1
|
Guney MH, Nagalekshmi K, McCauley SM, Carbone C, Aydemir O, Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. Proc Natl Acad Sci U S A 2024; 121:e2404349121. [PMID: 38985764 PMCID: PMC11260138 DOI: 10.1073/pnas.2404349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Intron-containing RNA expressed from the HIV-1 provirus activates type 1 interferon in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with short hairpin RNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte-derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the interferon-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with nontargetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant 2-CARD domain-deletion or phosphomimetic point mutations, indicates that IFIH1 (MDA5) filament formation, dephosphorylation, and association with MAVS are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 (MDA5) and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1 knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes by HIV-1. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 (MDA5), over two orders of magnitude, was revealed by formaldehyde cross-linking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is the innate immune receptor for intron-containing RNA from the HIV-1 provirus and that IFIH1 potentially contributes to chronic inflammation in people living with HIV-1, even in the presence of effective antiretroviral therapy.
Collapse
Affiliation(s)
- Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01605
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
- Massachusetts Consortium on Pathogen Readiness, Boston, MA02115
| |
Collapse
|
2
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
3
|
Guney MH, Nagalekshmi K, McCauley SM, Carbone C, Aydemir O, Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567619. [PMID: 38014177 PMCID: PMC10680824 DOI: 10.1101/2023.11.17.567619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 viremia and prevents progression to AIDS. Nonetheless, chronic inflammation is a common problem for people living with HIV-1 on ART. One possible cause of inflammation is ongoing transcription from HIV-1 proviruses, whether or not the sequences are competent for replication. Previous work has shown that intron-containing RNA expressed from the HIV-1 provirus in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells, activates type 1 interferon. This activation required HIV-1 rev and was blocked by the XPO1 (CRM1)-inhibitor leptomycin. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with shRNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the IFN-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with non-targetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant inhibitory CARD-deletion or phosphomimetic point mutations, indicates that IFIH1 filament formation, dephosphorylation, and association with MAVS, are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1-knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 was revealed by formaldehyde crosslinking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is required for innate immune activation by intron-containing RNA from the HIV-1 provirus, and potentially contributes to chronic inflammation in people living with HIV-1.
Collapse
Affiliation(s)
- Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
4
|
Hanson HM, Willkomm NA, Yang H, Mansky LM. Human Retrovirus Genomic RNA Packaging. Viruses 2022; 14:1094. [PMID: 35632835 PMCID: PMC9142903 DOI: 10.3390/v14051094] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023] Open
Abstract
Two non-covalently linked copies of the retrovirus genome are specifically recruited to the site of virus particle assembly and packaged into released particles. Retroviral RNA packaging requires RNA export of the unspliced genomic RNA from the nucleus, translocation of the genome to virus assembly sites, and specific interaction with Gag, the main viral structural protein. While some aspects of the RNA packaging process are understood, many others remain poorly understood. In this review, we provide an update on recent advancements in understanding the mechanism of RNA packaging for retroviruses that cause disease in humans, i.e., HIV-1, HIV-2, and HTLV-1, as well as advances in the understanding of the details of genomic RNA nuclear export, genome translocation to virus assembly sites, and genomic RNA dimerization.
Collapse
Affiliation(s)
- Heather M. Hanson
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
| | - Nora A. Willkomm
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
- Masonic Cancer Center, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Abstract
After human immunodeficiency virus type 1 (HIV-1) was identified in the early 1980s, intensive work began to understand the molecular basis of HIV-1 gene expression. Subgenomic HIV-1 RNA regions, spread throughout the viral genome, were described to have a negative impact on the nuclear export of some viral transcripts. Those studies revealed an intrinsic RNA code as a new form of nuclear export regulation. Since such regulatory regions were later also identified in other viruses, as well as in cellular genes, it can be assumed that, during evolution, viruses took advantage of them to achieve more sophisticated replication mechanisms. Here, we review HIV-1 cis-acting repressive sequences that have been identified, and we discuss their possible underlying mechanisms and importance. Additionally, we show how current bioinformatic tools might allow more predictive approaches to identify and investigate them.
Collapse
|
6
|
Sherpa C, Grice SFJL. Structural Fluidity of the Human Immunodeficiency Virus Rev Response Element. Viruses 2020; 12:v12010086. [PMID: 31940828 PMCID: PMC7019801 DOI: 10.3390/v12010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/22/2023] Open
Abstract
Nucleocytoplasmic transport of unspliced and partially spliced human immunodeficiency virus (HIV) RNA is mediated in part by the Rev response element (RRE), a ~350 nt cis-acting element located in the envelope coding region of the viral genome. Understanding the interaction of the RRE with the viral Rev protein, cellular co-factors, and its therapeutic potential has been the subject of almost three decades of structural studies, throughout which a recurring discussion theme has been RRE topology, i.e., whether it comprises 4 or 5 stem-loops (SLs) and whether this has biological significance. Moreover, while in vitro mutagenesis allows the construction of 4 SL and 5 SL RRE conformers and testing of their roles in cell culture, it has not been immediately clear if such findings can be translated to a clinical setting. Herein, we review several articles demonstrating remarkable flexibility of the HIV-1 and HIV-2 RREs following initial observations that HIV-1 resistance to trans-dominant Rev therapy was founded in structural rearrangement of its RRE. These observations can be extended not only to cell culture studies demonstrating a growth advantage for the 5 SL RRE conformer but also to evolution in RRE topology in patient isolates. Finally, RRE conformational flexibility provides a target for therapeutic intervention, and we describe high throughput screening approaches to exploit this property.
Collapse
|
7
|
Rosen CA. Tat and Rev: positive modulators of human immunodeficiency virus gene expression. Gene Expr 2018; 1:85-90. [PMID: 1820213 PMCID: PMC5952202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C A Rosen
- Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110-1199
| |
Collapse
|
8
|
Schröder HC, Ushijima H, Bek A, Merz H, Pfeifer K, Müller WEG. Inhibition of Formation of Rev-RRE Complex by Pyronin Y. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of pyronin Y, an RNA intercalating drug, with the binding of Rev protein from human immunodeficiency virus type 1 (HIV-1) to Rev-responsive element (RRE)-containing env RNA was studied. In gel retardation assays, recombinant Rev protein tightly bound to in vitro transcribed RRE RNA. Nitrocellulose-filter-binding studies revealed a dissociation constant of ≈(1–2) = 10−10M (Pfeifer et al., 1991). Pyronin Y efficiently suppressed formation of the Rev-RRE complex. At a concentration of 1 μg ml−1, complex formation was almost completely inhibited. Electron microscopy showed that Rev oligomerizes in the presence of RRE-containing RNA with the formation of short rod-like structures or long filaments, depending on the length of the transcript. Assembly of Rev protein along RRE-containing RNAs was abolished after addition of pyronin Y. Thus pyronin Y represents the first compound described to inhibit Rev-RRE complex formation.
Collapse
Affiliation(s)
- H. C. Schröder
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - H. Ushijima
- AIDS Research Center, National Institute of Health, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208, Japan
| | - A. Bek
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - H. Merz
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - K. Pfeifer
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - W. E. G. Müller
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| |
Collapse
|
9
|
Wayman WN, Chen L, Persons AL, Napier TC. Cortical consequences of HIV-1 Tat exposure in rats are enhanced by chronic cocaine. Curr HIV Res 2015; 13:80-7. [PMID: 25760043 DOI: 10.2174/0929867322666150311164504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 01/25/2023]
Abstract
The life span of individuals that are sero-positive for human immunodeficiency virus (HIV) has greatly improved; however, complications involving the central nervous system (CNS) remain a concern. While HIV does not directly infect neurons, the proteins produced by the virus, including HIV transactivator of transcription (Tat), are released from infected glia; these proteins can be neurotoxic. This neurotoxicity is thought to mediate the pathology underlying HIVassociated neurological impairments. Cocaine abuse is common among HIV infected individuals, and this abuse augments HIV-associated neurological deficits. The brain regions and pathophysiological mechanisms that are dysregulated by both chronic cocaine and Tat are the focus of the current review.
