of Qsp1. Using whole-genome chromatin immunoprecipitation, we find Qsp1 controls the genomic associations of three transcription factors to genes whose outputs are regulated by Qsp1. One of these transcription factors, Cqs2, is also required for the action of Qsp1 during mating, indicating that it might be a shared proximal target of Qsp1. Consistent with this hypothesis, deletion of CQS2 impacts the binding of other network transcription factors specifically to Qsp1-regulated genes. These genetic and genomic studies illuminate mechanisms by which an imported peptide acts to modulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Diana K. Summers
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Daniela S. Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States of America
- Chan-Zuckerberg Biohub, San Francisco, CA, United States of America
| |
Collapse
|
15
|
SpoVG is Necessary for Sporulation in Bacillus anthracis. Microorganisms 2020; 8:microorganisms8040548. [PMID: 32290166 PMCID: PMC7232415 DOI: 10.3390/microorganisms8040548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/24/2023] Open
Abstract
The Bacillus anthracis spore constitutes the infectious form of the bacterium, and sporulation is an important process in the organism’s life cycle. Herein, we show that disruption of SpoVG resulted in defective B. anthracis sporulation. Confocal microscopy demonstrated that a ΔspoVG mutant could not form an asymmetric septum, the first morphological change observed during sporulation. Moreover, levels of spoIIE mRNA were reduced in the spoVG mutant, as demonstrated using β-galactosidase activity assays. The effects on sporulation of the ΔspoVG mutation differed in B. anthracis from those in B. subtilis because of the redundant functions of SpoVG and SpoIIB in B. subtilis. SpoVG is highly conserved between B. anthracis and B. subtilis. Conversely, BA4688 (the protein tentatively assigned as SpoIIB in B. anthracis) and B. subtilis SpoIIB (SpoIIBBs) share only 27.9% sequence identity. On complementation of the B. anthracis ΔspoVG strain with spoIIBBs, the resulting strain pBspoIIBBs/ΔspoVG could not form resistant spores, but partially completed the prespore engulfment stage. In agreement with this finding, mRNA levels of the prespore engulfment gene spoIIM were significantly increased in strain pBspoIIBBs/ΔspoVG compared with the ΔspoVG strain. Transcription of the coat development gene cotE was similar in the pBspoIIBBs/ΔspoVG and ΔspoVG strains. Thus, unlike in B. subtilis, SpoVG appears to be required for sporulation in B. anthracis, which provides further insight into the sporulation mechanisms of this pathogen.
Collapse
|
16
|
The oligopeptide ABC-importers are essential communication channels in Gram-positive bacteria. Res Microbiol 2019; 170:338-344. [PMID: 31376485 DOI: 10.1016/j.resmic.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Abstract
The transport of peptides in microorganisms plays an important role in their physiology and behavior, both as a nutrient source and as a proxy to sense their environment. This latter function is evidenced in Gram-positive bacteria where cell-cell communication is mediated by small peptides. Here, we highlight the importance of the oligopeptide permease (Opp) systems in the various major processes controlled by signaling peptides, such as sporulation, virulence and conjugation. We underline that the functioning of these communication systems is tightly linked to the developmental status of the bacteria via the regulation of opp gene expression by transition phase regulators.
Collapse
|
17
|
Cristiano-Fajardo SA, Flores C, Flores N, Tinoco-Valencia R, Serrano-Carreón L, Galindo E. Glucose limitation and glucose uptake rate determines metabolite production and sporulation in high cell density continuous cultures of Bacillus amyloliquefaciens 83. J Biotechnol 2019; 299:57-65. [DOI: 10.1016/j.jbiotec.2019.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
18
|
Modi S, Singh A. Controlling organism size by regulating constituent cell numbers. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2019; 2018:2685-2690. [PMID: 30886453 DOI: 10.1109/cdc.2018.8619546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
How living cells employ counting mechanisms to regulate their numbers or density is a long-standing problem in developmental biology that ties directly with organism or tissue size. Diverse cells types have been shown to regulate their numbers via secretion of factors in the extracellular space. These factors act as a proxy for the number of cells and function to reduce cellular proliferation rates creating a negative feedback. It is desirable that the production rate of such factors be kept as low as possible to minimize energy costs and detection by predators. Here we formulate a stochastic model of cell proliferation with feedback control via a secreted extracellular factor. Our results show that while low levels of feedback minimizes random fluctuations in cell numbers around a given set point, high levels of feedback amplify Poisson fluctuations in secreted-factor copy numbers. This trade-off results in an optimal feedback strength, and sets a fundamental limit to noise suppression in cell numbers with short-lived factors providing more efficient noise buffering. We further expand the model to consider external disturbances in key physiological parameters, such as, proliferation and factor synthesis rates. Intriguingly, while negative feedback effectively mitigates disturbances in the proliferation rate, it amplifies disturbances in the synthesis rate. In summary, these results provide unique insights into the functioning of feedback-based counting mechanisms, and apply to organisms ranging from unicellular prokaryotes and eukaryotes to human cells.
Collapse
Affiliation(s)
- Saurabh Modi
- Department of Biomedical Engineering, University of Delaware, Newark, DE USA 19716.
