1
|
Sin SH, Eason AB, Kim Y, Schneider JW, Damania B, Dittmer DP. The complete Kaposi sarcoma-associated herpesvirus genome induces early-onset, metastatic angiosarcoma in transgenic mice. Cell Host Microbe 2024; 32:755-767.e4. [PMID: 38653242 PMCID: PMC11305081 DOI: 10.1016/j.chom.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Kaposi sarcoma (KS) is the most common cancer in persons living with HIV. It is caused by KS-associated herpesvirus (KSHV). There exists no animal model for KS. Pronuclear injection of the 170,000-bp viral genome induces early-onset, aggressive angiosarcoma in transgenic mice. The tumors are histopathologically indistinguishable from human KS. As in human KS, all tumor cells express the viral latency-associated nuclear antigen (LANA). The tumors transcribe most viral genes, whereas endothelial cells in other organs only transcribe the viral latent genes. The tumor cells are of endothelial lineage and exhibit the same molecular pattern of pathway activation as KS, namely phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR, interleukin-10 (IL-10), and vascular endothelial growth factor (VEGF). The KSHV-induced tumors are more aggressive than Ha-ras-induced angiosarcomas. Overall survival is increased by prophylactic ganciclovir. Thus, whole-virus KSHV-transgenic mice represent an accurate model for KS and open the door for the genetic dissection of KS pathogenesis and evaluation of therapies, including vaccines.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony B Eason
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Johann W Schneider
- National Health Laboratory Service, Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Song J, Sun X, Zhou Y, Li S, Wu J, Yang L, Zhou D, Yang Y, Liu A, Lu M, Michael R, Qin L, Yang D. Early application of IFNγ mediated the persistence of HBV in an HBV mouse model. Antiviral Res 2024; 225:105872. [PMID: 38556058 DOI: 10.1016/j.antiviral.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The antiviral activity of interferon gamma (IFNγ) against hepatitis B virus (HBV) was demonstrated both in vivo and in vitro in a previous study. IFNγ can suppress HBV replication by accelerating the decay of replication-competent nucleocapsids of HBV. However, in this study, we found that the direct application of the mouse IFNγ (mIFNγ) expression plasmid to the liver of an HBV hydrodynamic injection (HI) mouse model led to the persistence of HBV, as indicated by sustained HBsAg and HBeAg levels in the serum as well as an increased percentage of the HBsAg positive mice, whereas the level of HBV DNA in the serum and the expression of HBcAg in the liver were inhibited at the early stage after HI. Meanwhile, we found that the productions of both HBcAb and HBsAb were suppressed after the application of mIFNγ. In addition, we found that HBV could be effectively inhibited in mice immunized with HBsAg expression plasmid before the application of mIFNγ. Furthermore, mIFNγ showed antiviral effect and promoted the production of HBsAb when the mice subjected to the core-null HBV plasmid. These results indicate that the application of mIFNγ in the HBV HI mouse model, the mice showed defective HBcAg-specific immunity that impeded the production of HBcAb and HBsAb, finally allowing the persistence of the virus. Moreover, IFNγ-induced negative immune regulatory factors also play an important role in virus persistence.
Collapse
Affiliation(s)
- Jingjiao Song
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Xiliang Sun
- Clinical Laboratory, Qingdao West Coast New District People's Hospital, Shandong, PR China.
| | - Yun Zhou
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Receptors-mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, PR China.
| | - Sheng Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Lu Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Di Zhou
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Yan Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | | | - Li Qin
- Department of Dermatology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, PR China.
| | - Dongliang Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
3
|
Songtanin B, Chaisrimaneepan N, Mendóza R, Nugent K. Burden, Outcome, and Comorbidities of Extrahepatic Manifestations in Hepatitis B Virus Infections. Viruses 2024; 16:618. [PMID: 38675959 PMCID: PMC11055091 DOI: 10.3390/v16040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatitis B virus (HBV) infections affect approximately 296 million people around the world, and the prevalence of any past or present HBV infection during the years 2015-2018 was as high as 4.3%. Acute HBV infection often presents with nonspecific symptoms and is usually self-limited, but 5% of patients can have persistent infections leading to chronic HBV infection and the risk of turning into chronic HBV infection is significantly higher in babies with vertical transmission (95%). Patients with chronic HBV infection are usually asymptomatic, but 15 to 40% of chronic HBV carriers develop cirrhosis and/or hepatocellular carcinoma. In addition to liver-related disorders, HBV is also associated with several extrahepatic complications, including glomerulonephritis, cryoglobulinemia, neurologic disorders, psychological manifestations, polyarthritis, and dermatologic disorders. Making the diagnosis of HBV can be challenging since patients with chronic infections can remain symptom-free for decades before developing cirrhosis or hepatocellular carcinoma, and patients with acute HBV infection may have only mild, nonspecific symptoms. Therefore, understanding how this virus causes extrahepatic complications can help clinicians consider this possibility in patients with diverse symptom presentations. The pathophysiology of these extrahepatic disorders likely involves immune-related tissue injury following immune complex formation and inflammatory cascades. In some cases, direct viral infection of extrahepatic tissue may cause a clinical syndrome. Currently, the American Association for the Study of Liver Diseases recommends treatment of chronic HBV infections with interferon therapy and/or nucleos(t)ide analogs, and this treatment has been reported to improve some extrahepatic disorders in some patients with chronic HBV infection. These extrahepatic complications have a significant role in disease outcomes and increase medical costs, morbidity, and mortality. Therefore, understanding the frequency and pathogenesis of these extrahepatic complications provides important information for both specialists and nonspecialists and may help clinicians identify patients at an earlier stage of their infection.
Collapse
Affiliation(s)
- Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (K.N.)
| | | | | | | |
Collapse
|
4
|
Zhao K, Guo F, Wang J, Zhong Y, Yi J, Teng Y, Xu Z, Zhao L, Li A, Wang Z, Chen X, Cheng X, Xia Y. Limited disassembly of cytoplasmic hepatitis B virus nucleocapsids restricts viral infection in murine hepatic cells. Hepatology 2023; 77:1366-1381. [PMID: 35718932 DOI: 10.1002/hep.32622] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Murine hepatic cells cannot support hepatitis B virus (HBV) infection even with supplemental expression of viral receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). However, the specific restricted step remains elusive. In this study, we aimed to dissect HBV infection process in murine hepatic cells. APPROACH AND RESULTS Cells expressing hNTCP were inoculated with HBV or hepatitis delta virus (HDV). HBV pregenomic RNA (pgRNA), covalently closed circular DNA (cccDNA), and different relaxed circular DNA (rcDNA) intermediates were produced in vitro . The repair process from rcDNA to cccDNA was assayed by in vitro repair experiments and in mouse with hydrodynamic injection. Southern blotting and in situ hybridization were used to detect HBV DNA. HBV, but not its satellite virus HDV, was restricted from productive infection in murine hepatic cells expressing hNTCP. Transfection of HBV pgRNA could establish HBV replication in human, but not in murine, hepatic cells. HBV replication-competent plasmid, cccDNA, and recombinant cccDNA could support HBV transcription in murine hepatic cells. Different rcDNA intermediates could be repaired to form cccDNA both in vitro and in vivo . In addition, rcDNA could be detected in the nucleus of murine hepatic cells, but cccDNA could not be formed. Interestingly, nuclease sensitivity assay showed that the protein-linked rcDNA isolated from cytoplasm was completely nuclease resistant in murine, but not in human, hepatic cells. CONCLUSIONS Our results imply that the disassembly of cytoplasmic HBV nucleocapsids is restricted in murine hepatic cells. Overcoming this limitation may help to establish an HBV infection mouse model.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Fangteng Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Youquan Zhong
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Junzhu Yi
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Li Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Aixin Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Zichen Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Xinwen Chen
- State Key Laboratory of Virology , Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan , China
- Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , Guangzhou , China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
- Wuhan University Center for Pathology and Molecular Diagnostics , Zhongnan Hospital of Wuhan University , Wuhan , China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases , Wuhan , China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| |
Collapse
|
5
|
Wei L, Cafiero TR, Tseng A, Gertje HP, Berneshawi A, Crossland NA, Ploss A. Conversion of hepatitis B virus relaxed circular to covalently closed circular DNA is supported in murine cells. JHEP Rep 2022; 4:100534. [PMID: 36035363 PMCID: PMC9403495 DOI: 10.1016/j.jhepr.2022.100534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background & Aims HBV has a narrow host restriction, with humans and chimpanzees representing the only known natural hosts. The molecular correlates of resistance in species that are commonly used in biomedical research, such as mice, are currently incompletely understood. Expression of human NTCP (hNTCP) in mouse hepatocytes enables HBV entry, but subsequently covalently closed circular (cccDNA) does not form in most murine cells. It is unknown if this blockade in cccDNA formation is due to deficiency in repair of relaxed circular DNA (rcDNA) to cccDNA. Methods Here, we deployed both in vivo and in vitro virological and biochemical approaches to investigate if murine cells contain a complete set of repair factors capable of converting HBV rcDNA to cccDNA. Results We demonstrate that HBV cccDNA does form in murine cell culture or in mice when recombinant rcDNA without a protein adduct is directly introduced into cells. We further show that the murine orthologues of core components in DNA lagging strand synthesis, required for the repair of rcDNA to cccDNA in human cells, can support this crucial step in the HBV life cycle. It is worth noting that recombinant HBV rcDNA substrates, either without a protein adduct or containing neutravidin to mimic HBV polymerase, were used in our study; it remains unclear if the HBV polymerase removal processes are the same in mouse and human cells. Conclusions Collectively, our data suggest that the HBV life cycle is blocked post entry and likely before the repair stage in mouse cells, which yields critical insights that will aid in the construction of a mouse model with inbred susceptibility to HBV infection. Lay summary Hepatitis B virus (HBV) is only known to infect humans and chimpanzees in nature. Mouse models are often used in modeling disease pathogenesis and preclinical research to assess the efficacy and safety of interventions before they are then tested in human participants. However, because mice are not susceptible to HBV infection it is difficult to accurately model human infection (and test potential treatments) in mouse models. Herein, we have shown that mice are able to perform a key step in the HBV life cycle, tightening the net around the possible reason why HBV can not efficiently infect and replicate in mice.