Collapse
Affiliation(s)
- Wesley N Wayman
- Department of Pharmacology, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Rm. 463, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
10
|
Ohlmann T, Mengardi C, López-Lastra M. Translation initiation of the HIV-1 mRNA. ACTA ACUST UNITED AC 2014; 2:e960242. [PMID: 26779410 DOI: 10.4161/2169074x.2014.960242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
Abstract
Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation.
Collapse
Affiliation(s)
- Théophile Ohlmann
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Chloé Mengardi
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular; Instituto Milenio de Inmunología e Inmunoterapia; Centro de Investigaciones Médicas; Escuela de Medicina; Pontificia Universidad Católica de Chile ; Santiago, Chile
| |
Collapse
|
11
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
12
|
Woods MW, Tong JG, Tom SK, Szabo PA, Cavanagh PC, Dikeakos JD, Haeryfar SMM, Barr SD. Interferon-induced HERC5 is evolving under positive selection and inhibits HIV-1 particle production by a novel mechanism targeting Rev/RRE-dependent RNA nuclear export. Retrovirology 2014; 11:27. [PMID: 24693865 PMCID: PMC4021598 DOI: 10.1186/1742-4690-11-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. It has long been recognized that type I IFNs can potently block HIV-1 replication in vitro; as such, HIV-1 has been used as a system to identify and characterize IFN-induced antiviral proteins responsible for this block. IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and a carboxyl-terminal Homologous to the E6-AP Carboxyl Terminus (HECT) domain. HERC5 is the main cellular E3 ligase that conjugates the IFN-induced protein ISG15 to proteins. This E3 ligase activity was previously shown to inhibit the replication of evolutionarily diverse viruses, including HIV-1. The contribution of the RCC1-like domain to the antiviral activity of HERC5 was previously unknown. RESULTS In this study, we showed that HERC5 inhibits HIV-1 particle production by a second distinct mechanism that targets the nuclear export of Rev/RRE-dependent RNA. Unexpectedly, the E3 ligase activity of HERC5 was not required for this inhibition. Instead, this activity required the amino-terminal RCC1-like domain of HERC5. Inhibition correlated with a reduction in intracellular RanGTP protein levels and/or the ability of RanGTP to interact with RanBP1. Inhibition also correlated with altered subcellular localization of HIV-1 Rev. In addition, we demonstrated that positive evolutionary selection is operating on HERC5. We identified a region in the RCC1-like domain that exhibits an exceptionally high probability of having evolved under positive selection and showed that this region is required for HERC5-mediated inhibition of nuclear export. CONCLUSIONS We have identified a second distinct mechanism by which HERC5 inhibits HIV-1 replication and demonstrate that HERC5 is evolving under strong positive selection. Together, our findings contribute to a growing body of evidence suggesting that HERC5 is a novel host restriction factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephen Dominic Barr
- Department of Microbiology and Immunology, Dental Sciences Building Room 3006b, The University of Western Ontario, Schulich School of Medicine and Dentistry, Center for Human Immunology, London, Ontario, Canada.
| |
Collapse
|
13
|
Kuzembayeva M, Dilley K, Sardo L, Hu WS. Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. Virology 2014; 454-455:362-70. [PMID: 24530126 DOI: 10.1016/j.virol.2014.01.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/03/2014] [Accepted: 01/24/2014] [Indexed: 12/27/2022]
Abstract
As a member of the retrovirus family, HIV-1 packages its RNA genome into particles and replicates through a DNA intermediate that integrates into the host cellular genome. The multiple genes encoded by HIV-1 are expressed from the same promoter and their expression is regulated by splicing and ribosomal frameshift. The full-length HIV-1 RNA plays a central role in viral replication as it serves as the genome in the progeny virus and is used as the template for Gag and GagPol translation. In this review, we summarize findings that contribute to our current understanding of how full-length RNA is expressed and transported, cis- and trans-acting elements important for RNA packaging, the locations and timing of RNA:RNA and RNA:Gag interactions, and the processes required for this RNA to be packaged into viral particles.
Collapse
Affiliation(s)
- Malika Kuzembayeva
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kari Dilley
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Luca Sardo
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
14
|
Raina S, Chande AG, Baba M, Mukhopadhyaya R. A reporter based single step assay for evaluation of inhibitors targeting HIV-1 Rev-RRE interaction. Virusdisease 2014; 25:101-6. [PMID: 24426316 DOI: 10.1007/s13337-013-0166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022] Open
Abstract
Human immunodeficiency virus regulatory protein Rev (regulator of viral expression) is translated from a monocistronic transcript produced early in the viral replication cycle. Rev binds to the cis-acting, highly structured viral RNA sequence Rev response element (RRE) and the Rev-RRE complex primarily controls nucleocytoplasmic transport of viral RNAs. Inhibition of Rev-RRE interaction therefore is an attractive target to block viral transport. We have developed a stable cell line carrying a lentiviral vector harboring a rev gene and a co-linear Rev-dependent GFP/luciferase reporter gene cassette and thus constitutively expressing the reporter proteins. Dose-dependent luciferase activity inhibition in the indicator cell line by known small molecule inhibitors Proflavin and K37 established the specificity of the assay. This novel single step assay, that involves use of very small amount of reagents/cells and addition of test material as the only manipulation, can therefore be useful for screening therapeutically potential Rev-RRE interaction inhibitors.
Collapse
Affiliation(s)
- Sumeer Raina
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India
| | - Ajit G Chande
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India ; Immunology Group, ICGEB, New Delhi, India
| | - Masanori Baba
- Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Robin Mukhopadhyaya
- Virology Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210 India
| |
Collapse
|
15
|
Díez-Fuertes F, Delgado E, Vega Y, Fernández-García A, Cuevas MT, Pinilla M, García V, Pérez-Álvarez L, Thomson MM. Improvement of HIV-1 coreceptor tropism prediction by employing selected nucleotide positions of the env gene in a Bayesian network classifier. J Antimicrob Chemother 2013; 68:1471-85. [DOI: 10.1093/jac/dkt077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
16
|
Hoffmann D, Schwarck D, Banning C, Brenner M, Mariyanna L, Krepstakies M, Schindler M, Millar DP, Hauber J. Formation of trans-activation competent HIV-1 Rev:RRE complexes requires the recruitment of multiple protein activation domains. PLoS One 2012; 7:e38305. [PMID: 22675540 PMCID: PMC3366918 DOI: 10.1371/journal.pone.0038305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/07/2012] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 Rev trans-activator is a nucleocytoplasmic shuttle protein that is essential for virus replication. Rev directly binds to unspliced and incompletely spliced viral RNA via the cis-acting Rev Response Element (RRE) sequence. Subsequently, Rev oligomerizes cooperatively and interacts with the cellular nuclear export receptor CRM1. In addition to mediating nuclear RNA export, Rev also affects the stability, translation and packaging of Rev-bound viral transcripts. Although it is established that Rev function requires the multimeric assembly of Rev molecules on the RRE, relatively little is known about how many Rev monomers are sufficient to form a trans-activation competent Rev:RRE complex, or which specific activity of Rev is affected by its oligomerization. We here analyzed by functional studies how homooligomer formation of Rev affects the trans-activation capacity of this essential HIV-1 regulatory protein. In a gain-of-function approach, we fused various heterologous dimerization domains to an otherwise oligomerization-defective Rev mutant and were able to demonstrate that oligomerization of Rev is not required per se for the nuclear export of this viral trans-activator. In contrast, however, the formation of Rev oligomers on the RRE is a precondition to trans-activation by directly affecting the nuclear export of Rev-regulated mRNA. Moreover, experimental evidence is provided showing that at least two protein activation domains are required for the formation of trans-activation competent Rev:RRE complexes. The presented data further refine the model of Rev trans-activation by directly demonstrating that Rev oligomerization on the RRE, thereby recruiting at least two protein activation domains, is required for nuclear export of unspliced and incompletely spliced viral RNA.