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE USA 19716.
| |
Collapse
|
19
|
Zhu Z, Wang Z, Li S, Yuan X. Antimicrobial strategies for urinary catheters. J Biomed Mater Res A 2018; 107:445-467. [PMID: 30468560 DOI: 10.1002/jbm.a.36561] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
Over 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 16% of hospitalized patients. Taking the United States as an example, the costs of catheter-associated urinary tract infections (CAUTI) are in excess of $451 million dollars/year. The biofilm formation by pathogenic microbes that protects pathogens from host immune defense and antimicrobial agents is the leading cause for CAUTI. Thus, tremendous efforts have been devoted to antimicrobial coating for urinary catheters in the past few decades, and it has been demonstrated to be one of the most direct and efficient strategies to reduce infections. In this article, we briefly summarize the current methods for preparation of antimicrobial coatings based on different stages in the biofilm formation, highlight recent progress in the urinary catheter coating material design and selection, discuss approaches to improving their long-term antimicrobial efficacy, biocompatibility, multidrug resistance and recurrent infections, and finally outline future requirements and prospects in antimicrobial coating material design. The scope of the works surveyed is confined to antimicrobial urinary catheters. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 445-467, 2019.
Collapse
Affiliation(s)
- Zhiling Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
20
|
Assembly Order of Flagellar Rod Subunits in Bacillus subtilis. J Bacteriol 2018; 200:JB.00425-18. [PMID: 30201778 DOI: 10.1128/jb.00425-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/05/2018] [Indexed: 11/20/2022] Open
Abstract
Bacterial flagella contain an axle-like rod that transits the cell envelope and connects the transmembrane basal body to the extracellular hook and filament. Although the rod is a crucial component of the flagellum, its structure and assembly are poorly understood. Previous reports defining the order of rod assembly in Gram-negative bacteria suggest that the rod requires five proteins to successfully assemble, but assembly intermediates have not been well characterized due to metastability and periplasmic proteolysis. Bacillus subtilis is a Gram-positive, genetically tractable model bacterium that synthesizes flagella and lacks a true periplasm. Here, we genetically, biochemically, and cytologically determine the assembly order of the flagellar rod proteins from cell proximal to distal as FliE, FlgB, FlgC, FlhO, and FlhP. We further show that, under conditions in which rod structure cannot be completed, assembly intermediates are both metastable and subject to proteolysis. Finally, we support previous results that FliE serves as both a structural assembly platform for the rod and as an enhancer of flagellar type III secretion.IMPORTANCE Bacteria rotate propeller-like flagella to find and colonize environmental niches. The flagellum is a complex machine, and the understanding of its structure is still incomplete. Here, we characterize and biochemically define the assembly order of the subunits that make up the axle-like rod. The rod is a critical structure for the assembly of subsequent components and is central to our understanding of how the flagellum is anchored but still free spinning within the context of the cell envelope.
Collapse
|
21
|
Anti-σ factor YlaD regulates transcriptional activity of σ factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis. Biochem J 2018; 475:2127-2151. [PMID: 29760236 DOI: 10.1042/bcj20170911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023]
Abstract
YlaD, a membrane-anchored anti-sigma (σ) factor of Bacillus subtilis, contains a HX3CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc (Zn)-co-ordinated anti-σ factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained Zn and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX3CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese (Mn). The ylaC gene expression using βGlu activity from P yla :gusA was observed at the late-exponential and early-stationary phase, and the ylaC-overexpressing mutant constitutively expressed gene transcripts of clpP and sigH, an important alternative σ factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in Mn ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and Mn-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function σ factors during sporulation via a Mn-dependent redox-sensing molecular switch.
Collapse
|
22
|
Electrochemically Obtained TiO2/CuxOy Nanotube Arrays Presenting a Photocatalytic Response in Processes of Pollutants Degradation and Bacteria Inactivation in Aqueous Phase. Catalysts 2018. [DOI: 10.3390/catal8060237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TiO2/CuxOy nanotube (NT) arrays were synthesized using the anodization method in the presence of ethylene glycol and different parameters applied. The presence, morphology, and chemical character of the obtained structures was characterized using a variety of methods—SEM (scanning electron microscopy), XPS (X-ray photoelectron spectroscopy), XRD (X-ray crystallography), PL (photoluminescence), and EDX (energy-dispersive X-ray spectroscopy). A p-n mixed oxide heterojunction of Ti-Cu was created with a proved response to the visible light range and the stable form that were in contact with Ti. TiO2/CuxOy NTs presented the appearance of both Cu2O (mainly) and CuO components influencing the dimensions of the NTs (1.1–1.3 µm). Additionally, changes in voltage have been proven to affect the NTs’ length, which reached a value of 3.5 µm for Ti90Cu10_50V. Degradation of phenol in the aqueous phase was observed in 16% of Ti85Cu15_30V after 1 h of visible light irradiation (λ > 420 nm). Scavenger tests for phenol degradation process in presence of NT samples exposed the responsibility of superoxide radicals for degradation of organic compounds in Vis light region. Inactivation of bacteria strains Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), and Clostridium sp. in presence of obtained TiO2/CuxOy NT photocatalysts, and Vis light has been studied showing a great improvement in inactivation efficiency with a response rate of 97% inactivation for E. coli and 98% for Clostridium sp. in 60 min. Evidently, TEM (transmission electron microscopy) images confirmed the bacteria cells’ damage.