Collapse
Key Words
- FEN-1, flap endonuclease 1
- HCC, hepatocellular carcinoma
- HDD, hydrodynamic delivery
- LIG1, DNA ligase 1
- NA-RrcDNA, neutravidin-recombinant relaxed circular DNA
- PCNA, proliferating cell nuclear antigen
- POLδ, DNA polymerase delta
- RFC, replication factor C
- RrcDNA, recombinant relaxed circular DNA
- animal model
- cccDNA, covalently closed circular DNA
- hNTCP, human sodium taurocholate co-transporting polypeptide
- hepatitis B virus
- rcDNA, relaxed circular DNA
- species tropism
- ssDNA, single-stranded DNA
- viral hepatitis
Collapse
Affiliation(s)
- Lei Wei
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Thomas R. Cafiero
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Anna Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Andrew Berneshawi
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
6
|
Akbar SMF, Al Mahtab M, Khan S, Yoshida O, Aguilar JC, Gerardo GN, Hiasa Y. Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside. Vaccines (Basel) 2022; 10:vaccines10050746. [PMID: 35632502 PMCID: PMC9144882 DOI: 10.3390/vaccines10050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic hepatitis B (CHB) is a highly complicated pathological process in which the disease is initiated by the hepatitis B virus (HBV); however, host immune responses are primarily responsible for variable extents of liver damage. If the patients with CHB remain untreated, many CHB patients will eventually develop complications like cirrhosis of the liver (LC) and hepatocellular carcinoma (HCC). In 2019, an estimated 882,000 patients died due to HBV-related complications worldwide. Accordingly, several drugs with antiviral properties have been used to treat CHB patients during the last four decades. However, the treatment outcome is not satisfactory because viral suppression is not usually related to the containment of progressive liver damage. Although proper reconstruction of host immunity is essential in CHB patients, as of today, there is no acceptable immune therapeutic protocol for them. These realities have exposed new, novel, and innovative therapeutic regimens for the management of CHB patients. This review will update the scope and limitation of the different innovative antiviral and immune therapeutic approaches for restoring effective host immunity and containing the virus in CHB patients to block progression to LC and HCC.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
- Correspondence: ; Tel.: +81-89-960-5308; Fax: +81-89-960-5310
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh;
| | - Sakirul Khan
- Department of Microbiology, Oita University, Oita 879-5593, Japan;
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| | - Julio Cesar Aguilar
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Guillen Nieto Gerardo
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| |
Collapse
|
7
|
Du Y, Broering R, Li X, Zhang X, Liu J, Yang D, Lu M. In Vivo Mouse Models for Hepatitis B Virus Infection and Their Application. Front Immunol 2021; 12:766534. [PMID: 34777385 PMCID: PMC8586444 DOI: 10.3389/fimmu.2021.766534] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of effective vaccination, hepatitis B virus (HBV) infection continues to be a major challenge worldwide. Research efforts are ongoing to find an effective cure for the estimated 250 million people chronically infected by HBV in recent years. The exceptionally limited host spectrum of HBV has limited the research progress. Thus, different HBV mouse models have been developed and used for studies on infection, immune responses, pathogenesis, and antiviral therapies. However, these mouse models have great limitations as no spread of HBV infection occurs in the mouse liver and no or only very mild hepatitis is present. Thus, the suitability of these mouse models for a given issue and the interpretation of the results need to be critically assessed. This review summarizes the currently available mouse models for HBV research, including hydrodynamic injection, viral vector-mediated transfection, recombinant covalently closed circular DNA (rc-cccDNA), transgenic, and liver humanized mouse models. We systematically discuss the characteristics of each model, with the main focus on hydrodynamic injection mouse model. The usefulness and limitations of each mouse model are discussed based on the published studies. This review summarizes the facts for considerations of the use and suitability of mouse model in future HBV studies.
Collapse
Affiliation(s)
- Yanqin Du
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaoran Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Akbar SMF, Al Mahtab M, Cesar Aguilar J, Uddin MH, Khan MSI, Yoshida O, Penton E, Gerardo GN, Hiasa Y. Exploring evidence-based innovative therapy for the treatment of chronic HBV infection: experimental and clinical. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2025] Open
Abstract
With the advent of various vaccines and antimicrobial agents during the 20th century, the control and containment of infectious diseases appeared to be a matter of time. However, studies unveiled the diverse natures of microbes, their lifestyle, and pathogenetic potentials. Since the ground-breaking discovery of the hepatitis B virus (HBV) by Baruch Blumberg and the subsequent development of a vaccine in the early 1980s, the main task of the scientific community has been to develop a proper management strategy for HBV-induced chronic liver diseases. In the early 1980’s, standard interferon (IFN) induced a reduction of HBV DNA levels, followed by the normalization of serum transaminases (alanine aminotransferase, ALT), in some chronic hepatitis B (CHB) patients. However, in the course of time, the limitations of standard IFN became evident, and the search for an alternative began. In the late 1980’s, nucleoside analogs entered the arena of CHB treatment as oral drugs with potent antiviral capacities. At the beginning of the 21st century, insights were developed into the scope and limitations of standard IFN, pegylated-IFN as well as nucleoside analogs for treating CHB. Considering the non-cytopathic nature of the HBV, the presence of covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocytes and HBV-induced immune-mediated liver damages, a new field of CHB management was initiated by modulating the hosts’ immune system through immune therapy. This review will discuss the nature and design of innovative immune therapy for CHB.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka 1000, Bangladesh
| | - Julio Cesar Aguilar
- Center for Genetic Engineering and Biotechnology, Havana, Havana 10600, Cuba
| | | | - Md. Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| | - Eduardo Penton
- Center for Genetic Engineering and Biotechnology, Havana, Havana 10600, Cuba
| | | | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| |
Collapse
|
9
|
Li YT, Wu HL, Liu CJ. Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int J Mol Sci 2021; 22:9380. [PMID: 34502289 PMCID: PMC8431721 DOI: 10.3390/ijms22179380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an important cause of cancer death worldwide, and hepatitis B virus (HBV) infection is a major etiology, particularly in the Asia-Pacific region. Lack of sensitive biomarkers for early diagnosis of HCC and lack of effective therapeutics for patients with advanced HCC are the main reasons for high HCC mortality; these clinical needs are linked to the molecular heterogeneity of hepatocarcinogenesis. Animal models are the basis of preclinical and translational research in HBV-related HCC (HBV-HCC). Recent advances in methodology have allowed the development of several animal models to address various aspects of chronic liver disease, including HCC, which HBV causes in humans. Currently, multiple HBV-HCC animal models, including conventional, hydrodynamics-transfection-based, viral vector-mediated transgenic, and xenograft mice models, as well as the hepadnavirus-infected tree shrew and woodchuck models, are available. This review provides an overview of molecular mechanisms and animal models of HBV-HCC. Additionally, the metastatic tumor antigen 1 (MTA1), a cancer-promoting molecule, was introduced as an example to address the importance of a suitable animal model for studying HBV-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
10
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
11
|
Tu T, Zhang H, Urban S. Hepatitis B Virus DNA Integration: In Vitro Models for Investigating Viral Pathogenesis and Persistence. Viruses 2021; 13:v13020180. [PMID: 33530322 PMCID: PMC7911709 DOI: 10.3390/v13020180] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a globally-distributed pathogen and is a major cause of liver disease. HBV (or closely-related animal hepadnaviruses) can integrate into the host genome, but (unlike retroviruses) this integrated form is replication-defective. The specific role(s) of the integrated HBV DNA has been a long-standing topic of debate. Novel in vitro models of HBV infection combined with sensitive molecular assays now enable researchers to investigate this under-characterised phenomenon with greater ease and precision. This review covers the contributions these systems have made to understanding how HBV DNA integration induces liver cancer and facilitates viral persistence. We summarise the current findings into a working model of chronic HBV infection and discuss the clinical implications of this hypothetical framework on the upcoming therapeutic strategies used to curb HBV-associated pathogenesis.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| | - Henrik Zhang
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Hayes CN, Chayama K. Unmet Needs in Basic Research of Hepatitis B Virus Infection: In Vitro and In Vivo Models. HEPATITIS B VIRUS AND LIVER DISEASE 2021:29-49. [DOI: 10.1007/978-981-16-3615-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Burwitz BJ, Zhou Z, Li W. Animal models for the study of human hepatitis B and D virus infection: New insights and progress. Antiviral Res 2020; 182:104898. [PMID: 32758525 DOI: 10.1016/j.antiviral.2020.104898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a member of the Hepadnaviridae family and infects hepatocytes, leading to liver pathology in acutely and chronically infected individuals. Co-infection with Hepatitis D virus (HDV), which requires the surface proteins of HBV to replicate, can exacerbate this disease progression. Thus, the >250 million people living with chronic HBV infection, including 13 million co-infected with HDV, would significantly benefit from an effective and affordable curative treatment. Animal models are crucial to the development of innovative disease therapies, a paradigm repeated again and again throughout the fields of immunology, neurology, reproduction, and development. Unfortunately, HBV has a highly-restricted species tropism, infecting limited species including humans, chimpanzees, and treeshrews. The first experimentally controlled studies of HBV infection were following inoculation of human volunteers in 1942, which identified the transmissibility of hepatitis through serum transfer and led to the hypothesis that the etiological agent was viral. Subsequent research in chimpanzees (Desmyter et al., 1971; Lichter, 1969) and later in other species, such as the treeshrews (Walter et al., 1996; Yan et al., 1996), further confirmed the viral origin of hepatitis B. Shortly thereafter, HBV-like viral infections were identified in woodchucks (Summers et al., 1978; Werner et al., 1979) and ducks, and much of our understanding of HBV replication can be attributed to these important models. However, with the exodus of chimpanzees from research and the limited reagents and historical data for treeshrews and other understudied species, there remains an urgent need to identify physiologically relevant models of chronic HBV infection. While large strides have been made in generating such models, particularly over the past two decades, there is still no available model that faithfully recapitulates the immunity and pathogenesis of HBV infection. Here, we discuss recent advancements in the generation of murine and non-human primate (NHP) models of HBV/HDV infection.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing, 102206, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
14
|
In Vitro Systems for Studying Different Genotypes/Sub-Genotypes of Hepatitis B Virus: Strengths and Limitations. Viruses 2020; 12:v12030353. [PMID: 32210021 PMCID: PMC7150782 DOI: 10.3390/v12030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally, accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus-host range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct geographical distributions and prevalence, which have different natural histories of infection, clinical manifestation, and response to current antiviral agents. Here, we review various in vitro systems used to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal for pan-genotypic HBV research or drug development and therefore further improvement is required. It is necessary to establish a centralized repository of HBV-related generated materials, which are readily accessible to HBV researchers, with international collaboration toward advancement and development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic and/or customized activity.