Collapse
Affiliation(s)
- Dirk Hoffmann
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Doreen Schwarck
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carina Banning
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Matthias Brenner
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lakshmikanth Mariyanna
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcel Krepstakies
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Michael Schindler
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - David P. Millar
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
17
|
Li GH, Li W, Mumper RJ, Nath A. Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes. FASEB J 2012; 26:2824-34. [PMID: 22447980 DOI: 10.1096/fj.11-203315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein possesses a unique membrane-transduction property. Interestingly, Tat transduction could be dramatically increased 1000-fold based on LTR-transactivation assay when complexed with cationic liposomes (lipo-Tat), compared with Tat alone. Therefore, underlining mechanisms were explored further. Microscopy and flow cytometry showed that this effect was associated with enhanced membrane binding, large particle formation (1-2 μm) and increased intracellular uptake of Tat fluorescent proteins. Using pharmacological assays and immune colocalizations, it was found that lipid raft-dependent endocytosis and macropinocytosis were major pathways involved in lipo-Tat uptake, and actin-filaments played a major role in intracellular trafficking of lipo-Tat to the nucleus. Furthermore, we found that the Tat hydrophobic domain (aa 36-47) mediated formation of two positively charged molecules into lipo-Tat complexes via hydrophobic bonds, based on LTR-transactivation inhibition assay. Thus, the hydrophobic domain may play an important role in Tat protein uptake and be useful for intracellular delivery of biomacromolecules if coupled together with Tat basic peptide, a cell-penetrating peptide.
Collapse
Affiliation(s)
- Guan-Han Li
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
18
|
Abstract
It has been known for some time that the HIV Rev protein binds and oligomerizes on a well-defined multiple stem-loop RNA structure, named the Rev Response Element (RRE), which is present in a subset of HIV mRNAs. This binding is the first step in a pathway that overcomes a host restriction, which would otherwise prevent the export of these RNAs to the cytoplasm. Four recent publications now provide new insight into the structure of Rev and the multimeric RNA-protein complex that forms on the RRE [1–4]. Two unexpected and remarkable findings revealed in these studies are the flexibility of RNA binding that is demonstrated by the Rev arginine-rich RNA binding motif, and the way that both Rev protein and RRE contribute to the formation of the complex in a highly cooperative fashion. These studies also define the Rev dimerization and oligomerization interfaces to a resolution of 2.5Å, providing a framework necessary for further structural and functional studies. Additionally, and perhaps most importantly, they also pave the way for rational drug design, which may ultimately lead to new therapies to inhibit this essential HIV function.
Collapse
|
19
|
Fernandes J, Jayaraman B, Frankel A. The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol 2012; 9:6-11. [PMID: 22258145 PMCID: PMC3342944 DOI: 10.4161/rna.9.1.18178] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Rev response element (RRE) is a ~350 nucleotide, highly structured, cis-acting RNA element essential for viral replication. It is located in the env coding region of the viral genome and is extremely well conserved across different HIV-1 isolates. It is present on all partially spliced and unspliced viral mRNA transcripts, and serves as an RNA framework onto which multiple molecules of the viral protein Rev assemble. The Rev-RRE oligomeric complex mediates the export of these messages from the nucleus to the cytoplasm, where they are translated to produce essential viral proteins and/or packaged as genomes for new virions.
Collapse
Affiliation(s)
- Jason Fernandes
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
20
|
Biswas N, Wang T, Ding M, Tumne A, Chen Y, Wang Q, Gupta P. ADAR1 is a novel multi targeted anti-HIV-1 cellular protein. Virology 2011; 422:265-77. [PMID: 22104209 DOI: 10.1016/j.virol.2011.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/29/2011] [Accepted: 10/16/2011] [Indexed: 11/29/2022]
Abstract
We examined the antiviral activity of ADAR1 against HIV-1. Our results indicated that ADAR1 in a transfection system inhibited production of viral proteins and infectious HIV-1 in various cell lines including 293T, HeLa, Jurkat T and primary CD4+ T cells, and was active against a number of X4 and R5 HIV-1 of different clades. Further analysis showed that ADAR1 inhibited viral protein synthesis without any effect on viral RNA synthesis. Mutational analysis showed that ADAR1 introduced most of the A-to-G mutations in the rev RNA, in the region of RNA encoding for Rev Response Element (RRE) binding domain and in env RNA. These mutations inhibited the binding of rev to the RRE and inhibited transport of primary transcripts like gag, pol and env from nucleus to cytoplasm resulting in inhibition of viral protein synthesis without any effect on viral RNA synthesis. Furthermore, ADAR1 induced mutations in the env gene inhibited viral infectivity.
Collapse
Affiliation(s)
- Nabanita Biswas
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Cavallari I, Rende F, D'Agostino DM, Ciminale V. Converging strategies in expression of human complex retroviruses. Viruses 2011; 3:1395-414. [PMID: 21994786 PMCID: PMC3185809 DOI: 10.3390/v3081395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/27/2022] Open
Abstract
The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as ‘simple’ and ‘complex’, respectively. Expression of most of these extra genes is achieved through the generation of alternatively spliced mRNAs. The present review summarizes the genetic organization and expression strategies of human complex retroviruses and highlights the converging mechanisms controlling their life cycles.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Francesca Rende
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
| | - Donna M. D'Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Vincenzo Ciminale
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+39-049-821-5885; Fax: +39-049-807-2854
| |
Collapse
|
22
|
Abstract
The nuclear matrix protein, MATR3, is a newly-described Rev cofactor whose mechanism of action is only starting to be revealed.