Collapse
|
23
|
Bernardeau M, Lehtinen MJ, Forssten SD, Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:2570-2584. [PMID: 28740315 PMCID: PMC5502041 DOI: 10.1007/s13197-017-2688-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/18/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
Bacillus spp. are widely used in animal production for their probiotic properties. In many animal species, feed supplementation with specific Bacillus strains can provide numerous benefits including improvement in digestibility, the gut microbiota and immune modulation, and growth performance. Bacilli are fed to animals as spores that can sustain the harsh feed processing and long storage. However, the spores are metabolically quiescent and it is widely accepted that probiotics should be in a metabolically active state to perform certain probiotic functions like secretion of antimicrobial compounds and enzymes, synthesis of short chain fatty acids, and competition for essential nutrients. These functions should become active in the host gastrointestinal tract (GIT) soon after digestion of spores in order to contribute to microbiota and host metabolism. Considering that bacterial spores are metabolically dormant and many health benefits are provided by vegetative cells, it is of particular interest to discuss the life cycle of Bacillus in animal GIT. This review aims to capture the main characteristics of spores and vegetative cells and to discuss the latest knowledge in the life cycle of beneficial Bacillus in various intestinal environments. Furthermore, we review how the life cycle may influence probiotic functions of Bacillus and their benefits for human and animal health.
Collapse
Affiliation(s)
- M. Bernardeau
- DuPont-Danisco, Industrial Biosciences, Animal Nutrition, Marlborough, UK
- Normandy University, ABTE, 14032 Caen, France
| | | | | | - P. Nurminen
- DuPont Nutrition and Health, Kantvik, Finland
| |
Collapse
|
24
|
Gauvry E, Mathot AG, Leguérinel I, Couvert O, Postollec F, Broussolle V, Coroller L. Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. Res Microbiol 2017; 168:369-378. [DOI: 10.1016/j.resmic.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/22/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
25
|
Defeu Soufo HJ. A Novel Cell Type Enables B. subtilis to Escape from Unsuccessful Sporulation in Minimal Medium. Front Microbiol 2016; 7:1810. [PMID: 27891124 PMCID: PMC5104909 DOI: 10.3389/fmicb.2016.01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 11/28/2022] Open
Abstract
Sporulation is the most enduring survival strategy developed by several bacterial species. However, spore development of the model organism Bacillus subtilis has mainly been studied by means of media or conditions optimized for the induction of sporogenesis. Here, I show that during prolonged growth during stationary phase in minimal medium, B. subtilis undergoes an asymmetric cell division that produces small and round-shaped, DNA containing cells. In contrast to wild-type cells, mutants harboring spo0A or spoIIIE/sftA double mutations neither sporulate nor produce this special cell type, providing evidence that the small round cells emerge from the abortion of endospore formation. In most cases observed, the small round cells arise in the presence of sigma H but absence of sigma F activity, different from cases of abortive sporulation described for rich media. These data suggest that in minimal media, many cells are able to initiate but fail to complete spore development, and therefore return to normal growth as rods. This work reveals that the continuation of asymmetric cell division, which results in the formation of the small round cells, is a way for cells to delay or escape from—unsuccessful—sporulation. Based on these findings, I suggest to name the here described cell type as “dwarf cells” to distinguish them from the well-known minicells observed in mutants defective in septum placement or proper chromosome partitioning.
Collapse
|
26
|
van Gestel J, Weissing FJ. Regulatory mechanisms link phenotypic plasticity to evolvability. Sci Rep 2016; 6:24524. [PMID: 27087393 PMCID: PMC4834480 DOI: 10.1038/srep24524] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/30/2016] [Indexed: 12/26/2022] Open
Abstract
Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations.
Collapse
Affiliation(s)
- Jordi van Gestel
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| | - Franz J. Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, Groningen 9700 CC, The Netherlands
| |
Collapse
|
27
|
Wang X, Montero Llopis P. Visualizing Bacillus subtilis During Vegetative Growth and Spore Formation. Methods Mol Biol 2016; 1431:275-87. [PMID: 27283315 DOI: 10.1007/978-1-4939-3631-1_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacillus subtilis is the most commonly used Gram-positive bacterium to study cellular processes because of its genetic tractability. In addition, during nutrient limitation, B. subtilis undergoes the development process of spore formation, which is among the simplest examples of cellular differentiation. Many aspects of these processes have benefited from fluorescence microscopy. Here, we describe basic wide-field fluorescence microscopy techniques to visualize B. subtilis during vegetative growth, and the developmental process of sporulation.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology & Immunobiology, Harvard Medical School, HIM Building 1018, 77 Ave Louis Pasteur, Boston, MA, 02115, USA.
| | - Paula Montero Llopis
- Department of Microbiology & Immunobiology, Harvard Medical School, HIM Building 1018, 77 Ave Louis Pasteur, Boston, MA, 02115, USA
| |
Collapse
|
28
|
A Secreted Factor Coordinates Environmental Quality with Bacillus Development. PLoS One 2015; 10:e0144168. [PMID: 26657919 PMCID: PMC4689505 DOI: 10.1371/journal.pone.0144168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
Entry into sporulation is governed by the master regulator Spo0A. Spo0A accumulates in its active form, Spo0A-P, as cells enter stationary phase. Prior reports have shown that the acute induction of constitutively active Spo0A during exponential growth does not result in sporulation. However, a subsequent study also found that a gradual increase in Spo0A-P, mediated through artificial expression of the kinase, KinA, during exponential growth, is sufficient to trigger sporulation. We report here that sporulation via KinA induction depends on the presence of an extracellular factor or factors (FacX) that only accumulates to active levels during post-exponential growth. FacX is retained by dialysis with a cutoff smaller than 500 Dalton, can be concentrated, and is susceptible to proteinase K digestion, similar to described quorum-sensing peptides shown to be involved in promoting sporulation. However, unlike previously characterized peptides, FacX activity does not require the Opp or App oligopeptide transporter systems. In addition, FacX activity does not depend on SigH, Spo0A, or ComX. Importantly, we find that in the presence of FacX, B. subtilis can be induced to sporulate following the artificial induction of constitutively active Spo0A. These results indicate that there is no formal requirement for gradual Spo0A-P accumulation and instead support the idea that sporulation requires both sufficient levels of active Spo0A and at least one other signal or condition.