Collapse
|
15
|
Lu T, Hu F, Yue H, Yang T, Ma G. The incorporation of cationic property and immunopotentiator in poly (lactic acid) microparticles promoted the immune response against chronic hepatitis B. J Control Release 2020; 321:576-588. [PMID: 32112853 DOI: 10.1016/j.jconrel.2020.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Biodegradable microparticles (MPs) as vaccine adjuvants have sparked the passion of researchers in recent decades. However, it is still a huge challenge to develop an efficient vaccine delivery system to reverse chronic hepatitis B (CHB). Herein, we integrated a physiochemical merit and an immunopotentiator property in poly (lactic acid) (PLA) MPs and verified the therapeutic effect on CHB model mice. We prepared uniform MPs with insertion of cationic lipid didodecyldimethylammonium bromide (DDAB), which endowed a physiochemical merit for MPs. Such a DDAB-PLA (DP) group raised the recruitment of immune cells to the injection site along with the secretion of chemokines and pro-inflammatory cytokines, promoting the activation of antigen-presenting cells (APCs). Further combination of stimulator of interferon genes (STING) agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) (DP-D) elevated 5.8-fold higher interferon regulatory factor 7 (IRF-7) expression compared to that for DP group. The DP group showed preferred lysosome escape advantage, which was in line with the DMXAA release behavior and the intracellular target of DMXAA. In addition, DP-D vaccine augmented the IFN-γ secreting splenocytes and motivated Th1-biased antibodies in a more efficient way than that for the DP group. In the CHB model, the MPs based vaccines achieved 50% HBsAg seroconversion rate, and HBcAg in the liver also got a reduction. DP-D produced higher amount of memory T/B cells to confer protection in a sustained manner. Present work thus provided a promising strategy, via integrating a fine-tuned physiochemical property and an immunopotentiator virtue in the MPs, which synergistically reinforced both humoral and cellular immune responses against CHB.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fumin Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 211816, PR China.
| |
Collapse
|
16
|
Oropeza CE, Tarnow G, Sridhar A, Taha TY, Shalaby RE, McLachlan A. The Regulation of HBV Transcription and Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:39-69. [PMID: 31741333 DOI: 10.1007/978-981-13-9151-4_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatitis B virus (HBV) is a major human pathogen lacking a reliable curative therapy. Current therapeutics target the viral reverse transcriptase/DNA polymerase to inhibit viral replication but generally fail to resolve chronic HBV infections. Due to the limited coding potential of the HBV genome, alternative approaches for the treatment of chronic infections are desperately needed. An alternative approach to the development of antiviral therapeutics is to target cellular gene products that are critical to the viral life cycle. As transcription of the viral genome is an essential step in the viral life cycle, the selective inhibition of viral RNA synthesis is a possible approach for the development of additional therapeutic modalities that might be used in combination with currently available therapies. To address this possibility, a molecular understanding of the relationship between viral transcription and replication is required. The first step is to identify the transcription factors that are the most critical in controlling the levels of HBV RNA synthesis and to determine their in vivo role in viral biosynthesis. Mapping studies in cell culture utilizing reporter gene constructs permitted the identification of both ubiquitous and liver-enriched transcription factors capable of modulating transcription from the four HBV promoters. However, it was challenging to determine their relative importance for viral biosynthesis in the available human hepatoma replication systems. This technical limitation was addressed, in part, by the development of non-hepatoma HBV replication systems where viral biosynthesis was dependent on complementation with exogenously expressed transcription factors. These systems revealed the importance of specific nuclear receptors and hepatocyte nuclear factor 3 (HNF3)/forkhead box A (FoxA) transcription factors for HBV biosynthesis. Furthermore, using the HBV transgenic mouse model of chronic viral infection, the importance of various nuclear receptors and FoxA isoforms could be established in vivo. The availability of this combination of systems now permits a rational approach toward the development of selective host transcription factor inhibitors. This might permit the development of a new class of therapeutics to aid in the treatment and resolution of chronic HBV infections, which currently affects approximately 1 in 30 individuals worldwide and kills up to a million people annually.
Collapse
Affiliation(s)
- Claudia E Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abhayavarshini Sridhar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taha Y Taha
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rasha E Shalaby
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Egypt, Egypt
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Abstract
Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.
Collapse
Affiliation(s)
| | - Catherine Cherry
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Harry Gunn
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| |
Collapse
|
18
|
Aghamiri S, Jafarpour A, Gomari MM, Ghorbani J, Rajabibazl M, Payandeh Z. siRNA nanotherapeutics: a promising strategy for anti‐HBV therapy. IET Nanobiotechnol 2019; 13:457-463. [PMCID: PMC8676379 DOI: 10.1049/iet-nbt.2018.5286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/18/2018] [Accepted: 01/28/2019] [Indexed: 07/31/2023] Open
Abstract
Chronic hepatitis B (CHB) is the most common cause of hepatocellular carcinoma (HCC) and liver cirrhosis worldwide. In spite of the numerous advances in the treatment of CHB, drugs and vaccines have failed because of many factors like complexity, resistance, toxicity, and heavy cost. New RNA interference (RNAi)‐based technologies have developed innovative strategies to target Achilles' heel of the several hazardous diseases involving cancer, some genetic disease, autoimmune illnesses, and viral disorders particularly hepatitis B virus (HBV) infections. Naked siRNA delivery has serious challenges including failure to cross the cell membrane, susceptibility to the enzymatic digestion, and excretion by renal filtration, which ideally can be addressed by nanoparticle‐mediated delivery systems. cccDNA formation is a significant problem in obtaining HBV infections complete cure because of strength, durability, and lack of proper immune response. Nano‐siRNA drugs have a great potential to address this problem by silencing specific genes which are involved in cccDNA formation. In this article, the authors describe siRNA nanocarrier‐mediated delivery systems as a promising new strategy for HBV infections therapy. Simultaneously, the authors completely represent the clinical trials which use these strategies for treatment of the HBV infections.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student research committeeDepartment of Medical BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Students' Scientific Research CenterVirology DivisionDepartment of PathobiologySchool of Public HealthTehran University of Medical SciencesTehranIran
| | | | - Jaber Ghorbani
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Masoumeh Rajabibazl
- Department of Clinical BiochemistryFaculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Payandeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
19
|
Sexual dimorphism in hepatitis B and C and hepatocellular carcinoma. Semin Immunopathol 2018; 41:203-211. [PMID: 30498927 DOI: 10.1007/s00281-018-0727-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
Abstract
The incidence of viral hepatitis B or C (HBV/HCV) infection and hepatocellular carcinoma is higher in male compared to female populations, showing a faster disease progression and results in a worse overall survival. Indeed, women are in general better protected from viral infections and show a lower risk of death from malignant cancer in comparison to men. Females mount stronger innate and adaptive immune responses than males, and therefore, most of the autoimmune diseases occur predominantly in females. Next to occupational and/or behavioral factors, cellular and molecular differences between the two sexes contribute to this observation. In this review, we will discuss underlying mechanisms that are important for the observed sex-related differences in liver diseases. A better appreciation of these differences between the two sexes might be of value for better and gender-specific treatment options.