Collapse
Affiliation(s)
- Andrew I Dayton
- FDA/CBER/OBRR/DETTD/LMV, HFM 315 1401 Rockville Pike, Rockville, MD 20852-1448, USA.
| |
Collapse
|
23
|
Single-nucleotide changes in the HIV Rev-response element mediate resistance to compounds that inhibit Rev function. J Virol 2011; 85:3940-9. [PMID: 21289114 DOI: 10.1128/jvi.02683-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previously we described the identification of two compounds (3-amino-5-ethyl-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide [103833] and 4-amino-6-methoxy-2-(trifluoromethyl)-3-quinolinecarbonitrile [104366]) that interfered with HIV replication through the inhibition of Rev function. We now describe resistant viral variants that arose after drug selection, using virus derived from two different HIV proviral clones, NL4-3 and R7/3. With HIV(NL4-3), each compound selected a different single point mutation in the Rev response element (RRE) at the bottom of stem-loop IIC. Either mutation led to the lengthening of the stem-loop IIC stem by an additional base pair, creating an RRE that was more responsive to lower concentrations of Rev than the wild type. Surprisingly, wild-type HIV(R7/3) was also found to be inhibited when tested with these compounds, in spite of the fact this virus already has an RNA stem-loop IIC similar to the one in the resistant NL4-3 variant. When drug resistance was selected in HIV(R7/3), a virus arose with two nucleotide changes that mapped to the envelope region outside the RRE. One of these nucleotide changes was synonymous with respect to env, and one was not. The combination of both nucleotide changes appeared to be necessary for the resistance phenotype as the individual point mutations by themselves did not convey resistance. Thus, although drug-resistant variants can be generated with both viral strains, the underlying mechanism is clearly different. These results highlight that minor nucleotide changes in HIV RNA, outside the primary Rev binding site, can significantly alter the efficiency of the Rev/RRE pathway.
Collapse
|
24
|
Jaagsiekte sheep retrovirus biology and oncogenesis. Viruses 2010; 2:2618-48. [PMID: 21994634 PMCID: PMC3185594 DOI: 10.3390/v2122618] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a lung cancer in sheep known as ovine pulmonary adenocarcinoma (OPA). The disease has been identified around the world in several breeds of sheep and goats, and JSRV infection typically has a serious impact on affected flocks. In addition, studies on OPA are an excellent model for human lung carcinogenesis. A unique feature of JSRV is that its envelope (Env) protein functions as an oncogene. The JSRV Env-induced transformation or oncogenesis has been studied in a variety of cell systems and in animal models. Moreover, JSRV studies have provided insights into retroviral genomic RNA export/expression mechanisms. JSRV encodes a trans-acting factor (Rej) within the env gene necessary for the synthesis of Gag protein from unspliced viral RNA. This review summarizes research pertaining to JSRV-induced pathogenesis, Env transformation, and other aspects of JSRV biology.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review summarizes current and novel virologic reagents employed for the development and application of in-vitro assays that assess neutralizing activity of antibodies against HIV-1. Characteristics of several virologic approaches are placed in context with various cellular targets and assay read-outs intended to determine potency and breadth of neutralization in patient cohorts and clinical vaccine trials. RECENT FINDINGS New molecular virologic reagents developed for in-vitro primary cell-based assays promise to facilitate rigorous and standardized assessment of anti-HIV-1-neutralizing antibody responses elicited by vaccine immunogens. SUMMARY Comprehensive assessment of anti-HIV-1 antibody potency and breadth is essential for evaluating vaccine immunogens, the advancement of vaccine candidates into clinical trials, and ultimately the development of effective vaccine strategies. Env-pseudovirion and recombinant reporter cell line neutralization assays are important tools for rapid and standardized measurement of neutralizing antibody activity. However, recent studies indicate that reporter cell lines fail to detect neutralization activity of certain antibodies observed when analyzed in peripheral blood mononuclear cells and may yield results on neutralizing antibody breadth that are discordant with peripheral blood mononuclear cell assays. Importantly, it remains unknown whether current in-vitro assays may be predictive of a protective neutralizing antibody response elicited by vaccine immunogens. This situation underscores the significance of standardizing existing, complementary methods as well as developing new assay concepts that assess neutralization in primary cells. Thus, this chapter focuses on new virologic reagents that promise to facilitate reaching this goal.
Collapse
|
26
|
Recombinant respiratory syncytial virus F protein expression is hindered by inefficient nuclear export and mRNA processing. Virus Genes 2010; 40:212-21. [PMID: 20111897 DOI: 10.1007/s11262-010-0449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Studies of the fusion activity of respiratory syncytial virus (RSV) F protein are significantly hindered by low recombinant expression levels. While infection produces F protein levels detectable by western blot, recombinant expression produces undetectable to low levels of F protein. Identifying the obstacles that hinder recombinant F protein expression may lead to improved expression and facilitate the study of F protein function. We hypothesized that nuclear localization and/or inefficient RNA polymerase II-mediated transcription contribute to poor recombinant F protein expression. This study shows a combination of stalled nuclear export, premature polyadenylation, and low mRNA abundance all contribute to low recombinant F protein expression levels. In addition, this study provides an expression optimization strategy that results in greater F protein expression levels than observed by codon-optimization of the F protein gene, which will be useful for future studies of F protein function.
Collapse
|
27
|
Role of Tat protein in HIV neuropathogenesis. Neurotox Res 2009; 16:205-20. [PMID: 19526283 DOI: 10.1007/s12640-009-9047-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 12/13/2022]
Abstract
The Tat protein of the human immunodeficiency virus (HIV) has been implicated in the pathophysiology of the neurocognitive deficits associated with HIV infection. This is the earliest protein to be produced by the proviral DNA in the infected cell. The protein not only drives the regulatory regions of the virus but may also be actively released from the cell and then interact with the cell surface receptors of other uninfected cells in the brain leading to cellular dysfunction. It may also be taken up by these cells and can then activate a number of host genes. The Tat protein is highly potent and has the unique ability to travel along neuronal pathways. Importantly, its production is not impacted by the use of antiretroviral drugs once the proviral DNA has been formed. This article reviews the pleomorphic actions of Tat protein and the evidence supporting its central role in the neuropathogenesis of the HIV infection.
Collapse
|
28
|
Jaagsiekte sheep retrovirus encodes a regulatory factor, Rej, required for synthesis of Gag protein. J Virol 2009; 83:12483-98. [PMID: 19776124 DOI: 10.1128/jvi.01747-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses express Gag and Pol proteins by translation of unspliced genome-length viral RNA. For some retroviruses, transport of unspliced viral RNA to the cytoplasm is mediated by small regulatory proteins such as human immunodeficiency virus Rev, while other retroviruses contain constitutive transport elements in their RNAs that allow transport without splicing. In this study, we found that the betaretrovirus Jaagsiekte sheep retrovirus (JSRV) encodes within the env gene a trans-acting factor (Rej) necessary for the synthesis of Gag protein from unspliced viral RNA. Deletion of env sequences from a JSRV proviral expression plasmid (pTN3) abolished its ability to produce Gag polyprotein in transfected 293T cells, and Gag synthesis could be restored by cotransfection of an env expression plasmid (DeltaGP). Deletion analysis localized the complementing activity (Rej) to the putative Env signal peptide, and a signal peptide expression construct showed Rej activity. Two other betaretroviruses, mouse mammary tumor virus (MMTV) and human endogenous retrovirus type K, encode analogous factors (Rem and Rec, respectively) that are encoded from doubly spliced env mRNAs. Reverse transcriptase-PCR cloning and sequencing identified alternate internal splicing events in the 5' end of JSRV env that could signify analogous doubly spliced Rej mRNAs, and cDNA clones expressing two of them also showed Rej activity. The predicted Rej proteins contain motifs similar to those found in MMTV Rem and other analogous retroviral regulatory proteins. Interestingly, in most cell lines, JSRV expression plasmids with Rej deleted showed normal transport of unspliced JSRV RNA to the cytoplasm; however, in 293T cells Rej modestly enhanced export of unspliced viral RNA (2.8-fold). Metabolic labeling experiments with [(35)S]methionine indicated that JSRV Rej is required for the synthesis of viral Gag polyprotein. Thus, in most cell lines, the predominant function of Rej is to facilitate translation of unspliced viral mRNA.
