1
|
Cui B, Craven GT, Nitzan A. Heat transport induced by electron transfer: A general temperature quantum calculation. J Chem Phys 2021; 155:194104. [PMID: 34800951 DOI: 10.1063/5.0068303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electron transfer dominates chemical processes in biological, inorganic, and material chemistry. Energetic aspects of such phenomena, in particular, the energy transfer associated with the electron transfer process, have received little attention in the past but are important in designing energy conversion devices. This paper generalizes our earlier work in this direction, which was based on the semiclassical Marcus theory of electron transfer. It provides, within a simple model, a unified framework that includes the deep (nuclear) tunneling limit of electron transfer and the associated heat transfer when the donor and acceptor sites are seated in environments characterized by different local temperatures. The electron transfer induced heat conduction is shown to go through a maximum at some intermediate average temperature where quantum effects are already appreciable, and it approaches zero when the average temperature is very high (the classical limit) or very low (deep tunneling).
Collapse
Affiliation(s)
- Bingyu Cui
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Galen T Craven
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Abrahan Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
2
|
Lawrence JE, Manolopoulos DE. An improved path-integral method for golden-rule rates. J Chem Phys 2020; 153:154113. [PMID: 33092388 DOI: 10.1063/5.0022535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a simple method for the calculation of reaction rates in the Fermi golden-rule limit, which accurately captures the effects of tunneling and zero-point energy. The method is based on a modification of the recently proposed golden-rule quantum transition state theory (GR-QTST) of Thapa, Fang, and Richardson [J. Chem. Phys. 150, 104107 (2019)]. While GR-QTST is not size consistent, leading to the possibility of unbounded errors in the rate, our modified method has no such issue and so can be reliably applied to condensed phase systems. Both methods involve path-integral sampling in a constrained ensemble; the two methods differ, however, in the choice of constraint functional. We demonstrate numerically that our modified method is as accurate as GR-QTST for the one-dimensional model considered by Thapa and co-workers. We then study a multidimensional spin-boson model, for which our method accurately predicts the true quantum rate, while GR-QTST breaks down with an increasing number of boson modes in the discretization of the spectral density. Our method is able to accurately predict reaction rates in the Marcus inverted regime without the need for the analytic continuation required by Wolynes theory.
Collapse
Affiliation(s)
- Joseph E Lawrence
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
3
|
Lawrence JE, Manolopoulos DE. A general non-adiabatic quantum instanton approximation. J Chem Phys 2020; 152:204117. [DOI: 10.1063/5.0009109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph E. Lawrence
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
4
|
Fang W, Zarotiadis RA, Richardson JO. Revisiting nuclear tunnelling in the aqueous ferrous–ferric electron transfer. Phys Chem Chem Phys 2020; 22:10687-10698. [DOI: 10.1039/c9cp06841d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We find that golden-rule quantum transition-state theory predicts nearly an order of magnitude less tunnelling than some of the previous estimates. This may indicate that the spin-boson model of electron transfer is not valid in the quantum regime.
Collapse
Affiliation(s)
- Wei Fang
- Laboratory of Physical Chemistry
- ETH Zürich
- 8093 Zürich
- Switzerland
| | | | | |
Collapse
|
5
|
Fang W, Thapa MJ, Richardson JO. Nonadiabatic quantum transition-state theory in the golden-rule limit. II. Overcoming the pitfalls of the saddle-point and semiclassical approximations. J Chem Phys 2019; 151:214101. [DOI: 10.1063/1.5131092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Fang
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Manish J. Thapa
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
6
|
Lawrence JE, Fletcher T, Lindoy LP, Manolopoulos DE. On the calculation of quantum mechanical electron transfer rates. J Chem Phys 2019; 151:114119. [DOI: 10.1063/1.5116800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph E. Lawrence
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Theo Fletcher
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Lachlan P. Lindoy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
7
|
Thapa MJ, Fang W, Richardson JO. Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems. J Chem Phys 2019; 150:104107. [DOI: 10.1063/1.5081108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manish J. Thapa
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Wei Fang
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
8
|
Mattiat J, Richardson JO. Effects of tunnelling and asymmetry for system-bath models of electron transfer. J Chem Phys 2018; 148:102311. [PMID: 29544261 DOI: 10.1063/1.5001116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.
Collapse
Affiliation(s)
- Johann Mattiat
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
9
|
Lawrence JE, Manolopoulos DE. Analytic continuation of Wolynes theory into the Marcus inverted regime. J Chem Phys 2018; 148:102313. [DOI: 10.1063/1.5002894] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joseph E. Lawrence
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E. Manolopoulos
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
10
|
Kenion RL, Ananth N. Direct simulation of electron transfer in the cobalt hexammine(ii/iii) self-exchange reaction. Phys Chem Chem Phys 2016; 18:26117-26124. [DOI: 10.1039/c6cp04882j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an atomistic simulation of electron transfer in a transition metal complex system using path integral methods.