Collapse
|
20
|
Chayama K, Nelson Hayes C. Unmet Needs in Basic Research: In Vitro and In Vivo Models. HEPATITIS B VIRUS AND LIVER DISEASE 2018:25-43. [DOI: 10.1007/978-981-10-4843-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Li L, Li S, Zhou Y, Yang L, Zhou D, Yang Y, Lu M, Yang D, Song J. The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model. Virol J 2017; 14:205. [PMID: 29070073 PMCID: PMC5657044 DOI: 10.1186/s12985-017-0874-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 01/12/2023] Open
Abstract
Background Hydrodynamic injection (HI) of hepatitis B virus (HBV) mouse model is an useful tool for HBV related research in vivo. However, only 40% of C57/BL6 mice injected with 10 μg HBV genome contained plasmid (pAAV-HBV1.2), serum HBsAg more than 6 months and none of the BALB/c mice injected with 10 μg pAAV-HBV1.2 plasmid DNA, serum HBsAg positive more than 4 weeks in the previous study. Methods In this study, C57/BL6 and BALB/c mice were hydrodynamic injected with different doses of pAAV-HBV1.2 plasmid DNA. HBV related serum markers were detected by ELISA. ALT levels in the serum were measured using full automated biochemistry analyzer. HBcAg positive cells in the liver were detected by immunohistochemical staining. The mRNA levels of IRF3, ISGs including ISG15, OAS, PKR and immune factors including IFNγ, TNFα, TGFβ, IL-6, IL-10, PDL1 in liver of the mice were quantified by qRT-PCR. Results The results showed that the mice injected with 100 μg high-concentration or 1 μg low-concentration of pAAV-HBV1.2 plasmid DNA did not excert dominant influence on HBV persistence. In contrast, injection of 5 μg intermediate-dose of pAAV-HBV1.2 plasmid DNA led to significant prolonged HBsAg expression and HBV persistence in both C57/BL6 (80% of the mice with HBsAg positive more than 6 months) and BALB/c (60% of the mice with HBsAg positive more than 3 months) mice. IFNγ was significant up-regulated in liver of the mice injected with 1 μg or 100 μg pAAV-HBV1.2 plasmid DNA. TNFα was up-regulated significantly in liver of the mice injected with 100 μg pAAV-HBV1.2 plasmid DNA. Moreover, PDL1 was significant up-regulated in liver of the mice injected with 5 μg pAAV-HBV1.2 plasmid DNA. Conclusion In this paper we demonstrated that, in the HBV HI mouse model, the concentration of injected pAAV-HBV1.2 plasmid DNA contributes to the diverse kinetics of HBsAg and HBeAg in the serum as well as HBcAg expression level in the liver, which then determined the HBV persisternce, while the antiviral factors IFNγ, TNFα as well as immune negative regulatory factor PDL1 play important roles on HBV persistence.
Collapse
Affiliation(s)
- Lei Li
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Sheng Li
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Zhou
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yang
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjiao Song
- Experimental Medicine Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Marongiu L. Proportion of transcriptionally active DNA virus integrants: a meta-analysis. Future Virol 2017. [DOI: 10.2217/fvl-2017-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oncoviruses are collectively responsible for over 1,000,000 new cases of cancer per year; some can integrate into the host's chromosomes. The present work was aimed at assessing the proportion of transcriptionally active viral integrants through a systematic review of the scientific publications present on the MedLine database. From the articles screened, 628 viral integrants overall were retrieved, of which 530.84 were transcriptionally active (84.53%); among the clinical samples, 264 of 323 integrants were active (81.73%). The causes for the silencing were not addressed in the articles analyzed. These findings might highlight a possible risk factor for the insurgence of cancer since some oncovirus integrants could be reactivated by stimuli of disparate nature. Further studies should address such possibility.
Collapse
Affiliation(s)
- Luigi Marongiu
- Roslin Institute, the University of Edinburgh, Easter Bush campus, EH25 9RG Edinburgh, Scotland
| |
Collapse
|
23
|
Huang M, Sun R, Huang Q, Tian Z. Technical Improvement and Application of Hydrodynamic Gene Delivery in Study of Liver Diseases. Front Pharmacol 2017; 8:591. [PMID: 28912718 PMCID: PMC5582077 DOI: 10.3389/fphar.2017.00591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Development of an safe and efficient in vivo gene delivery method is indispensable for molecular biology research and the progress in the following gene therapy. Over the past few years, hydrodynamic gene delivery (HGD) with naked DNA has drawn increasing interest in both research and potential clinic applications due to its high efficiency and low risk in triggering immune responses and carcinogenesis in comparison to viral vectors. This method, involving intravenous injection (i.v.) of massive DNA in a short duration, gives a transient but high in vivo gene expression especially in the liver of small animals. In addition to DNA, it has also been shown to deliver other substance such as RNA, proteins, synthetic small compounds and even viruses in vivo. Given its ability to robustly mimic in vivo hepatitis B virus (HBV) production in liver, HGD has become a fundamental and important technology on HBV studies in our group and many other groups. Recently, there have been interesting reports about the applications and further improvement of this technology in other liver research. Here, we review the principle, safety, current application and development of hydrodynamic delivery in liver disease studies, and discuss its future prospects, clinical potential and challenges.
Collapse
Affiliation(s)
- Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical UniversityHefei, China
| | - Rui Sun
- Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of ChinaHefei, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital Affiliated with Anhui Medical UniversityHefei, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of ChinaHefei, China
| |
Collapse
|
24
|
Yuan L, Wang T, Zhang Y, Liu X, Zhang T, Li X, Liu P, Wu K, Shih JWK, Yuan Q, Cheng T, Xia N. An HBV-tolerant immunocompetent model that effectively simulates chronic hepatitis B virus infection in mice. Exp Anim 2016; 65:373-382. [PMID: 27264142 PMCID: PMC5111840 DOI: 10.1538/expanim.16-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is the leading cause of liver disease and hepatic carcinoma (HCC). Approximately 350 million people worldwide are infected with HBV and at risk of chronicity. An efficient HBV-tolerant murine model that mimics HBV infection in humans is desirable for HBV-related research. In this study, we investigated and established a murine model by hydrodynamic injection (HDI) of pAAV/HBV into the tail vein of AAVS1 site element-transgenic mice. In 80% of the injected mice, the serum level of HBsAg reached 103-4 IU/ml and persisted for more than half a year. Next, the model was used to evaluate RNA interference (RNAi)-based antiviral therapy. Data obtained using the model demonstrated that this model will facilitate the elucidation of the mechanisms underlying chronic HBV infection and will also be useful for evaluating new antiviral drugs.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Teng YC, Shen ZQ, Kao CH, Tsai TF. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. World J Gastroenterol 2016; 22:300-325. [PMID: 26755878 PMCID: PMC4698494 DOI: 10.3748/wjg.v22.i1.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.
Collapse
|
26
|
Hepatitis B Virus and Hepatitis D Virus Entry, Species Specificity, and Tissue Tropism. Cold Spring Harb Perspect Med 2015; 5:a021378. [PMID: 26238794 DOI: 10.1101/cshperspect.a021378] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Entry of hepatitis B (HBV) and hepatitis D viruses (HDV) into a host cell represents the initial step of infection. This process requires multiple steps, including the low-affinity attachment of the virus to the cell surface, followed by high-affinity attachment to specific receptor(s), and subsequent endocytosis-mediated internalization. Within the viral envelope, the preS1 region is involved in receptor binding. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as an entry receptor of HBV and HDV by affinity purification using a preS1 peptide. NTCP is mainly or exclusively expressed in the liver, and this membrane protein is at least one of the factors determining the narrow species specificity and hepatotropism of HBV and HDV. However, there are likely other factors that mediate the species and tissue tropism of HBV. This review summarizes the current understanding of the mechanisms of HBV/HDV entry.
Collapse
|
27
|
Wang SH, Chen PJ, Yeh SH. Gender disparity in chronic hepatitis B: Mechanisms of sex hormones. J Gastroenterol Hepatol 2015; 30:1237-45. [PMID: 25708186 DOI: 10.1111/jgh.12934] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus (HBV) is a common human pathogen transmitted worldwide, and its chronic infection is a well-known risk factor for hepatocellular carcinoma (HCC). The sex disparity of HBV-related liver diseases has been noticed for a long time, which could be attributed to sex hormone effects, other than gender behaviors or environmental impact. This difference is experimentally confirmed in HBV transgenic mice, as well as in immunocompetent mice receiving hydrodynamic delivery of HBV. Androgen and estrogen pathways were identified to play opposite regulations of HBV transcription by targeting viral enhancer I at molecular level. In addition to the direct effects on HBV life cycle, sex hormones may be also involved in the immune response to HBV infection and the progression of associated liver diseases, although the detailed mechanisms are still unclear. Besides, several unaddressed issues such as HBV entry, microRNA profiles, viral integration, and adaptability in which androgen and estrogen axes might be involved are warranted to be delineated. The comprehensive understanding of the sex disparity in HBV virology and pathogenesis will be helpful to provide newly biomarkers for clinical diagnosis and develop novel drugs to manage HBV-related HCC patients.