Collapse
|
29
|
Japanese encephalitis virus-based replicon RNAs/particles as an expression system for HIV-1 Pr55 Gag that is capable of producing virus-like particles. Virus Res 2009; 144:298-305. [PMID: 19406175 DOI: 10.1016/j.virusres.2009.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Ectopic expression of the structural protein Pr55(Gag) of HIV-1 has been limited by the presence of inhibitory sequences in the gag coding region that must normally be counteracted by HIV-1 Rev and RRE. Here, we describe a cytoplasmic RNA replicon based on the RNA genome of Japanese encephalitis virus (JEV) that is capable of expressing HIV-1 gag without requiring Rev/RRE. This replicon system was constructed by deleting all three JEV structural protein-coding regions (C, prM, and E) from the 5'-proximal region of the genome and simultaneously inserting an HIV-1 gag expression cassette driven by the internal ribosome entry site of encephalomyocarditis virus into the 3'-proximal noncoding region of the genome. Transfection of this JEV replicon RNA led to expression of Pr55(Gag) in the absence of Rev/RRE in the cytoplasm of hamster BHK-21, human HeLa, and mouse NIH/3T3 cells. Production of the Pr55(Gag) derived from this JEV replicon RNA appeared to be increased by approximately 3-fold when compared to that based on an alphavirus replicon RNA. Biochemical and morphological analyses demonstrated that the Pr55(Gag) proteins were released into the culture medium in the form of virus-like particles. We also observed that the JEV replicon RNAs expressing the Pr55(Gag) could be encapsidated into single-round infectious JEV replicon particles when transfected into a stable packaging cell line that provided the three JEV structural proteins in trans. This ectopic expression of the HIV-1 Pr55(Gag) by JEV-based replicon RNAs/particles in diverse cell types may represent a useful molecular platform for various biological applications in medicine and industry.
Collapse
|
30
|
Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009; 6:8. [PMID: 19166625 PMCID: PMC2657110 DOI: 10.1186/1742-4690-6-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/24/2009] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors.
Collapse
|
31
|
Müllner M, Salmons B, Günzburg WH, Indik S. Identification of the Rem-responsive element of mouse mammary tumor virus. Nucleic Acids Res 2008; 36:6284-94. [PMID: 18835854 PMCID: PMC2577329 DOI: 10.1093/nar/gkn608] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) has previously been shown to encode a functional homolog of the human immunodeficiency virus-1 (HIV-1) nuclear export protein Rev, termed Rem. Here, we show that deletion of the rem gene from a MMTV molecular clone interfered with the nucleo-cytoplasmic transport of genomic length viral mRNA and resulted in a loss of viral capsid (Gag) protein production. Interestingly, nuclear export of single-spliced env mRNA was only moderately affected, suggesting that this transcript is, at least to some extent, transported via a distinct, Rem-independent export mechanism. To identify and characterize a cis-acting RNA element required for Rem responsiveness (RmRE), extensive computational and functional analyses were performed. By these means a region of 490 nt corresponding to positions nt 8517–nt 9006 in the MMTV reference strain was identified as RmRE. Deletion of this fragment, which spans the env-U3 junction region, abolished Gag expression. Furthermore, insertion of this sequence into a heterologous HIV-1-based reporter construct restored, in the presence of Rem, HIV-1 Gag expression to levels determined for the Rev/RRE export system. These results clearly demonstrate that the identified region, whose geometry resembles that of other retroviral-responsive elements, is capable to functionally substitute, in the presence of Rem, for Rev/RRE and thus provide unequivocal evidence that MMTV is a complex retrovirus.
Collapse
Affiliation(s)
- Matthias Müllner
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Heterocyclic compounds that inhibit Rev-RRE function and human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 2008; 52:3169-79. [PMID: 18625767 DOI: 10.1128/aac.00274-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A cell-based screening assay was performed to identify compounds that inhibited the postintegration stage of the human immunodeficiency virus (HIV) life cycle. This assay utilized a cell line that contains the HIV gag and pol genes expressed in a Rev-dependent fashion. The cell line produces about 10 to 15 ng of p24 per milliliter of medium over a 24-h period in the form of viruslike particles. Any compound that inhibits a postintegration step in the HIV life cycle scores in this assay by decreasing particle production. Forty thousand compounds were screened, and 192 compounds were selected from the original screen because they showed more than 50% inhibition at a 10 muM concentration. The cumulative evidence presented in this study strongly suggests that 2 of the 192 compounds work as inhibitors of HIV Rev function. This was determined by a variety of cell-based assays, although the compounds do not interfere with Rev-RRE (Rev response element) binding in vitro. Both compounds inhibit replication of the lab isolate NL4-3 as well as an HIV primary isolate from Brazil (93BR021) and thus are promising leads as therapeutic candidates that target HIV replication through inhibition of Rev function.
Collapse
|
33
|
Kaminski R, Darbinian N, Sawaya BE, Slonina D, Amini S, Johnson EM, Rappaport J, Khalili K, Darbinyan A. Puralpha as a cellular co-factor of Rev/RRE-mediated expression of HIV-1 intron-containing mRNA. J Cell Biochem 2008; 103:1231-45. [PMID: 17722108 PMCID: PMC2575347 DOI: 10.1002/jcb.21503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To ensure successful replication, HIV-1 has developed a Rev-mediated RNA transport system that promotes the export of unspliced genomic RNA from nuclei to cytoplasm. This process requires the Rev responsive element (RRE) that is positioned in the viral transcript encoding Env protein, as well as in unspliced and singly spliced viral transcripts. We identified Puralpha, a single-stranded nucleic acid binding protein as a cellular partner for Rev that augments the appearance of unspliced viral RNAs in the cytoplasm. A decrease in the level of Puralpha expression by siRNA diminishes the level of Rev-dependent expression of viral RNA. Through its nucleic acid binding domain, Puralpha exhibits the ability to interact with the multimerization and RBD domains of Rev. Similar to Rev, Puralpha associates with RRE and in the presence of Rev forms a complex with slower electrophoretic mobility than those from Rev:RRE and Puralpha:RRE. The interaction of Puralpha with RRE occurs in the cytoplasm where enhanced association of Rev with RRE is observed. Our data indicate that the partnership of Puralpha with Rev is beneficial for Rev-mediated expression of the HIV-1 genome.
Collapse
Affiliation(s)
- Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Picanço-Castro V, Fontes AM, Russo-Carbolante EMDS, Covas DT. Lentiviral-mediated gene transfer – a patent review. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.5.525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Rumbaugh JA, Li G, Rothstein J, Nath A. Ceftriaxone protects against the neurotoxicity of human immunodeficiency virus proteins. J Neurovirol 2007; 13:168-72. [PMID: 17505985 DOI: 10.1080/13550280601178218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human immunodeficiency virus (HIV) proteins Tat and gp120 have been implicated in the pathogenesis of HIV dementia by various mechanisms, including down-regulation of excitatory amino acid transporter-2 (EAAT2), which is responsible for inactivation of synaptic glutamate. Recent work indicates that beta-lactam antibiotics are potent stimulators of EAAT2 expression. The authors treated mixed human fetal neuronal cultures with recombinant gp120 or Tat, in the presence or absence of ceftriaxone, and determined neurotoxicity by measuring mitochondrial membrane potential and neuronal cell death. Ceftriaxone produced dose-dependent attenuation of the neurotoxicity and neuronal cell death caused by both viral proteins. This study demonstrates that this class of drugs may have therapeutic efficacy in HIV dementia.