Collapse
|
29
|
Wang X, Le TBK, Lajoie BR, Dekker J, Laub MT, Rudner DZ. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 2015; 29:1661-75. [PMID: 26253537 PMCID: PMC4536313 DOI: 10.1101/gad.265876.115] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SMC condensin complexes play a central role in compacting and resolving replicated chromosomes in virtually all organisms, yet how they accomplish this remains elusive. In Bacillus subtilis, condensin is loaded at centromeric parS sites, where it encircles DNA and individualizes newly replicated origins. Using chromosome conformation capture and cytological assays, we show that condensin recruitment to origin-proximal parS sites is required for the juxtaposition of the two chromosome arms. Recruitment to ectopic parS sites promotes alignment of large tracks of DNA flanking these sites. Importantly, insertion of parS sites on opposing arms indicates that these "zip-up" interactions only occur between adjacent DNA segments. Collectively, our data suggest that condensin resolves replicated origins by promoting the juxtaposition of DNA flanking parS sites, drawing sister origins in on themselves and away from each other. These results are consistent with a model in which condensin encircles the DNA flanking its loading site and then slides down, tethering the two arms together. Lengthwise condensation via loop extrusion could provide a generalizable mechanism by which condensin complexes act dynamically to individualize origins in B. subtilis and, when loaded along eukaryotic chromosomes, resolve them during mitosis.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tung B K Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bryan R Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Savagea faecisuis gen. nov., sp. nov., a tylosin- and tetracycline-resistant bacterium isolated from a swine-manure storage pit. Antonie van Leeuwenhoek 2015; 108:151-61. [DOI: 10.1007/s10482-015-0473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
31
|
Abstract
My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery.
Collapse
Affiliation(s)
- Richard Losick
- From the Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 01238
| |
Collapse
|
32
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. J Bacteriol 2014; 196:2901-11. [PMID: 24914187 PMCID: PMC4135643 DOI: 10.1128/jb.01706-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous free-living bacteria undergo complex differentiation in response to unfavorable environmental conditions or as part of their natural cell cycle. Developmental programs require the de novo expression of several sets of genes responsible for morphological, physiological, and metabolic changes, such as spore/endospore formation, the generation of flagella, and the synthesis of antibiotics. Notably, the frequency of chromosomal replication initiation events must also be adjusted with respect to the developmental stage in order to ensure that each nascent cell receives a single copy of the chromosomal DNA. In this review, we focus on the master transcriptional factors, Spo0A, CtrA, and AdpA, which coordinate developmental program and which were recently demonstrated to control chromosome replication. We summarize the current state of knowledge on the role of these developmental regulators in synchronizing the replication with cell differentiation in Bacillus subtilis, Caulobacter crescentus, and Streptomyces coelicolor, respectively.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
33
|
Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc Natl Acad Sci U S A 2014; 111:12877-82. [PMID: 25071173 DOI: 10.1073/pnas.1407461111] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial chromosomes have been found to possess one of two distinct patterns of spatial organization. In the first, called "ori-ter" and exemplified by Caulobacter crescentus, the chromosome arms lie side-by-side, with the replication origin and terminus at opposite cell poles. In the second, observed in slow-growing Escherichia coli ("left-ori-right"), the two chromosome arms reside in separate cell halves, on either side of a centrally located origin. These two patterns, rotated 90° relative to each other, appear to result from different segregation mechanisms. Here, we show that the Bacillus subtilis chromosome alternates between them. For most of the cell cycle, newly replicated origins are maintained at opposite poles with chromosome arms adjacent to each other, in an ori-ter configuration. Shortly after replication initiation, the duplicated origins move as a unit to midcell and the two unreplicated arms resolve into opposite cell halves, generating a left-ori-right pattern. The origins are then actively segregated toward opposite poles, resetting the cycle. Our data suggest that the condensin complex and the parABS partitioning system are the principal driving forces underlying this oscillatory cycle. We propose that the distinct organization patterns observed for bacterial chromosomes reflect a common organization-segregation mechanism, and that simple modifications to it underlie the unique patterns observed in different species.
Collapse
|
34
|
Soybean molasses-based bioindicator system for monitoring sterilization process: Designing and performance evaluation. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0356-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Abstract
One of the key determinants of the size, composition, structure, and development of a microbial community is the predation pressure by bacteriophages. Accordingly, bacteria have evolved a battery of antiphage defense strategies. Since maintaining constantly elevated defenses is costly, we hypothesize that some bacteria have additionally evolved the abilities to estimate the risk of phage infection and to adjust their strategies accordingly. One risk parameter is the density of the bacterial population. Hence, quorum sensing, i.e., the ability to regulate gene expression according to population density, may be an important determinant of phage-host interactions. This hypothesis was investigated in the model system of Escherichia coli and phage λ. We found that, indeed, quorum sensing constitutes a significant, but so far overlooked, determinant of host susceptibility to phage attack. Specifically, E. coli reduces the numbers of λ receptors on the cell surface in response to N-acyl-l-homoserine lactone (AHL) quorum-sensing signals, causing a 2-fold reduction in the phage adsorption rate. The modest reduction in phage adsorption rate leads to a dramatic increase in the frequency of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of χ phage infection through a different receptor. To enable the successful manipulation of bacterial populations, a comprehensive understanding of the factors that naturally shape microbial communities is required. One of the key factors in this context is the interactions between bacteria and the most abundant biological entities on Earth, namely, the bacteriophages that prey on bacteria. This proof-of-principle study shows that quorum sensing plays an important role in determining the susceptibility of E. coli to infection by bacteriophages λ and χ. On the basis of our findings in the classical Escherichia coli-λ model system, we suggest that quorum sensing may serve as a general strategy to protect bacteria specifically under conditions of high risk of infection.