Collapse
Affiliation(s)
- Sheng-Han Wang
- Department of Microbiology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,NTU Center for Genomic Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,NTU Center for Genomic Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| |
Collapse
|
28
|
Determinants of hepatitis B and delta virus host tropism. Curr Opin Virol 2015; 13:109-16. [PMID: 26164658 DOI: 10.1016/j.coviro.2015.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/11/2015] [Indexed: 01/03/2023]
Abstract
Hepatitis B virus (HBV) infections are a global health problem afflicting approximately 360 million patients. Of these individuals, 15-20 million are co-infected with hepatitis delta virus (HDV). Progress toward curative therapies has been impeded by the highly restricted host tropism of HBV, which is limited to productive infections in humans and chimpanzees. Here, we will discuss different approaches that have been taken to study HBV and HDV infections in vivo. The development of transgenic and humanized mice has lead to deeper insights into HBV pathogenesis. An improved understanding of the determinants governing HBV and HDV species tropism will aid in the construction of a small animal model with inheritable susceptible to HBV/HDV.
Collapse
|
29
|
Ye L, Yu H, Li C, Hirsch ML, Zhang L, Samulski RJ, Li W, Liu Z. Adeno-Associated Virus Vector Mediated Delivery of the HBV Genome Induces Chronic Hepatitis B Virus Infection and Liver Fibrosis in Mice. PLoS One 2015; 10:e0130052. [PMID: 26075890 PMCID: PMC4468063 DOI: 10.1371/journal.pone.0130052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/15/2015] [Indexed: 01/04/2023] Open
Abstract
Liver cirrhosis and hepatocellular carcinomas are major health problems of chronic hepatitis B virus (HBV) infection. To date, rare model has reproduced liver fibrosis associated with long-term HBV infection which in turn has hindered both the understanding of HBV biology and the development of new treatment options. Here, using adeno-associated virus serotype 8 (AAV8) mediated delivery of a 1.2-kb HBV genome, we successfully generated a chronic HBV infectious mouse model that presents the associated liver fibrosis observed following human infection. After AAV8/HBV1.2 vector administration, mice demonstrated effective HBV replication and transcription which resulted in HBV antigen expression and viremia over 6 months. Although no obvious acute inflammatory response was noted, these mice still developed chronic liver disease and hepatic fibrogenesis as demonstrated by increased ground glass-like hepatocytes, an increasing trend of collagen deposition and upregulated fibrosis markers, including type I collagen, type III collagen, tissue inhibitor of metalloproteinase (TIMP), and transforming growth factor-β1(TGF-β1). Taken together, AAV-mediated HBV gene delivery to the mouse liver, induced HBV persistent infection accompanied by liver fibrosis which can serve as a model for investigating the precise mechanisms underlying liver fibrosis following chronic HBV infection as well as for the potential development of novel therapeutics.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Cells, Cultured
- Dependovirus/genetics
- Disease Models, Animal
- Drug Delivery Systems
- Enzyme-Linked Immunosorbent Assay
- Genetic Vectors/administration & dosage
- Genome, Viral
- HEK293 Cells
- Hepatitis B virus/genetics
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/virology
- Humans
- Liver Cirrhosis/genetics
- Liver Cirrhosis/virology
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Viremia/genetics
- Viremia/virology
- Virus Replication
Collapse
Affiliation(s)
- Lei Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Haisheng Yu
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengwen Li
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Matthew L. Hirsch
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Liguo Zhang
- Key Laboratory of Immunity and Infection, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - R. Jude Samulski
- Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wuping Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
30
|
Cao LH, Li YR, Wang SY, Liu ZM, Sun SC, Xu DB, Zhang JD. Effect of hepatitis B vaccination in hepatitis B surface antibody-negative pregnant mothers on the vertical transmission of hepatitis B virus from father to infant. Exp Ther Med 2015; 10:279-284. [PMID: 26170949 DOI: 10.3892/etm.2015.2483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the effects of vaccination with the hepatitis B vaccine (HBVac) in HB surface antibody (HBsAb)-negative pregnant mothers on the vertical transmission of HB virus (HBV) from father to infant. All the fathers tested positive for the serum HBV DNA and HB surface antigen (HBsAg) markers. The pregnant females were divided into an observation group or a control group depending on whether their serum was HBsAb-negative or positive. A total of 93 healthy individuals without HBV infection were included in a blank group, while 96 females who were serum HBV marker-negative or HB core antibody (HBcAb)-positive/(HBsAb)-negative were included in the observation group. The control group comprised 89 females who all tested positive for serum HBsAb, HB envelope antibodies and HBcAb. In the observation group, the positive rate of HBV DNA in the newborns was 7.29% (7/96), the positive rate of HBsAg was 3.13% (3/96) and the positive rate of HBsAb was 81.3% (78/96). In the control group, the positive rates of HBV DNA, HBsAg and HBsAb in the newborns were 4.49% (4/89), 2.25% (2/89) and 89.9% (80/89), respectively. No statistically significant differences were observed between the two groups. Therefore, the results of the present study indicate that HBVac treatment for HBsAb-negative pregnant females may have a positive role in blocking the vertical transmission of HBV from father to infant, as long as the vaccination is able to induce the production of a sufficient quantity of HBsAb. The HBVac exhibited no difference compared with pre-pregnancy HBsAb in blocking the vertical transmission of HBV from father to infant.
Collapse
Affiliation(s)
- Li-Hua Cao
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066001, P.R. China
| | - Yun-Ru Li
- The Affiliated Beijing Ditan Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Shou-Yun Wang
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066001, P.R. China
| | - Zhi-Min Liu
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066001, P.R. China
| | - Shao-Chun Sun
- Qinhuangdao Women and Children's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Dong-Bo Xu
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066001, P.R. China
| | - Ji-Dong Zhang
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066001, P.R. China
| |
Collapse
|
31
|
Cao LH, Zhao PL, Liu ZM, Sun SC, Xu DB, Zhang JD, Shao MH. Efficacy and safety of nucleoside analogs on blocking father-to-infant vertical transmission of hepatitis B virus. Exp Ther Med 2015; 9:2251-2256. [PMID: 26136969 DOI: 10.3892/etm.2015.2379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/18/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to observe the efficacy and safety of nucleoside analogs in inhibiting father-to-infant vertical transmission of hepatitis B virus (HBV). Nucleoside analogs compete with HBV DNA polymerase substrate to inhibit DNA polymerase, thus preventing the replication of HBV DNA. A case group and control group were recruited for the study. Between March 2006 and March 2012 at the Liver Disease Center of Qinhuangdao Third Hospital, a total of 201 couples were recruited for the case group. In each case, the father tested positive the following HBV markers: Hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), antibodies against the hepatitis B core antigen (anti-HBc) and HBV DNA. In total, 189 male patients presented with abnormal liver function (94.0%; 189/201). Prior to pregnancy, all the males in the case group were required to test negative for HBV DNA and exhibit normal liver function, while the females were required to test positive for antibodies against HBsAg (anti-HBs). In total, 188 couples comprised the control group. The couples were recruited between March 2006 and March 2012 in the Prenatal Clinic of Qinhuangdao Women's and Children's Hospital. The fathers tested positive for HBsAg, HBeAg, anti-HBc and HBV DNA. With regard to the females, HBsAg tests were all negative and anti-HBs tests were positive. In the case group, there were no HBsAg-positive or HBV DNA-positive newborns, while anti-HBs tests were all positive; thus, the father-to-infant HBV vertical transmission was successfully inhibited. In the control group, 147/188 newborns tested positive for anti-HBs at birth, accounting for 78.2%. In addition, 28 newborns were positive for HBV DNA (14.9%), and 19 newborns tested positive for HBsAg (10.1%). Statistically significant differences were observed between the two groups with regard to these parameters. However, no statistically significant differences in gestational age, birth weight, birth height, 1- and 8-min Apgar scores, presence of jaundice, other internal and surgical diseases, delivery mode and other birth information were observed when comparing the case group with the control group. Furthermore, there were no fetal malformations or stillbirths in the two groups. In the HBV DNA-positive fathers prior to pregnancy, antiretroviral therapy resulted in a reduced virus load. Therefore, blocking father-to-infant HBV vertical transmission maximally was important. The use of antiviral nucleoside analogs prior to pregnancy was shown to be safe. When the benefits outweighed the risks, the fathers who wanted to have a child continued to use antiviral therapy. However, the sample size of the present study was small, and an increased number of cases and longer follow-up times are required. In addition, the use of nucleoside analogs requires further in-depth assessment from the point of view of prenatal and postnatal care.