Collapse
Affiliation(s)
- Jeffrey A Rumbaugh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
36
|
Brandt S, Blißenbach M, Grewe B, Konietzny R, Grunwald T, Überla K. Rev proteins of human and simian immunodeficiency virus enhance RNA encapsidation. PLoS Pathog 2007; 3:e54. [PMID: 17432934 PMCID: PMC1851978 DOI: 10.1371/journal.ppat.0030054] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/01/2007] [Indexed: 11/20/2022] Open
Abstract
The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5′ end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA. The AIDS pandemic is still an important public health problem, particularly in developing countries. A comprehensive understanding of the HIV replication cycle might allow development of new therapeutics. Despite 20 years of extensive research, the intracellular fate of the different RNAs produced during virus replication is not fully understood. It is known that the viral regulatory protein Rev binds to large viral RNAs and shuttles them from the nucleus to the cytoplasm by a cellular export pathway. We now provide evidence for a more far-reaching role of Rev. We observed that Rev enhances packaging of viral RNA into viral particles to a much larger extent than its effect on viral RNA levels in the cytoplasm. Thus, an early nuclear event (binding of Rev to the viral RNA) seems to be intimately linked to RNA encapsidation occurring at a late step of the viral replication cycle. Since Rev is not part of the viral particles, Rev seems to act indirectly, possibly by targeting the viral RNA to a cytoplasmic compartment favourable for RNA encapsidation. Thus, further studies on the function of Rev might also advance our understanding of cytoplasmic RNA trafficking and subcytoplasmic compartmentalization.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Maik Blißenbach
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Bastian Grewe
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Rebecca Konietzny
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Felber BK, Zolotukhin AS, Pavlakis GN. Posttranscriptional Control of HIV‐1 and Other Retroviruses and Its Practical Applications. ADVANCES IN PHARMACOLOGY 2007; 55:161-97. [PMID: 17586315 DOI: 10.1016/s1054-3589(07)55005-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
38
|
Oguariri RM, Brann TW, Imamichi T. Hydroxyurea and interleukin-6 synergistically reactivate HIV-1 replication in a latently infected promonocytic cell line via SP1/SP3 transcription factors. J Biol Chem 2006; 282:3594-604. [PMID: 17150965 DOI: 10.1074/jbc.m608150200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The existence of viral latency limits the success of highly active antiretroviral therapy. With the therapeutic intention of reactivating latent virus to induce a cure, in this study we assessed the impact of cell synchronizers on HIV gene activation in latently infected U1 cells and investigated the molecular mechanisms responsible for such effect. Latently infected U1 cells were treated with 10 drugs including hydroxyurea (HU) and HIV-1 replication monitored using a p24 antigen capture assay. We found that HU was able to induce HIV-1 replication by 5-fold. HU has been used in the clinical treatment of HIV-1-infected patients in combination with didanosine; therefore, we investigated the impact of HU on HIV-1 activation in the presence of the proinflammatory cytokines, interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha). IL-6 or TNF-alpha alone induced HIV replication by 18- and approximately 500-fold, respectively. Of interest, in the presence of HU, IL-6-mediated HIV-1 activation was enhanced by >90-fold, whereas TNF-alpha-mediated activation was inhibited by >30%. A reporter gene assay showed that HU and IL-6 synergized to activate HIV promoter activity via the Sp1 binding site. Electrophoretic mobility shift and supershift assays revealed increased binding of the Sp1 and Sp3 transcription factors to this region. Western blot analysis showed that HU and IL-6 co-stimulation resulted in increased levels of Sp1 and Sp3 proteins. In contrast, treatment with HU plus TNF-alpha down-regulated the expression of NF-kappaB. These findings suggest that Sp1/Sp3 is involved in controlling the HU/IL-6-induced reactivation of HIV-1 in latently infected cells.
Collapse
Affiliation(s)
- Raphael M Oguariri
- Laboratory of Human Retrovirology, Clinical Services Program, Science Applications International Corporation-Frederick Inc., NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
39
|
Kammler S, Otte M, Hauber I, Kjems J, Hauber J, Schaal H. The strength of the HIV-1 3' splice sites affects Rev function. Retrovirology 2006; 3:89. [PMID: 17144911 PMCID: PMC1697824 DOI: 10.1186/1742-4690-3-89] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 12/04/2006] [Indexed: 11/16/2022] Open
Abstract
Background The HIV-1 Rev protein is a key component in the early to late switch in HIV-1 splicing from early intronless (e.g. tat, rev) to late intron-containing Rev-dependent (e.g. gag, vif, env) transcripts. Previous results suggested that cis-acting sequences and inefficient 5' and 3' splice sites are a prerequisite for Rev function. However, we and other groups have shown that two of the HIV-1 5' splice sites, D1 and D4, are efficiently used in vitro and in vivo. Here, we focus on the efficiency of the HIV-1 3' splice sites taking into consideration to what extent their intrinsic efficiencies are modulated by their downstream cis-acting exonic sequences. Furthermore, we delineate their role in RNA stabilization and Rev function. Results In the presence of an efficient upstream 5' splice site the integrity of the 3' splice site is not essential for Rev function whereas an efficient 3' splice site impairs Rev function. The detrimental effect of a strong 3' splice site on the amount of Rev-dependent intron-containing HIV-1 glycoprotein coding (env) mRNA is not compensatable by weakening the strength of the upstream 5' splice site. Swapping the HIV-1 3' splice sites in an RRE-containing minigene, we found a 3' splice site usage which was variably dependent on the presence of the usual downstream exonic sequence. The most evident activation of 3' splice site usage by its usual downstream exonic sequence was observed for 3' splice site A1 which was turned from an intrinsic very weak 3' splice site into the most active 3' splice site, even abolishing Rev activity. Performing pull-down experiments with nuclear extracts of HeLa cells we identified a novel ASF/SF2-dependent exonic splicing enhancer (ESE) within HIV-1 exon 2 consisting of a heptameric sequence motif occurring twice (M1 and M2) within this short non-coding leader exon. Single point mutation of M1 within an infectious molecular clone is detrimental for HIV-1 exon 2 recognition without affecting Rev-dependent vif expression. Conclusion Under the conditions of our assay, the rate limiting step of retroviral splicing, competing with Rev function, seems to be exclusively determined by the functional strength of the 3' splice site. The bipartite ASF/SF2-dependent ESE within HIV-1 exon 2 supports cross-talk between splice site pairs across exon 2 (exon definition) which is incompatible with processing of the intron-containing vif mRNA. We propose that Rev mediates a switch from exon to intron definition necessary for the expression of all intron-containing mRNAs.