Collapse
|
36
|
Rajarajan N, Ward AC, Burgess JG, Glassey J. Use of physiological information and process optimisation enhances production of extracellular nuclease by a marine strain of Bacillus licheniformis. BIORESOURCE TECHNOLOGY 2013; 130:552-558. [PMID: 23334010 DOI: 10.1016/j.biortech.2012.12.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/07/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
The extracellular nuclease, NucB, from Bacillus licheniformis, can digest extracellular DNA in biofilms, causing biofilm dispersal, and may therefore be used commercially to remove biofilms. However, producing quantities of this secreted peptide is difficult and our aim was therefore to improve its laboratory scale production. This study builds on our understanding of B. licheniformis physiology to enhance NucB production. The addition of manganese, which triggers sporulation and enhances NucB expression, lead to a 5-fold increase in NucB production. Optimisation via Placket-Burman design of experiments identified 3 significant medium components and a subsequent Central Composite Design, to determine the optimum levels of these components, resulted in a 10-fold increase to 471U/ml. The optimal phosphate concentration was less than 0.3mM as this is known to inhibit nuclease production. The use of physiologically relevant information combined with optimisation represents a promising approach to increased enzyme production, which may also be widely applicable.
Collapse
|
37
|
van Gestel J, Nowak MA, Tarnita CE. The evolution of cell-to-cell communication in a sporulating bacterium. PLoS Comput Biol 2012; 8:e1002818. [PMID: 23284278 PMCID: PMC3527279 DOI: 10.1371/journal.pcbi.1002818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022] Open
Abstract
Traditionally microorganisms were considered to be autonomous organisms that could be studied in isolation. However, over the last decades cell-to-cell communication has been found to be ubiquitous. By secreting molecular signals in the extracellular environment microorganisms can indirectly assess the cell density and respond in accordance. In one of the best-studied microorganisms, Bacillus subtilis, the differentiation processes into a number of distinct cell types have been shown to depend on cell-to-cell communication. One of these cell types is the spore. Spores are metabolically inactive cells that are highly resistant against environmental stress. The onset of sporulation is dependent on cell-to-cell communication, as well as on a number of other environmental cues. By using individual-based simulations we examine when cell-to-cell communication that is involved in the onset of sporulation can evolve. We show that it evolves when three basic premises are satisfied. First, the population of cells has to affect the nutrient conditions. Second, there should be a time-lag between the moment that a cell decides to sporulate and the moment that it turns into a mature spore. Third, there has to be environmental variation. Cell-to-cell communication is a strategy to cope with environmental variation, by allowing cells to predict future environmental conditions. As a consequence, cells can anticipate environmental stress by initiating sporulation. Furthermore, signal production could be considered a cooperative trait and therefore evolves when it is not too costly to produce signal and when there are recurrent colony bottlenecks, which facilitate assortment. Finally, we also show that cell-to-cell communication can drive ecological diversification. Different ecotypes can evolve and be maintained due to frequency-dependent selection. Biological systems are characterized by communication; humans talk, insects produce pheromones and birds sing. Over the last decades it has been shown that even the simplest organisms on earth, the bacteria, communicate. Despite the prevalence of communication, it is often hard to explain how communicative systems evolve. In bacteria, communication results from the secretion of molecular signals that accumulate in the environment. Cells can assess the concentration of these signals, which indicate cell density, and respond in accordance. This form of cell-to-cell communication is responsible for the regulation of numerous bacterial behaviors, such as sporulation. Spores are metabolically inactive cells that are highly resistant against environmental stress. It is adaptive for a cell to sporulate when it struggles to survive. We show, via individual-based simulations, that cell-to-cell communication evolves because it allows cells to predict future environmental conditions. As a consequence, cells are capable of anticipating environmental stress by initiating sporulation before conditions are actually harmful. Furthermore, our model shows that cell-to-cell communication can even drive ecological diversification, since it facilitates the evolution of individuals that specialize on distinct ecological conditions.
Collapse
Affiliation(s)
- Jordi van Gestel
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
38
|
A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerfaces 2012; 96:50-5. [PMID: 22521682 DOI: 10.1016/j.colsurfb.2012.03.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/08/2012] [Accepted: 03/28/2012] [Indexed: 11/20/2022]
Abstract
In this article potential activity of nanoparticles (NPs) of copper iodide (CuI) as an antibacterial agent has been presented. The nano particles are synthesized by co-precipitation method with an average size of 8 nm as determined by Transmission Electron Microscope (TEM). The average charge of the NPs is -21.5 mV at pH 7 as obtained by zeta potential measurement and purity is determined by XRD. These NPs are able to kill both gram positive and gram negative bacteria. Among the bacteria tested, DH5α is more sensitive but Bacillus subtilis is more resistant to NPs of CuI. Consequently, the MIC and MBC values of DH5α is least (0.066 mg/ml and 0.083 mg/ml respectively) and B. subtilis is highest (0.15 mg/ml and 0.18 mg/ml respectively) among the tested bacterial strains. From our studies it is inferred that CuI NPs produce reactive oxygen species (ROS) in both gram negative and gram positive bacteria and it also causes ROS mediated DNA damage for the suppression of transcription as revealed by reporter gene assay. Probably ROS is formed on the surface of NPs of CuI in presence of amine functional groups of various biological molecules. Furthermore they induce membrane damage as determined by atomic force microscopy (AFM). Thus production of ROS and membrane damage are major mechanisms of the bactericidal activity of these NPs of CuI.