Collapse
Affiliation(s)
- Li-Hau Cao
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Pei-Li Zhao
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Zhi-Min Liu
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Shao-Chun Sun
- Qinhuangdao Women's and Children's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Dong-Bo Xu
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Ji-Dong Zhang
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Mei-Hua Shao
- Liver Disease Center, Qinhuangdao Third Hospital, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
32
|
Yoon SK, Seo YB, Im SJ, Bae SH, Song MJ, You CR, Jang JW, Yang SH, Suh YS, Song JS, Kim BM, Kim CY, Jeong SH, Sung YC. Safety and immunogenicity of therapeutic DNA vaccine with antiviral drug in chronic HBV patients and its immunogenicity in mice. Liver Int 2015; 35:805-815. [PMID: 24620920 DOI: 10.1111/liv.12530] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/09/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Here, we evaluated the safety and immunogenicity of hepatitis B virus (HBV) DNA vaccine, HB-110, in mice and Korean patients with chronic hepatitis B (CHB) undergoing adefovir dipivoxil (ADV) treatment. METHODS For animal study, mice (BALB/c or HBV transgenic) were immunized with mHB-110, and T-cell and antibody responses were evaluated. For clinical study, 27 patients randomly received either ADV alone or ADV in combination with HB-110. Liver function tests, serum HBV DNA levels and the presence of HBeAg/anti-HBe were analysed. T-cell responses were estimated by ELISPOT and FACS analysis. RESULTS mHB-110 induced higher T-cell and antibody responses than mHB-100 in mice. No adverse effects were observed by HB-110 cotreated with ADV. HBV-specific T-cell responses were induced in a portion of patients in medium to high dose of HB-110. Interestingly, HB-110 exhibited positive effects on ALT normalization and maintenance of HBeAg seroconversion. One patient, who received high dose of HB-110 exhibited HBeAg seroconversion during vaccination, which correlated with vaccine-induced T-cell responses without ALT elevation. CONCLUSIONS HB-110 was safe and tolerable in CHB patients. In contrast to results in animal models, HB-110 in Korean patients exhibited weaker capability of inducing HBV-specific T-cell responses and HBeAg seroconversion than HB-100 in Caucasian patients. As Asian patients, who are generally infected via vertical transmission, appeared to have higher level of immune tolerance than Caucasian, novel approaches for breaking immune tolerance rather than enhancing immunogenicity may be more urgently demanded to develop effective therapeutic HBV DNA vaccines.
Collapse
Affiliation(s)
- Seung Kew Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dembek C, Protzer U. Mouse models for therapeutic vaccination against hepatitis B virus. Med Microbiol Immunol 2015; 204:95-102. [PMID: 25523197 DOI: 10.1007/s00430-014-0378-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
A mouse model for persistent HBV infection is essential for the development of a therapeutic vaccine against HBV. Because HBV cannot infect mouse hepatocytes, even if the HBV receptor is introduced, surrogate models are used. A suitable model needs to establish persistent HBV replication and must allow the establishment of HBV-specific adaptive cellular and humoral immune responses. Therefore, an immunocompetent mouse model is needed in which one can break HBV-specific tolerance and ideally eliminate the HBV transcription template. The most widely used model for chronic HBV infection is the HBV transgenic mouse. Although HBV replicates from an integrated transgene, HBV-specific immune tolerance can be broken upon adequate immune stimulation because antigen expression only starts shortly before birth. Alternative mouse models of chronic HBV infection are generated by introducing HBV genomes either using viral vectors or using hydrodynamic injection. In these alternative models, the HBV transcription template is introduced into a proportion of hepatocytes and stays extra-chromosomal. It thus mimics the natural HBV transcription template, the HBV cccDNA in humans. Unlike an HBV transgene, however, it can be cleared upon appropriate treatment or immune stimulation. Human hepatocyte chimeric mice in which murine hepatocytes are widely replaced by human hepatocytes represent another important mouse model for persistent HBV infection. These mice are susceptible for HBV infection, but need to be severely immune deficient to accept human hepatocytes. In conclusion, a variety of mouse models for persistent HBV infection are available suitable for preclinical efficacy evaluations of therapeutic vaccination strategies against HBV.
Collapse
Affiliation(s)
- Claudia Dembek
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675, Munich, Germany
| | | |
Collapse
|
34
|
Inuzuka T, Takahashi K, Chiba T, Marusawa H. Mouse models of hepatitis B virus infection comprising host-virus immunologic interactions. Pathogens 2014; 3:377-89. [PMID: 25437805 PMCID: PMC4243451 DOI: 10.3390/pathogens3020377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection is one of the most prevalent infectious diseases associated with various human liver diseases, including acute, fulminant and chronic hepatitis; liver cirrhosis; and hepatocellular carcinoma. Despite the availability of an HBV vaccine and the development of antiviral therapies, there are still more than 350 million chronically infected people worldwide, approximately 5% of the world population. To understand the virus biology and pathogenesis in HBV-infected patients, several animal models have been developed to mimic hepatic HBV infection and the immune response against HBV, but the narrow host range of HBV infection and lack of a full immune response spectrum in animal models remain significant limitations. Accumulating evidence obtained from studies using a variety of mouse models that recapitulate hepatic HBV infection provides several clues for understanding host-virus immunologic interactions during HBV infection, whereas the determinants of the immune response required for HBV clearance are poorly defined. Therefore, adequate mouse models are urgently needed to elucidate the mechanism of HBV elimination and identify novel targets for antiviral therapies.
Collapse
Affiliation(s)
- Tadashi Inuzuka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8103, Japan.
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8103, Japan.
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8103, Japan.
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8103, Japan.
| |
Collapse
|
35
|
Dandri M, Lütgehetmann M. Mouse models of hepatitis B and delta virus infection. J Immunol Methods 2014; 410:39-49. [PMID: 24631647 DOI: 10.1016/j.jim.2014.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/05/2023]
Abstract
Liver disease associated to persistent infection with the hepatitis B virus (HBV) continues to be a major health problem of global impact. Therapeutic regimens currently available can efficiently suppress HBV replication; however, the unique replication strategies employed by HBV permit the virus to persist within the infected hepatocytes. As a consequence, relapse of viral activity is commonly observed after cessation of treatment with polymerase inhibitors. Among the HBV chronically infected patients, more than 15million patients are estimated to be co-infected with the hepatitis delta virus (HDV), a defective satellite virus that needs the HBV envelope for propagation. No specific drugs are currently available against HDV, while nucleos(t)ide analogs are not effective against HDV replication. Since chronic HBV/HDV co-infection leads to the most severe form of chronic viral hepatitis in men, a better understanding of the molecular mechanisms of HDV-mediated pathogenesis and the development of improved therapeutic approaches is urgently needed. The obvious limitations imposed by the use of great apes and the paucity of robust experimental models of HBV infection have hindered progresses in understanding the complex network of virus-host interactions that are established in the course of HBV and HDV infections. This review focuses on summarizing recent advances obtained with well-established and more innovative experimental mouse models, giving emphasis on the strength of infection systems based on the reconstitution of the murine liver with human hepatocytes, as tools for elucidating the whole life cycle of HBV and HDV, as well as for studies on interactions with the infected human hepatocytes and for preclinical drug evaluation.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel Partner Site, Germany.
| | - Marc Lütgehetmann
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Novel Woodchuck Hepatitis Virus (WHV) transgene mouse models show sex-dependent WHV replicative activity and development of spontaneous immune responses to WHV proteins. J Virol 2013; 88:1573-81. [PMID: 24257601 DOI: 10.1128/jvi.02086-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The woodchuck model is an informative model for studies on hepadnaviral infection. In this study, woodchuck hepatitis virus (WHV) transgenic (Tg) mouse models based on C57BL/6 mice were established to study the pathogenesis associated with hepadnaviral infection. Two lineages of WHV Tg mice, harboring the WHV wild-type genome (lineage 1217) and a mutated WHV genome lacking surface antigen (lineage 1281), were generated. WHV replication intermediates were detected by Southern blotting. DNA vaccines against WHV proteins were applied by intramuscular injection. WHV-specific immune responses were analyzed by flow cytometry and enzyme-linked immunosorbent assays (ELISAs). The presence of WHV transgenes resulted in liver-specific but sex- and age-dependent WHV replication in Tg mice. Pathological changes in the liver, including hepatocellular dysplasia, were observed in aged Tg mice, suggesting that the presence of WHV transgenes may lead to liver diseases. Interestingly, Tg mice of lineage 1281 spontaneously developed T- and B-cell responses to WHV core protein (WHcAg). DNA vaccination induced specific immune responses to WHV proteins in WHV Tg mice, indicating a tolerance break. The magnitude of the induced WHcAg-specific immune responses was dependent on the effectiveness of different DNA vaccines and was associated with a decrease in WHV loads in mice. In conclusion, sex- and age-dependent viral replication, development of autoimmune responses to viral antigens, pathological changes in the liver in WHV Tg mice, and the possibility of breaking immune tolerance to WHV transgenes will allow future studies on pathogenesis related to hepadnaviral infection and therapeutic vaccines.