Collapse
Affiliation(s)
- Susanne Kammler
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 22.21, D-40225 Düsseldorf, Germany
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Bldg. 1130, DK-8000 Aarhus C, Denmark
| | - Marianne Otte
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 22.21, D-40225 Düsseldorf, Germany
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 26.03, D-40225 Düsseldorf, Germany
| | - Ilona Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Jørgen Kjems
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Bldg. 1130, DK-8000 Aarhus C, Denmark
| | - Joachim Hauber
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistrasse 52, D-20251 Hamburg, Germany
| | - Heiner Schaal
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 22.21, D-40225 Düsseldorf, Germany
| |
Collapse
|
40
|
Kim H, Yin J. Effects of RNA splicing and post-transcriptional regulation on HIV-1 growth: a quantitative and integrated perspective. ACTA ACUST UNITED AC 2006; 152:138-52. [PMID: 16986277 DOI: 10.1049/ip-syb:20050004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite major advances over the last two decades in our understanding of RNA splicing and (post-) transcriptional regulation in human immunodeficiency virus type-1 (HIV-1), debate continues on the mechanisms and effects of Rev protein on HIV-1 growth. Moreover, arguments that HIV-1 has been optimised for growth have been largely based on speculation. Here, we begin systematically to address these issues by developing a detailed kinetic model for HIV-1 intracellular development. The model accounts for transcription, successive steps in RNA splicing, nuclear export of mRNAs, translation and shuttling of Rev and Tat, Tat-mediated transactivation of transcription, thresholds on Rev in its effects on nuclear export of mRNA, and inhibitory effects of Rev on splicing. Using the model, we found that inefficient splicing of HIV-1 mRNA was generally beneficial for HIV-1 growth, but that an excessive reduction in the splicing efficiency could be detrimental, suggesting that there exists a splicing efficiency that optimises HIV-1 growth. Further, we identified two key contributors to splicing efficiency, the intrinsic splicing rate and the extent of Rev-mediated splicing inhibition, and we showed how these should be balanced for HIV-1 to optimise its growth. Finally, we found that HIV-1 growth is relatively insensitive to different levels of the Rev export threshold, and we suggest that this mechanism evolved to delay viral growth, perhaps to enable evasion of host defensive responses. In summary, our model provides a quantitative and qualitative framework for probing how constituent mechanisms contribute to the complex, yet logical, process of HIV-1 growth.
Collapse
Affiliation(s)
- Hwijin Kim
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87545, USA
| | | |
Collapse
|
41
|
Datta S, Ray PD, Nath A, Bhattacharyya D. Recognition based separation of HIV-Tat protein using avidin–biotin interaction in modified microfiltration membranes. J Memb Sci 2006. [DOI: 10.1016/j.memsci.2006.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Abstract
Viruses are replication competent genomes which are relatively gene-poor. Even the largest viruses (i.e. Herpesviruses) encode only slightly >200 open reading frames (ORFs). However, because viruses replicate obligatorily inside cells, and considering that evolution may be driven by a principle of economy of scale, it is reasonable to surmise that many viruses have evolved the ability to co-opt cell-encoded proteins to provide needed surrogate functions. An in silico survey of viral sequence databases reveals that most positive-strand and double-stranded RNA viruses have ORFs for RNA helicases. On the other hand, the genomes of retroviruses are devoid of virally-encoded helicase. Here, we review in brief the notion that the human immunodeficiency virus (HIV-1) has adopted the ability to use one or more cellular RNA helicases for its replicative life cycle.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Medicine, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) relies on both partial and complete splicing of its full-length RNA transcripts to generate a distribution of essential spliced mRNA products. The complexity of the splicing process, which can employ multiple alternative splice sites, challenges our ability to understand how mutations in splice sites may influence the composition of the resulting mRNA pool and, more broadly, the development of viral progeny. Here, we begin to systematically address these issues by developing a mechanistic mathematical model for the splicing process. We identify as key parameters the probabilities that the cellular splice machinery selects specific splice acceptors, and we show how the splicing process depends on these probabilities. Further, by incorporating this splicing model into a detailed kinetic model for HIV-1 intracellular development we find that an increase in the fraction of either rev or tat mRNA in the HIV-1 mRNA pool is generally beneficial for HIV-1 growth. However, a splice site mutation that excessively increases the fraction of either mRNA can be detrimental due to the corresponding reduction in the other mRNA, suggesting that a balance of Rev and Tat is needed in order for HIV-1 to optimize its growth. Although our model is based on still very limited quantitative data on RNA splicing, Rev-mediated splicing regulation and nuclear export, and the effects of associated mutations, it serves as a starting point for better understanding how variations in essential post-transcriptional functions can impact the intracellular development of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3633 Engineering Hall, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | |
Collapse
|
44
|
Abstract
The persistence of human immunodeficiency virus type-1 (HIV-1) has long been attributed to its high mutation rate and the capacity of its resulting heterogeneous virus populations to evade host immune responses and antiviral drugs. However, this view is incomplete because it does not explain how the virus persists in light of the adverse effects mutations in the viral genome and variations in host functions can potentially have on viral functions and growth. Here we show that the resilience of HIV-1 can be credited, at least in part, to a robust response to perturbations that emerges as an intrinsic property of its intracellular development. Specifically, robustness in HIV-1 arises through the coupling of two feedback loops: a Rev-mediated negative feedback and a Tat-mediated positive feedback. By employing a mechanistic kinetic model for its growth we found that HIV-1 buffers the effects of many potentially detrimental variations in essential viral and cellular functions, including the binding of Rev to mRNA; the level of rev mRNA in the pool of fully spliced mRNA; the splicing of mRNA; the Rev-mediated nuclear export of incompletely-spliced mRNAs; and the nuclear import of Tat and Rev. The virus did not, however, perform robustly to perturbations in all functions. Notably, HIV-1 tended to amplify rather than buffer adverse effects of variations in the interaction of Tat with viral mRNA. This result shows how targeting therapeutics against molecular components of the viral positive-feedback loop open new possibilities and potential in the effective treatment of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| | | |
Collapse
|
45
|
Jounai N, Okuda K, Kojima Y, Toda Y, Hamajima K, Ohba K, Klinman D, Xin KQ. Contribution of the rev gene to the immunogenicity of DNA vaccines targeting the envelope glycoprotein of HIV. J Gene Med 2003; 5:609-17. [PMID: 12825200 DOI: 10.1002/jgm.391] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The Rev protein of HIV plays a critical role in the export of viral mRNA from the nucleus to the cytoplasm of infected cells. This work examines the effect of introducing rev into a DNA vaccine encoding the Env protein of HIV, and compares the activity of env genes regulated by CMV versus CAG promoters. METHODS The HIV Env gp160 encoding gene with or without the rev gene was subcloned into a CMV promoter or a CAG promoter-driven expression plasmid. The Env protein expression of the plasmids was examined in vitro and the HIV-specific immunity was explored in BALB/c mice by an intramuscular route. The immune mice were intraperitoneally challenged with an HIV Env-expression vaccinia virus. RESULTS Results indicate that the CAG promoter induces significantly higher levels of Env expression, and better immune responses, than the CMV promoter. Incorporating the rev gene into these plasmids further boosts antigen expression and immunogenicity. Indeed, vaccination with the pCAGrev/env or pCMVrev/env plasmid resulted in 1000-fold lower viral load than that with pCMVenv when the mice were challenged with an Env-expressing vaccinia virus. CONCLUSIONS Incorporating rev into a DNA vaccine significantly increases the level of expression and immunogenicity of a co-expressed env gene, and that protective efficacy is further improved by utilizing a pCAG promoter.