Collapse
|
39
|
Mendez R, Gutierrez A, Reyes J, Márquez-Magaña L. The extracytoplasmic function sigma factor SigY is important for efficient maintenance of the Spβ prophage that encodes sublancin in Bacillus subtilis. DNA Cell Biol 2012; 31:946-55. [PMID: 22400495 DOI: 10.1089/dna.2011.1513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Many strains of the soil bacterium Bacillus subtilis are capable of producing and being resistant to the antibiotic sublancin because they harbor the Spβ prophage. This 135 kb viral genome is integrated into the circular DNA chromosome of B. subtilis, and contains genes for the production of and resistance to sublancin. We investigated the role of SigY in sublancin production and resistance, finding that it is important for efficient maintenance of the Spβ prophage. We were unable to detect the prophage in mutants lacking SigY. Additionally, these mutants were no longer able to produce sublancin, were sensitive to killing by this factor, and displayed a delay in sporulation. Wild-type cells with normal SigY activity were found to partially lose the Spβ prophage during growth and early sporulation, suggesting a mechanism for the bistable outcome of sibling cells capable of killing and of being killed. The appropriate regulation of SigY appears to be essential for growth as evidenced by the inability to disrupt the gene for its putative antisigma. Our results confirm a role for SigY in antibiotic production and resistance, as has been found for other members of the extracytoplasmic function sigma factor family in B. subtilis, and shows that this role is achieved by affecting maintenance of the Spβ prophage.
Collapse
Affiliation(s)
- Rebecca Mendez
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | |
Collapse
|
40
|
Votyakova TV, Kaprelyants AS, Kell DB. Influence of Viable Cells on the Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in an Extended Stationary Phase: the Population Effect. Appl Environ Microbiol 2010; 60:3284-91. [PMID: 16349381 PMCID: PMC201800 DOI: 10.1128/aem.60.9.3284-3291.1994] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high proportion of Micrococcus luteus cells in cultures which had been starved for 3 to 6 months lost the ability to grow and form colonies on agar plates but could be resuscitated from their dormancy by incubation in an appropriate liquid medium (A. S. Kaprelyants and D. B. Kell, Appl. Environ. Microbiol. 59:3187-3196, 1993). In the present work, such cultures were studied by both flow cytometry and conventional microbiological methods and were found to contain various numbers of viable cells. Pretreatment of such cultures with penicillin G, and subsequent dilution, was used to vary this number. When the initial number of colony-forming cells per 30-ml flask was approximately nine (+/-five) or more, resuscitation of 10 to 40% of the cells, and thus culture growth, was observed. The lag period before the appearance of a population of cells showing significant accumulation of the fluorescent dye rhodamine 123 (i.e., of cells with measurable membrane energization) decreased from 70 to 27 h when the number of viable cells was increased from 30 to 10 per flask, while the lag period before an observable increase in the number of colony-forming cells occurred was almost constant (at some 20 h). Provided there were more than nine (+/-five) initially viable cells per flask, the number of initially viable cells did not affect the final percentage of resuscitable cells in the culture. The lag period could be ascribed in part to the time taken to restore the membrane permeability barrier of starved cells during resuscitation, as revealed by flow cytometric assessment of the uptake of the normally membrane-impermeant fluorescent DNA stain PO-PRO-3 {4-[3-methyl-2, 3-dihydro-(benzo-1, 3-oxazole)-2-methylidene]-1-(3'-trimethylammonium propyl)-pyridinium diiodide}. Although cell populations which contained fewer than nine +/-five viable cells per flask failed to grow, 4 to 20% of the cells (of 1.2 X 10) were able to accumulate rhodamine 123 after 80 to 100 h of incubation, showing the ability of a significant number of the cells in the population at least to display "metabolic resuscitation." Resuscitation and cell growth under such conditions were favored by the use of a 1:1 mixture of fresh lactate medium and supernatant from late-logarithmic-phase M. luteus cultures as the resuscitation medium. We conclude that the presence of a small fraction of viable cells at the onset of resuscitation facilitates the recovery of the majority of the remaining (dormant) cells. The cell density dependence of the kinetics, or population effect, suggests that this recovery is due to the excretion of some factor(s) which promoted the transition of cells from a state in which they are incapable of growth and division to one in which they are capable of colony formation.