Collapse
Affiliation(s)
- Rachel L. Kenion
- Robert Frederick Smith School of Chemical and Biomolecular Engineering
- Cornell University
- Ithaca
- USA
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
11
|
Walters PL, Makri N. Quantum-Classical Path Integral Simulation of Ferrocene-Ferrocenium Charge Transfer in Liquid Hexane. J Phys Chem Lett 2015; 6:4959-65. [PMID: 26673195 DOI: 10.1021/acs.jpclett.5b02265] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We employ the quantum-classical path integral methodology to simulate the outer sphere charge-transfer process of the ferrocene-ferrocenium pair in liquid hexane with unprecedented accuracy. Comparison of the simulation results to those obtained by mapping the solvent on an effective harmonic bath demonstrates the accuracy of linear response theory in this system.
Collapse
Affiliation(s)
- Peter L Walters
- Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Richardson JO. Ring-polymer instanton theory of electron transfer in the nonadiabatic limit. J Chem Phys 2015; 143:134116. [DOI: 10.1063/1.4932362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeremy O. Richardson
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Richardson JO, Bauer R, Thoss M. Semiclassical Green’s functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit. J Chem Phys 2015; 143:134115. [DOI: 10.1063/1.4932361] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jeremy O. Richardson
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058 Erlangen, Germany
| | - Rainer Bauer
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058 Erlangen, Germany
| | - Michael Thoss
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Richardson JO, Thoss M. Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory. J Chem Phys 2014; 141:074106. [DOI: 10.1063/1.4892865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Paulo PMR, Lopes JNC, Costa SMB. Molecular dynamics simulations of porphyrin-dendrimer systems: toward modeling electron transfer in solution. J Phys Chem B 2009; 112:14779-92. [PMID: 18954105 DOI: 10.1021/jp806849y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have performed computational simulations of porphyrin-dendrimer systems--a cationic porphyrin electrostatically associated to a negatively charged dendrimer--using the method of classical molecular dynamics (MD) with an atomistic force field. Previous experimental studies have shown a strong quenching effect of the porphyrin fluorescence that was assigned to electron transfer (ET) from the dendrimer's tertiary amines (Paulo, P. M. R.; Costa, S. M. B. J. Phys. Chem. B 2005, 109, 13928). In the present contribution, we evaluate computationally the role of the porphyrin-dendrimer conformation in the development of a statistical distribution of ET rates through its dependence on the donor-acceptor distance. We started from simulations without explicit solvent to obtain trajectories of the donor-acceptor distance and the respective time-averaged distributions for two dendrimer sizes and different initial configurations of the porphyrin-dendrimer pair. By introducing explicit solvent (water) in our simulations, we were able to estimate the reorganization energy of the medium for the systems with the dendrimer of smaller size. The values obtained are in the range 0.6-1.5 eV and show a linear dependence with the inverse of the donor-acceptor distance, which can be explained by a two-phase dielectric continuum model taking into account the medium heterogeneity provided by the dendrimer organic core. Dielectric relaxation accompanying ET was evaluated from the simulations with explicit solvent showing fast decay times of some tens of femtoseconds and slow decay times in the range of hundreds of femtoseconds to a few picoseconds. The variations of the slow relaxation times reflect the heterogeneity of the dendrimer donor sites which add to the complexity of ET kinetics as inferred from the experimental fluorescence decays.
Collapse
Affiliation(s)
- Pedro M R Paulo
- Centro de Química Estrutural-Complexo I, Instituto Superior Técnico, Lisboa, Portugal.
| | | | | |
Collapse
|
16
|
Aylward WM, Pickup PG. Ion-exchange and ion-transport in silica and sulphonated-silica (ormosil) hydrogels. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2007.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Kosztin I, Schulten K. Molecular Dynamics Methods for Bioelectronic Systems in Photosynthesis. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-1-4020-8250-4_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
18
|
Simonson T. Gaussian fluctuations and linear response in an electron transfer protein. Proc Natl Acad Sci U S A 2002; 99:6544-9. [PMID: 12011418 PMCID: PMC124439 DOI: 10.1073/pnas.082657099] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2001] [Indexed: 11/18/2022] Open
Abstract
In response to charge separation or transfer, polar liquids respond in a simple linear fashion. A similar linear response for proteins might be expected from the central limit theorem and is postulated in widely used theories of protein electrostatics, including the Marcus electron transfer theory and dielectric continuum theories. Although these theories are supported by a variety of experimental data, the exact validity of a linear protein dielectric response has been difficult to determine. Molecular dynamics simulations are presented that establish a linear dielectric response of both protein and surrounding solvent over the course of a biologically relevant electron transfer reaction: oxido-reduction of yeast cytochrome c in solution. Using an umbrella-sampling free energy approach with long simulations, an accurate treatment of long-range electrostatics and both classical and quantum models of the heme, good agreement is obtained with experiment for the redox potential relative to a heme-octapeptide complex. We obtain a reorganization free energy that is only half that for heme-octapeptide and is reproduced with a dielectric continuum model where the heme vicinity has a dielectric constant of only 1.1. This value implies that the contribution of protein reorganization to the electron transfer free energy barrier is reduced almost to the theoretical limit (a dielectric of one), and that the fluctuations of the electrostatic potential on the heme have a simple harmonic form, in accord with Marcus theory, even though the fluctuations of many individual protein groups (especially at the protein surface) are anharmonic.