Collapse
Affiliation(s)
- Nao Jounai
- Department of Bacteriology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wolff H, Brack-Werner R, Neumann M, Werner T, Schneider R. Integrated functional and bioinformatics approach for the identification and experimental verification of RNA signals: application to HIV-1 INS. Nucleic Acids Res 2003; 31:2839-51. [PMID: 12771211 PMCID: PMC156724 DOI: 10.1093/nar/gkg390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 02/25/2003] [Accepted: 04/04/2003] [Indexed: 12/15/2022] Open
Abstract
Regulation of gene expression involves sequence elements in nucleic acids. In promoters, multiple sequence elements cooperate as functional modules, which in combination determine overall promoter activity. We previously developed computational tools based on this hierarchical structure for in silico promoter analysis. Here we address the functional organization of post-transcriptional control elements, using the HIV-1 genome as a model. Numerous mutagenesis studies demonstrate that expression of HIV structural proteins is restricted by inhibitory sequences (INS) in HIV mRNAs in the absence of the HIV-1 Rev protein. However, previous attempts to detect conserved sequence patterns of HIV-1 INS have failed. We defined four distinct sequence patterns for inhibitory motifs (weight matrices), which identified 22 out of the 25 known INS as well as several new candidate INS regions contained in numerous HIV-1 strains. The conservation of INS motifs within the HIV genome was not due to overall sequence conservation. The functionality of two candidate INS regions was analyzed with a new assay that measures the effect of non-coding mRNA sequences on production of red fluorescent reporter protein. Both new INS regions showed inhibitory activity in sense but not in antisense orientation. Inhibitory activity increased by combining both INS regions in the same mRNA. Inhibitory activity of known and new INS regions was overcome by co-expression of the HIV-1 Rev protein.
Collapse
Affiliation(s)
- Horst Wolff
- Institute of Molecular Virology and. Institute of Experimental Genetics, GSF-National Research Center for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
47
|
Suptawiwat O, Sutthent R, Lee TH, Auewarakul P. Intragenic HIV-1 env sequences that enhance gag expression. Virology 2003; 309:1-9. [PMID: 12726721 DOI: 10.1016/s0042-6822(02)00084-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of HIV-1 genes is regulated at multiple levels including the complex RNA splicing and transport mechanisms. Multiple cis-acting elements involved in these regulations have been previously identified in various regions of HIV-1 genome. Here we show that another cis-acting element was present in HIV-1 env region. This element enhanced the expression of Gag when inserted together with Rev response element (RRE) into a truncated HIV-1 genome in the presence of Rev. The enhancing activity was mapped to a 263-bp fragment in the gp41 region downstream to RRE. RNA analysis showed that it might function by promoting RNA stability and Rev-dependent RNA export. The enhancement was specific to Rev-dependent expression, since it did not enhance Gag expression driven by Sam68, a cellular protein that has been shown to be able to substitute for Rev in RNA export function.
Collapse
Affiliation(s)
- Ornpreya Suptawiwat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | | | | |
Collapse
|
48
|
Lesnik EA, Sampath R, Ecker DJ. Rev response elements (RRE) in lentiviruses: an RNAMotif algorithm-based strategy for RRE prediction. Med Res Rev 2002; 22:617-36. [PMID: 12369091 DOI: 10.1002/med.10027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lentiviruses (a sub-family of the retroviridae family) include primate and non-primate viruses associated with chronic diseases of the immune system and the central nervous system. All lentiviruses encode a regulatory protein Rev that is essential for post-transcriptional transport of the unspliced and incompletely spliced viral mRNAs from nuclei to cytoplasm. The Rev protein acts via binding to an RNA structural element known as the Rev responsive element (RRE). The RRE location and structure and the mechanism of the Rev-RRE interaction in primate and non-primate lentiviruses have been analyzed and compared. Based on structural data available for RRE of HIV-1, a two step computational strategy for prediction of putative RRE regions in lentivirus genomes has been developed. First, the RNAMotif algorithm was used to search genomic sequence for highly structured regions (HSR). Then the program RNAstructure, version 3.6 was used to calculate the structure and thermodynamic stability of the region of approximately 350 nucleotides encompassing the HSR. Our strategy correctly predicted the locations of all previously reported lentivirus RREs. We were able also to predict the locations and structures of potential RREs in four additional lentiviruses.
Collapse
Affiliation(s)
- Elena A Lesnik
- IBIS Therapeutics, 2292 Faraday Ave, Carlsbad, California 92008, USA
| | | | | |
Collapse
|
49
|
Li J, Liu Y, Kim BO, He JJ. Direct participation of Sam68, the 68-kilodalton Src-associated protein in mitosis, in the CRM1-mediated Rev nuclear export pathway. J Virol 2002; 76:8374-82. [PMID: 12134041 PMCID: PMC155124 DOI: 10.1128/jvi.76.16.8374-8382.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Accepted: 05/08/2002] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication requires efficient nuclear export of incompletely spliced and unspliced HIV-1 mRNA transcripts, which is achieved by Rev expression at an early stage of the viral life cycle. We have recently shown that expression of Sam68, the 68-kDa Src-associated protein in mitosis, is able to alleviate Rev function block in astrocytes by promoting Rev nuclear export. In the present study, we utilized an antisense RNA expression strategy to down-modulate constitutive Sam68 expression and examined its effect on Rev function, HIV-1 gene expression, and viral replication. These results showed that down-modulation of constitutive Sam68 expression markedly inhibited HIV-1 production in 293T cells and viral replication in T lymphocytes such as Jurkat and CEM cells, as well as human peripheral blood mononuclear cells (PBMCs). Rev-dependent in trans complementation and reporter gene assays further demonstrated that inhibition of HIV-1 gene expression by Sam68 down-modulation was due to impeded Rev activity. Moreover, digital fluorescence microscopic imaging revealed that down-modulation of Sam68 expression caused exclusive nuclear retention and colocalization of both Rev and CRM1. Taken together, these data suggest that adequate Sam68 expression is required for Rev function and, thereby, for HIV-1 gene expression and viral replication, and they support the notion that Sam68 is directly involved in the CRM1-mediated Rev nuclear export pathway.
Collapse
Affiliation(s)
- Jinliang Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
50
|
Dangel AW, Hull S, Roberts TM, Boris-Lawrie K. Nuclear interactions are necessary for translational enhancement by spleen necrosis virus RU5. J Virol 2002; 76:3292-300. [PMID: 11884554 PMCID: PMC136029 DOI: 10.1128/jvi.76.7.3292-3300.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' long terminal repeat of spleen necrosis virus (SNV) facilitates Rev/Rev-responsive element (RRE)-independent expression of intron-containing human immunodeficiency virus type 1 (HIV-1) gag. The SNV RU5 region, which corresponds to the 165-nucleotide 5' RNA terminus, functions in a position- and orientation-dependent manner to enhance polysome association of intron-containing HIV-1 gag RNA and also nonviral luc RNA. Evidence is mounting that association with nuclear factors during intron removal licenses mRNAs for nuclear export, efficient translation, and nonsense-mediated decay. This project addressed the relationship between the nuclear export pathway of SNV RU5-reporter RNA and translational enhancement. Results of RNA transfection experiments suggest that cytoplasmic proteins are insufficient for SNV RU5 translational enhancement of gag or luc RNA. Reporter gene assays, leptomycin B (LMB) sensitivity experiments, and RNase protection assays indicate that RU5 gag RNA accesses a nuclear export pathway that is distinct from the LMB-inhibited leucine-rich nuclear export sequence-dependent CRM1 pathway, which is used by the HIV-1 RRE. As a unique tool with which to investigate the relationship between different RNA trafficking routes and translational enhancement, SNV RU5 and Rev/RRE were combined on a single gag RNA. We observed a less-than-synergistic effect on cytoplasmic mRNA utilization. Instead, Rev/RRE diverts RU5 gag RNA to the CRM1-dependent, LMB-inhibited pathway and abrogates translational enhancement by SNV RU5. Our study is the first to show that a nuclear factor(s) directs SNV RU5-containing RNAs to a distinct export pathway that is not inhibited by LMB and programs the intron-containing transcript for translational enhancement.
Collapse
Affiliation(s)
- Andrew W Dangel
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | |
Collapse
|