Collapse
Affiliation(s)
- T V Votyakova
- Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DA, United Kingdom
| | | | | |
Collapse
|
41
|
Girija KR, Sasikala C, Ramana CV, Spröer C, Takaichi S, Thiel V, Imhoff JF. Rhodobacter johrii sp. nov., an endospore-producing cryptic species isolated from semi-arid tropical soils. Int J Syst Evol Microbiol 2009; 60:2099-2107. [PMID: 19854875 DOI: 10.1099/ijs.0.011718-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An oval to rod-shaped, phototrophic, purple non-sulfur bacterium, strain JA192(T), was isolated from an enrichment culture of a pasteurized rhizosphere soil sample from a field cultivated with jowar (sorghum) collected from Godumakunta village near Hyderabad, India. Strain JA192(T) is Gram-negative, motile and produces endospores. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that the strain JA192(T) is closely related to Rhodobacter sphaeroides 2.4.1(T) (99.9 % sequence similarity), Rba. megalophilus JA194(T) (99.8 %) and Rba. azotoformans KA25(T) (98.1 %) and clusters with other species of the genus Rhodobacter of the family Rhodobacteraceae. However, DNA-DNA hybridization with Rba. sphaeroides DSM 158(T), Rba. megalophilus JA194(T) and Rba. azotoformans JCM 9340(T) showed relatedness of only 38-57 % with respect to strain JA192(T). On the basis of 16S rRNA gene sequence analysis, DNA-DNA hybridization data and morphological, physiological and chemotaxonomic characters, strain JA192(T) represents a novel species of the genus Rhodobacter, for which the name Rhodobacter johrii sp. nov. is proposed. The type strain is JA192(T) (=DSM 18678(T) =JCM 14543(T) =MTCC 8172(T)).
Collapse
Affiliation(s)
- K R Girija
- Bacterial Discovery Laboratory and Resource Centre, Centre for Environment, IST, JNT University, Kukatpally, Hyderabad 500 085, India
| | - Ch Sasikala
- Bacterial Discovery Laboratory and Resource Centre, Centre for Environment, IST, JNT University, Kukatpally, Hyderabad 500 085, India
| | - Ch V Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, PO Central University, Hyderabad 500 046, India
| | - C Spröer
- DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - S Takaichi
- Department of Biology, Nippon Medical School, Kosugi-cho, Nakahara, Kawasaki 211-0063, Japan
| | - V Thiel
- Leibniz-Institut für Meereswissenschaften IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - J F Imhoff
- Leibniz-Institut für Meereswissenschaften IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
42
|
An A257V mutation in the bacillus subtilis response regulator Spo0A prevents regulated expression of promoters with low-consensus binding sites. J Bacteriol 2009; 191:5489-98. [PMID: 19581368 DOI: 10.1128/jb.00590-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus species, the master regulator of sporulation is Spo0A. Spo0A functions by both activating and repressing transcription initiation from target promoters that contain 0A boxes, the binding sites for Spo0A. Several classes of spo0A mutants have been isolated, and the molecular basis for their phenotypes has been determined. However, the molecular basis of the Spo0A(A257V) substitution, representative of an unusual phenotypic class, is not understood. Spo0A(A257V) is unusual in that it abolishes sporulation; in vivo, it fails to activate transcription from key stage II promoters yet retains the ability to repress the abrB promoter. To determine how Spo0A(A257V) retains the ability to repress but not stimulate transcription, we performed a series of in vitro and in vivo assays. We found unexpectedly that the mutant protein both stimulated transcription from the spoIIG promoter and repressed transcription from the abrB promoter, albeit twofold less than the wild type. A DNA binding analysis of Spo0A(A257V) showed that the mutant protein was less able to tolerate alterations in the sequence and arrangement of its DNA binding sites than the wild-type protein. In addition, we found that Spo0A(A257V) could stimulate transcription of a mutant spoIIG promoter in vivo in which low-consensus binding sites were replaced by high-consensus binding sites. We conclude that Spo0A(A257V) is able to bind to and regulate the expression of only genes whose promoters contain high-consensus binding sites and that this effect is sufficient to explain the observed sporulation defect.
Collapse
|
43
|
Stecchini M, Spaziani M, Torre MD, Pacor S. Bacillus cereuscell and spore properties as influenced by the micro-structure of the medium. J Appl Microbiol 2009; 106:1838-48. [DOI: 10.1111/j.1365-2672.2009.04162.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Complexity in bacterial cell-cell communication: quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proc Natl Acad Sci U S A 2009; 106:6459-64. [PMID: 19380751 DOI: 10.1073/pnas.0810878106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A common form of quorum sensing in gram-positive bacteria is mediated by peptides that act as phosphatase regulators (Phr) of receptor aspartyl phosphatases (Raps). In Bacillus subtilis, several Phr signals are integrated in sporulation phosphorelay signal transduction. We theoretically demonstrate that the phosphorelay can act as a computational machine performing a sensitive division operation of kinase-encoded signals by quorum-modulated Rap signals, indicative of cells computing a "food per cell" estimate to decide whether to enter sporulation. We predict expression from the rapA-phrA operon to bifurcate as relative environmental signals change in a developing population. We experimentally observe that the rapA-phrA operon is heterogeneously induced in sporulating microcolonies. Uninduced cells sporulate rather synchronously early on, whereas the RapA/PhrA subpopulation sporulates less synchronously throughout later stationary phase. Moreover, we show that cells sustain PhrA expression during periods of active growth. Together with the model, these findings suggest that the phosphorelay may normalize environmental signals by the size of the (sub)population actively competing for nutrients (as signaled by PhrA). Generalizing this concept, the various Phrs could facilitate subpopulation communication in dense isogenic communities to control the physiological strategies followed by differentiated subpopulations by interpreting (environmental) signals based on the spatiotemporal community structure.