Collapse
Affiliation(s)
- Thomas Simonson
- Département de Biologie et Génomique Structurales, Institut de Génétique et Biologie Moléculaire et Cellulaire (CNRS), 1 Rue Laurent Fries, 67404 Illkirch-Strasbourg, France.
| |
Collapse
|
19
|
Jen CF, Warshel A. Microscopic Based Density Matrix Treatments of Electron-Transfer Reactions in Condensed Phases. J Phys Chem A 1999. [DOI: 10.1021/jp991304e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chienyu F. Jen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
20
|
Ungar LW, Newton MD, Voth GA. Classical and Quantum Simulation of Electron Transfer Through a Polypeptide. J Phys Chem B 1999. [DOI: 10.1021/jp991057e] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lowell W. Ungar
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah, and Chemistry Department, Brookhaven National Laboratory, Upton, New York
| | - Marshall D. Newton
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah, and Chemistry Department, Brookhaven National Laboratory, Upton, New York
| | - Gregory A. Voth
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah, and Chemistry Department, Brookhaven National Laboratory, Upton, New York
| |
Collapse
|
21
|
Zheng C, Makarov V, Wolynes PG. Statistical Survey of Transition States and Conformational Substates of the Sperm Whale Myoglobin−CO Reaction System. J Am Chem Soc 1996. [DOI: 10.1021/ja9523092] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chong Zheng
- Contribution from the Departments of Chemistry, Northern Illinois University, DeKalb, Illinois 60115, and University of Illinois, Urbana, Illinois 61801
| | - Vladimir Makarov
- Contribution from the Departments of Chemistry, Northern Illinois University, DeKalb, Illinois 60115, and University of Illinois, Urbana, Illinois 61801
| | - Peter G. Wolynes
- Contribution from the Departments of Chemistry, Northern Illinois University, DeKalb, Illinois 60115, and University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
22
|
Billeter SR, Van Gunsteren WF. A Comparison of Different Numerical Propagation Schemes for Solving the Time-Dependent Schrödinger Equation in the Position Representation in One Dimension for Mixed Quantum-and Molecular Dynamics Simulations. MOLECULAR SIMULATION 1995. [DOI: 10.1080/08927029508022343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Xu D, Schulten K. Coupling of protein motion to electron transfer in a photosynthetic reaction center: investigating the low temperature behavior in the framework of the spin—boson model. Chem Phys 1994. [DOI: 10.1016/0301-0104(94)00016-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Applications of quantum-classical and quantum-stochastic molecular dynamics simulations for proton transfer processes. Chem Phys 1994. [DOI: 10.1016/0301-0104(93)e0415-r] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Jaroszewski L, Lesynga B, McCammon J. Ab initio potential energy functions for proton transfer in [H3N … H … NH3]+ and [H3N … H … OH2]+. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0166-1280(93)87114-s] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Tanimura Y, Wolynes PG. The interplay of tunneling, resonance, and dissipation in quantum barrier crossing: A numerical study. J Chem Phys 1992. [DOI: 10.1063/1.462301] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Newman WH, Kuki A. Improved methods for path integral Monte Carlo integration in fermionic systems. J Chem Phys 1992. [DOI: 10.1063/1.462176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Zheng C, McCammon J, Wolynes PG. Quantum simulations of conformation reorganization in the electron transfer reactions of tuna cytochrome c. Chem Phys 1991. [DOI: 10.1016/0301-0104(91)87070-c] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Coupling of protein motion to electron transfer: Molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers. Chem Phys 1991. [DOI: 10.1016/0301-0104(91)87081-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Mark AE, van Gunsteren WF, Berendsen HJC. Calculation of relative free energy via indirect pathways. J Chem Phys 1991. [DOI: 10.1063/1.459753] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
|
32
|
van Gunsteren WF, Berendsen HJC. Moleküldynamik-Computersimulationen; Methodik, Anwendungen und Perspektiven in der Chemie. Angew Chem Int Ed Engl 1990. [DOI: 10.1002/ange.19901020907] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Bader JS, Kuharski RA, Chandler D. Role of nuclear tunneling in aqueous ferrous–ferric electron transfer. J Chem Phys 1990. [DOI: 10.1063/1.459596] [Citation(s) in RCA: 231] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Voth GA, Chandler D, Miller WH. Rigorous formulation of quantum transition state theory and its dynamical corrections. J Chem Phys 1989. [DOI: 10.1063/1.457242] [Citation(s) in RCA: 459] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|