Collapse
|
37
|
Qiu LP, Chen L, Chen KP. Antihepatitis B therapy: a review of current medications and novel small molecule inhibitors. Fundam Clin Pharmacol 2013; 28:364-81. [DOI: 10.1111/fcp.12053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 09/14/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Liang Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Ke-Ping Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| |
Collapse
|
38
|
Bility MT, Li F, Cheng L, Su L. Liver immune-pathogenesis and therapy of human liver tropic virus infection in humanized mouse models. J Gastroenterol Hepatol 2013; 28 Suppl 1:120-4. [PMID: 23855307 PMCID: PMC3971634 DOI: 10.1111/jgh.12092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infect and replicate primarily in human hepatocytes. Few reliable and easy accessible animal models are available for studying the immune system's contribution to the liver disease progression during hepatitis virus infection. Humanized mouse models reconstituted with human hematopoietic stem cells (HSCs) have been developed to study human immunology, human immunodeficiency virus 1 infection, and immunopathogenesis. However, a humanized mouse model engrafted with both human immune and human liver cells is needed to study infection and immunopathogenesis of HBV/HCV infection in vivo. We have recently developed the humanized mouse model with both human immune and human liver cells (AFC8-hu HSC/Hep) to study immunopathogenesis and therapy of HCV infection in vivo. In this review, we summarize the current models of HBV/HCV infection and their limitations in immunopathogenesis. We will then present our recent findings of HCV infection and immunopathogenesis in the AFC8-hu HSC/Hep mouse, which supports HCV infection, human T-cell response and associated liver pathogenesis. Inoculation of humanized mice with primary HCV isolates resulted in long-term HCV infection. HCV infection induced elevated infiltration of human immune cells in the livers of HCV-infected humanized mice. HCV infection also induced HCV-specific T-cell immune response in lymphoid tissues of humanized mice. Additionally, HCV infection induced liver fibrosis in humanized mice. Anti-human alpha smooth muscle actin (αSMA) staining showed elevated human hepatic stellate cell activation in HCV-infected humanized mice. We discuss the limitation and future improvements of the AFC8-hu HSC/Hep mouse model and its application in evaluating novel therapeutics, as well as studying both HCV and HBV infection, human immune responses, and associated human liver fibrosis and cancer.
Collapse
Affiliation(s)
- Moses T Bility
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
39
|
Li L, Shen H, Li A, Zhang Z, Wang B, Wang J, Zheng X, Wu J, Yang D, Lu M, Song J. Inhibition of hepatitis B virus (HBV) gene expression and replication by HBx gene silencing in a hydrodynamic injection mouse model with a new clone of HBV genotype B. Virol J 2013; 10:214. [PMID: 23805945 PMCID: PMC3751867 DOI: 10.1186/1743-422x-10-214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has been suggested that different hepatitis B virus (HBV) genotypes may have distinct virological characteristics that correlate with clinical outcomes during antiviral therapy and the natural course of infection. Hydrodynamic injection (HI) of HBV in the mouse model is a useful tool for study of HBV replication in vivo. However, only HBV genotype A has been used for studies with HI. METHODS We constructed 3 replication-competent clones containing 1.1, 1.2 and 1.3 fold overlength of a HBV genotype B genome and tested them both in vitro and in vivo. Moreover, A HBV genotype B clone based on the pAAV-MCS vector was constructed with the 1.3 fold HBV genome, resulting in the plasmid pAAV-HBV1.3B and tested by HI in C57BL/6 mice. Application of siRNA against HBx gene was tested in HBV genotype B HI mouse model. RESULTS The 1.3 fold HBV clone showed higher replication and gene expression than the 1.1 and 1.2 fold HBV clones. Compared with pAAV-HBV1.2 (genotype A), the mice HI with pAAV-HBV1.3B showed higher HBsAg and HBeAg expression as well as HBV DNA replication level but a higher clearance rate. Application of two plasmids pSB-HBxi285 and pSR-HBxi285 expressing a small/short interfering RNA (siRNA) to the HBx gene in HBV genotype B HI mouse model, leading to an inhibition of HBV gene expression and replication. However, HBV gene expression may resume in some mice despite an initial delay, suggesting that transient suppression of HBV replication by siRNA may be insufficient to prevent viral spread, particularly if the gene silencing is not highly effective. CONCLUSIONS Taken together, the HI mouse model with a HBV genotype B genome was successfully established and showed different characteristics in vivo compared with the genotype A genome. The effectiveness of gene silencing against HBx gene determines whether HBV replication may be sustainably inhibited by siRNA in vivo.
Collapse
Affiliation(s)
- Lei Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Infectious Disease, Anhui Provincial Hospital, No.9 Lujiang Road, Hefei, P.R. China
| | - Hong Shen
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Anyi Li
- Animal Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhenhua Zhang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
40
|
Liang SQ, Du J, Yan H, Zhou QQ, Zhou Y, Yuan ZN, Yan SD, Fu QX, Wang XH, Jia SZ, Peng JC, Zhang YG, Zhan LS. A mouse model for studying the clearance of hepatitis B virus in vivo using a luciferase reporter. PLoS One 2013; 8:e60005. [PMID: 23577080 PMCID: PMC3618179 DOI: 10.1371/journal.pone.0060005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 02/25/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatitis B virus(HBV) infection remains a global problem, despite the effectiveness of the Hepatitis B vaccine in preventing infection. The resolution of Hepatitis B virus infection has been believed to be attributable to virus-specific immunity. In vivo direct evaluation of anti-HBV immunity in the liver is currently not possible. We have developed a new assay system that detects HBV clearance in the liver after the hydrodynamic transfer of a reporter gene and over-length, linear HBV DNA into hepatocytes, followed by bioluminescence imaging of the reporter gene (Fluc). We employed bioluminescence detection of luciferase expression in HBV-infected hepatocytes to measure the Hepatitis B core antigen (HBcAg)-specific immune responses directed against these infected hepatocytes. Only HBcAg-immunized, but not mock-treated, animals decreased the amounts of luciferase expression, HBsAg and viral DNA from the liver at day 28 after hydrodynamic infection with over-length HBV DNA, indicating that control of luciferase expression correlates with viral clearance from infected hepatocytes.
Collapse
Affiliation(s)
- Sheng-qiang Liang
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
- Department of Clinical Laboratory, the 175th Hospital of PLA, Affiliated Dong nan Hospital of Xiamen University, Zhang zhou, China
| | - Juan Du
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Hu Yan
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qian-qian Zhou
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yong Zhou
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Zhen-nan Yuan
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shao-duo Yan
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qiu-xia Fu
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xiao-hui Wang
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shuai-zheng Jia
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Jian-chun Peng
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yang-gen Zhang
- Department of Clinical Laboratory, the 175th Hospital of PLA, Affiliated Dong nan Hospital of Xiamen University, Zhang zhou, China
| | - Lin-sheng Zhan
- Lab of Blood-Borne Viruses, Beijing Institute of Transfusion Medicine, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Akbar SMF, Chen S, Al-Mahtab M, Abe M, Hiasa Y, Onji M. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus. Antiviral Res 2012; 96:59-64. [PMID: 22884884 DOI: 10.1016/j.antiviral.2012.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022]
Abstract
Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (p<0.05). The capacity of HBcAg to modulate both HBsAg- and HBcAg-specific immunity in HBV TM, and activation of endogenous DC in HBV TM without inducing liver damage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Medical Sciences, Toshiba General Hospital, Higashi Oi 6-3-22, Shinagawa, Tokyo 140-8522, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Zhou XL, Sullivan GJ, Sun P, Park IH. Humanized murine model for HBV and HCV using human induced pluripotent stem cells. Arch Pharm Res 2012; 35:261-9. [PMID: 22370780 DOI: 10.1007/s12272-012-0206-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/23/2022]
Abstract
Infection of hepatitis B virus (HBV) and hepatitis C virus (HCV) results in heterogeneous outcomes from acute asymptomatic infection to chronic infection leading to cirrhosis and hepatocellular carcinoma (HCC). In vitro models using animal hepatocytes, human HCC cell lines, or in vivo transgenic mouse models have contributed invaluably to understanding the pathogenesis of HBV and HCV. A humanized mouse model made by reconstitution of human primary hepatocytes in the liver of the immunodeficient mouse provides a novel experimental opportunity which mimics the in vivo growth of the human hepatocytes. The limited access to primary human hepatocytes necessitated the search for other cellular sources, such as pluripotent stem cells. Human embryonic stem cells (hESCs) have the features of self-renewal and pluripotency and differentiate into cells of all three germ layers, including hepatocytes. Humaninduced pluripotent stem cells (iPSCs) derived from the patient's or individual's own cells provide a novel opportunity to generate hepatocyte-like cells with the defined genetic composition. Here, we will review the current perspective of the models used for HBV and HCV study, and introduce the personalized mouse model using human iPSCs. This novel mouse model will facilitate the direct investigation of HBV and HCV in human hepatocytes as well as probing the genetic influence on the susceptibility of hepatocytes to HBV and HCV.
Collapse
Affiliation(s)
- Xiao-Ling Zhou
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
43
|
Chen S, Akbar SMF, Abe M, Hiasa Y, Onji M. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 2011; 166:134-42. [PMID: 21762128 DOI: 10.1111/j.1365-2249.2011.04445.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The immunosuppressive state of tumour-bearing hosts is attributable, at least in part, to myeloid-derived suppressor cells (MDSC). However, the role of MDSC in physiological conditions and diseases other than cancer has not been addressed. As the liver is a tolerogenic organ, the present study attempted to localize and assess functions of hepatic MDSC in a normal liver and in a murine model of chronic hepatitis B virus (HBV) infection. MDSC was identified in the liver of normal mice and HBV transgenic mice (TM) as CD11b(+) Gr1(+) cells by dual-colour flow cytometry. Highly purified populations of MDSC and their subtypes were isolated by fluorescence-activated cell sorting. The functions of MDSC and their subtypes were evaluated in allogenic mixed lymphocyte reaction (MLR) and hepatitis B surface antigen (HBsAg)-specific T cell proliferation assays. Normal mice-derived liver MDSC, but not other myeloid cells (CD11b(+) Gr1(-) ), suppressed T cell proliferation in allogenic MLR in a dose-dependent manner. Alteration of T cell antigens and impaired interferon-γ production seems to be related to MDSC-induced immunosuppression. In HBV TM, the frequencies of liver MDSC were about twice those of normal mice liver (13·6±3·2% versus 6·05±1·21%, n=5, P<0·05). Liver-derived MDSC from HBV TM also suppressed proliferative capacities of allogenic T cells and HBsAg-specific lymphocytes. Liver MDSC may have a critical role in maintaining homeostasis during physiological conditions. As liver MDSC had immunosuppressive functions in HBV TM, they may be a target of immune therapy in chronic HBV infection.