Collapse
|
45
|
Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J Bacteriol 2008; 191:1756-64. [PMID: 19114482 DOI: 10.1128/jb.01290-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis strains communicate through the comQXPA quorum sensing (QS) system, which regulates genes expressed during early stationary phase. A high polymorphism of comQXP' loci was found in closely related strains isolated from desert soil samples separated by distances ranging from meters to kilometers. The observed polymorphism comprised four communication groups (pherotypes), such that strains belonging to the same pherotype exchanged information efficiently but strains from different pherotypes failed to communicate. To determine whether the same level of polymorphism in the comQXP' QS system could be detected at microscale, B. subtilis isolates were obtained from two separate 1-cm(3) soil samples, which were progressively divided into smaller sections. Cross-activation studies using pherotype-responsive reporter strains indicated the same number of communication pherotypes at microscale as previously determined at macroscale. Sequencing of the housekeeping gene gyrA and the QS comQ gene confirmed different evolutionary rates of these genes. Furthermore, an asymmetric communication response was detected inside the two pherotype clusters, suggesting continuous evolution of the QS system and possible development of new languages. To our knowledge, this is the first microscale study demonstrating the presence of different QS languages among isolates of one species, and the implications of this microscale diversity for microbial interactions are discussed.
Collapse
|
46
|
Garti-Levi S, Hazan R, Kain J, Fujita M, Ben-Yehuda S. The FtsEX ABC transporter directs cellular differentiation inBacillus subtilis. Mol Microbiol 2008; 69:1018-28. [DOI: 10.1111/j.1365-2958.2008.06340.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Shapiro JA. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2007; 38:807-819. [PMID: 18053935 DOI: 10.1016/j.shpsc.2007.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Forty years' experience as a bacterial geneticist has taught me that bacteria possess many cognitive, computational and evolutionary capabilities unimaginable in the first six decades of the twentieth century. Analysis of cellular processes such as metabolism, regulation of protein synthesis, and DNA repair established that bacteria continually monitor their external and internal environments and compute functional outputs based on information provided by their sensory apparatus. Studies of genetic recombination, lysogeny, antibiotic resistance and my own work on transposable elements revealed multiple widespread bacterial systems for mobilizing and engineering DNA molecules. Examination of colony development and organization led me to appreciate how extensive multicellular collaboration is among the majority of bacterial species. Contemporary research in many laboratories on cell-cell signaling, symbiosis and pathogenesis show that bacteria utilise sophisticated mechanisms for intercellular communication and even have the ability to commandeer the basic cell biology of 'higher' plants and animals to meet their own needs. This remarkable series of observations requires us to revise basic ideas about biological information processing and recognise that even the smallest cells are sentient beings.
Collapse
Affiliation(s)
- J A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th Street, Chicago IL 60637, USA.
| |
Collapse
|
48
|
Charlton S, Herbert M, McGlashan J, King A, Jones P, West K, Roberts A, Silman N, Marks T, Hudson M, Hallis B. A study of the physiology of Bacillus anthracis Sterne during manufacture of the UK acellular anthrax vaccine. J Appl Microbiol 2007; 103:1453-60. [DOI: 10.1111/j.1365-2672.2007.03391.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Aceves-Diez AE, Robles-Burgueño R, de la Torre M. SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis. Appl Microbiol Biotechnol 2007; 76:203-9. [PMID: 17486337 DOI: 10.1007/s00253-007-0982-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
We have identified and characterized in the supernatant of the transition phase of Bacillus thuringiensis var. kurstaki the peptide SKPDT. This peptide was previously identified by in silico analysis by Pottathil and Lazazzera (Front Biosci 8:32-45 2003) as a putative signaling peptide (NprRB) of the Phr family in B. thuringiensis. The chemically synthesized NprRB did not affect the growth kinetics of B. thuringiensis var. kurstaki but stimulated the sporulation, spore release, and transcription of cry1Aa when added to cultures during the transition phase. In fact, when the peptide (100 nM) was added to a culture in transition phase, the transcription of cry1Aa was stimulated almost threefold, mainly from the late promoter BtII, which requires the late-stage sporulation-specific transcription factor sigma (K). On the other hand, NprRB did not have any effect on B. subtilis. Thus, SKPDT seems to be a signaling peptide specific for B. thuringiensis.
Collapse
Affiliation(s)
- Angel E Aceves-Diez
- Centro de Investigación en Alimentación y Desarrollo A.C., P.O. Box 1735, Km 0.6 Carretera a la Victoria, 83000, Hermosillo, Sonora, México
| | | | | |
Collapse
|
50
|
Veening JW, Kuipers OP, Brul S, Hellingwerf KJ, Kort R. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J Bacteriol 2006; 188:3099-109. [PMID: 16585769 PMCID: PMC1447011 DOI: 10.1128/jb.188.8.3099-3109.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Bacillus subtilis is able to form highly organized multicellular communities called biofilms. This coordinated bacterial behavior is often lost in domesticated or laboratory strains as a result of planktonic growth in rich media for many generations. However, we show here that the laboratory strain B. subtilis 168 is still capable of forming spatially organized multicellular communities on minimal medium agar plates, exemplified by colonies with vein-like structures formed by elevated bundles of cells. In line with the current model for biofilm formation, we demonstrate that overproduction of the phosphorelay components KinA and Spo0A stimulates bundle formation, while overproduction of the transition state regulators AbrB and SinR leads to repression of formation of elevated bundles. Time-lapse fluorescence microscopy studies of B. subtilis green fluorescent protein reporter strains show that bundles are preferential sites for spore formation and that flat structures surrounding the bundles contain vegetative cells. The elevated bundle structures are formed prior to sporulation, in agreement with a genetic developmental program in which these processes are sequentially activated. Perturbations of the phosphorelay by disruption and overexpression of genes that lead to an increased tendency to sporulate result in the segregation of sporulation mutations and decreased heat resistance of spores in biofilms. These results stress the importance of a balanced control of the phosphorelay for biofilm and spore development.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Moleculart Genetics Group, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|