Collapse
Affiliation(s)
- S Chen
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | | | | | | | | |
Collapse
|
44
|
Use of RNA interference to modulate liver adenoma development in a murine model transgenic for hepatitis B virus. Gene Ther 2011; 19:25-33. [PMID: 21562593 DOI: 10.1038/gt.2011.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is closely related to the development of severe liver complications, including hepatocellular carcinoma. In previous studies, we reported that in vivo long-term HBV suppression in transgenic mice can be achieved without apparent toxicity by short hairpin RNA sequentially delivered using adeno-associated viral (AAV) vectors of different serotypes. Our goal herein was to address the clinical utility of this delivery system and, in particular, to determine whether RNA interference (RNAi) and its ability to induce long-term HBV suppression will modulate the development of HBV-associated liver pathology. As a model system, we used a unique HBV transgenic mouse model, containing a 1.3 times over length of the HBV genome, on the ICR mouse background. These transgenic mice produce high serum HBV titers comparable with human chronic HBV patients, and, importantly, manifest characteristic HBV-associated pathology, including progressive hepatocellular injury and the development of hepatocellular adenoma. Using this system, we injected animals with AAV vectors expressing either HBV-specific or a control luciferase-specific short hairpin RNA and followed animals for a total of 18 months. We report herein that AAV-mediated RNAi therapy profoundly inhibits HBV replication and gene expression, with a significant reduction in hepatic regeneration, liver enzymes and, importantly, the appearance of liver adenomas. Indeed, the therapeutic effect of RNAi correlated with the reduction in HBV titers. Our data demonstrate that appropriately designed RNAi therapy has the potential to prevent formation of HBV-associated hepatocellular adenoma.
Collapse
|
45
|
Akbar SMF, Yoshida O, Chen S, Cesar AJ, Abe M, Matsuura B, Hiasa Y, Onji M. Immune modulator and antiviral potential of dendritic cells pulsed with both hepatitis B surface antigen and core antigen for treating chronic HBV infection. Antivir Ther 2010; 15:887-95. [PMID: 20834101 DOI: 10.3851/imp1637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Commercially available prophylactic vaccines containing hepatitis B surface antigen (HBsAg), which are used to prevent HBV infections, are not as effective as a therapeutic immune modulator for treating patients with chronic hepatitis B (CHB). In this study, the immunogenicity of dendritic cells (DC) loaded with both HBsAg and hepatitis B core antigen (HBcAg) was tested in HBV transgenic mice (TM; 1.2HB-BS10) in vivo and in patients with CHB in vitro. METHODS Spleen DC from HBV TM were cultured with a vaccine containing both HBsAg and HBcAg to produce HBsAg/HBcAg-pulsed DC. HBV TM were immunized twice at an interval of 4 weeks with HBsAg/HBcAg-pulsed DC and other immune modulators. Antibody titres to HBsAg (anti-HBs) were measured in sera. Antigen-specific T-cells and cytotoxic T-lymphocytes (CTLs) in the spleen and liver were detected by lymphoproliferative and ELISPOT assays, respectively. HBsAg/HBcAg-pulsed human blood DC were cultured with autologous T-cells from CHB patients to assess their antigen-specific immune modulatory capacities. RESULTS Significantly higher levels of anti-HBs, HBsAg-specific and HBcAg-specific T-cells and CTLs were detected in the spleen and liver of HBV TM immunized with HBsAg/HBcAg-pulsed DC compared with those immunized with other vaccine formulations (P<0.05). HBsAg/HBcAg-pulsed human blood DC also induced HBsAg- and HBcAg-specific proliferation of autologous T-cells from CHB patients. CONCLUSIONS The immune modulatory capacities of HBsAg/HBcAg-pulsed DC in HBV TM in vivo, and in patients with CHB in vitro, inspire optimism about a clinical trial with this cell-based vaccine in patients with CHB.
Collapse
|
46
|
Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 2009; 90:367-86. [PMID: 19659896 DOI: 10.1111/j.1365-2613.2009.00656.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Every year almost 500,000 new patients are diagnosed with hepatocellular carcinoma (HCC), a primary malignancy of the liver that is associated with a poor prognosis. Numerous experimental models have been developed to define the pathogenesis of HCC and to test novel drug candidates. This review analyses several mouse models useful for HCC research and points out their advantages and weaknesses. Chemically induced HCC mice models mimic the injury-fibrosis-malignancy cycle by administration of a genotoxic compound alone or, if necessary, followed by a promoting agent. Xenograft models develop HCC by implanting hepatoma cell lines in mice, either ectopically or orthotopically; these models are suitable for drug screening, although extrapolation should be considered with caution as multiple cell lines must always be used. The hollow fibre assay offers a solution for limiting the number of test animals in xenograft research because of the ability for implanting multiple cell lines in one mouse. There is also a broad range of genetically modified mice engineered to investigate the pathophysiology of HCC. Transgenic mice expressing viral genes, oncogenes and/or growth factors allow the identification of pathways involved in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Femke Heindryckx
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
47
|
Kim CY, Kang ES, Kim SB, Kim HE, Choi JH, Lee DS, Im SJ, Yang SH, Sung YC, Kim BM, Kim BG. Increased in vivo immunological potency of HB-110, a novel therapeutic HBV DNA vaccine, by electroporation. Exp Mol Med 2009; 40:669-76. [PMID: 19116452 DOI: 10.3858/emm.2008.40.6.669] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulse-induced permeabilization of cellular membranes, generally referred to as electroporation (EP), has been used for years as a tool to increase macromolecule uptake in tissues, including nucleic acids, for gene therapeutic applications, and this technique has been shown to result in improved immunogenicity. In this study, we assessed the utility of EP as a tool to improve the efficacy of HB-110, a novel therapeutic DNA vaccine against chronic hepatitis B, now in phase 1 of clinical study in South Korea. The potency of HB-110 in mice was shown to be improved by EP. The rapid onset of antigen expression and higher magnitude of humoral and cellular responses in electric pulse-treated mice revealed that EP may enable a substantial reduction in the dosage of DNA vaccine required to elicit a response similar in magnitude to that achievable via conventional administration. This study also showed that EP-based vaccination at 4-week-intervals elicited a cellular immune response which was about two-fold higher than the response elicited by conventional vaccination at 2-week intervals. These results may provide a rationale to reduce the clinical dose and increase the interval between the doses in the multidose vaccination schedule. Electric pulsing also elicited a more balanced immune response against four antigens expressed by HB-110: S, preS, Core, and Pol.
Collapse
Affiliation(s)
- Chae Young Kim
- Research Laboratories, Dong-A Pharm. Co., Ltd. Yongin 449-900, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
High level virion production and surface antigen expression with 1.5 copies of hepatitis B viral genome. J Virol Methods 2009; 159:135-40. [PMID: 19490966 DOI: 10.1016/j.jviromet.2009.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/04/2009] [Accepted: 03/10/2009] [Indexed: 01/04/2023]
Abstract
The present study aimed to construct a 1.5X hepatitis B virus (HBV) replication system in vitro that could generate high level of HBV viruses. This system would help compare the replication capacity among the virus strains associated with high and low risk of hepatocellular carcinoma (HCC). Four strains of HBV were isolated from two HCC patients and two HBV carriers. After molecular cloning, four corresponding constructs named as HBV-1.5Xs were generated. Each of them has one and a half copies of HBV 3.2kb genome, a 5'-end redundant sequence of 1.1kb to nt715 and a 3'-end redundant sequence of 500bp to nt2325 that situated after the poly (A) sequence. The HepG2 cells were transfected with the HBV-1.5Xs, and the levels of HBsAg, HBeAg and viral DNA were then detected in both the supernatant and the cells. After 24h and 48h of transfection, a high OD value of HBsAg of 3.5 was observed in the supernatant and also in some of the diluted cell lysate samples. The HBeAg level was relatively low in all strain samples of HBV. The log(10) values of viral loads were also determined with the cell lysate having a higher value (10-11 per ml) than that of the supernatant (6-7 per ml). The results showed that the novel HBV-1.5X system was capable to generate high level of HBV in a consistent manner. However, no significant difference was found among the replication capacities among these strains in vitro. The HBV-1.5X system may be a useful platform that assists the establishment of stable cell lines and transgenic mice for the investigation of viral pathogenesis, particularly for the various strains of HBV.
Collapse
|
49
|
Kim JH, Luo JK, Zhang DE. The Level of Hepatitis B Virus Replication Is Not Affected by Protein ISG15 Modification but Is Reduced by Inhibition of UBP43 (USP18) Expression. THE JOURNAL OF IMMUNOLOGY 2008; 181:6467-72. [DOI: 10.4049/jimmunol.181.9.6467] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
|