1
|
Porter JR, Moeder KE, Sibbald CA, Zimmerman MI, Hart KM, Greenberg MJ, Bowman GR. Cooperative Changes in Solvent Exposure Identify Cryptic Pockets, Switches, and Allosteric Coupling. Biophys J 2019; 116:818-830. [PMID: 30744991 DOI: 10.1016/j.bpj.2018.11.3144] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023] Open
Abstract
Proteins are dynamic molecules that undergo conformational changes to a broad spectrum of different excited states. Unfortunately, the small populations of these states make it difficult to determine their structures or functional implications. Computer simulations are an increasingly powerful means to identify and characterize functionally relevant excited states. However, this advance has uncovered a further challenge: it can be extremely difficult to identify the most salient features of large simulation data sets. We reasoned that many functionally relevant conformational changes are likely to involve large, cooperative changes to the surfaces that are available to interact with potential binding partners. To examine this hypothesis, we introduce a method that returns a prioritized list of potentially functional conformational changes by segmenting protein structures into clusters of residues that undergo cooperative changes in their solvent exposure, along with the hierarchy of interactions between these groups. We term these groups exposons to distinguish them from other types of clusters that arise in this analysis and others. We demonstrate, using three different model systems, that this method identifies experimentally validated and functionally relevant conformational changes, including conformational switches, allosteric coupling, and cryptic pockets. Our results suggest that key functional sites are hubs in the network of exposons. As a further test of the predictive power of this approach, we apply it to discover cryptic allosteric sites in two different β-lactamase enzymes that are widespread sources of antibiotic resistance. Experimental tests confirm our predictions for both systems. Importantly, we provide the first evidence, to our knowledge, for a cryptic allosteric site in CTX-M-9 β-lactamase. Experimentally testing this prediction did not require any mutations and revealed that this site exerts the most potent allosteric control over activity of any pockets found in β-lactamases to date. Discovery of a similar pocket that was previously overlooked in the well-studied TEM-1 β-lactamase demonstrates the utility of exposons.
Collapse
Affiliation(s)
- Justin R Porter
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Katelyn E Moeder
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Carrie A Sibbald
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Maxwell I Zimmerman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Kathryn M Hart
- Department of Chemistry, Williams College, Williamstown, Massachusetts
| | - Michael J Greenberg
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory R Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
2
|
Murison DA, Timson RC, Koleva BN, Ordazzo M, Beuning PJ. Identification of the Dimer Exchange Interface of the Bacterial DNA Damage Response Protein UmuD. Biochemistry 2017; 56:4773-4785. [DOI: 10.1021/acs.biochem.7b00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David A. Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Rebecca C. Timson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Bilyana N. Koleva
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Michael Ordazzo
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Aykaç Fas B, Tutar Y, Haliloğlu T. Dynamic fluctuations provide the basis of a conformational switch mechanism in apo cyclic AMP receptor protein. PLoS Comput Biol 2013; 9:e1003141. [PMID: 23874183 PMCID: PMC3715548 DOI: 10.1371/journal.pcbi.1003141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 05/31/2013] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli cyclic AMP Receptor Protein (CRP) undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD) simulations and Gaussian Network Model (GNM). The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP's allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.
Collapse
Affiliation(s)
- Burcu Aykaç Fas
- Department of Chemical Engineering and Polymer Research Center, Boğaziçi University, Bebek, İstanbul, Turkey
| | - Yusuf Tutar
- Department of Chemistry, Department of Biochemistry and CUTFAM Research Center, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Türkan Haliloğlu
- Department of Chemical Engineering and Polymer Research Center, Boğaziçi University, Bebek, İstanbul, Turkey
- * E-mail:
| |
Collapse
|
4
|
Tutar Y. Neglected role of cAMP receptor protein monomer. Mol Biol Rep 2011; 39:4261-5. [PMID: 21779799 DOI: 10.1007/s11033-011-1212-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
Abstract
Lac operon transcription activation through CRP dimer depends on cAMP second messenger. The formation of CRP homodimers is mediated by protein-protein interactions between the monomers. Cyclic AMP ligand binding brings CRP dimer to an active state via conformational changes. Molecular modeling studies in our lab showed the importance of monomer in transcription activation through its pre-existing conformational state. Until now CRP experiments were carried out at protein concentrations higher than that of CRP dimer dissociation value making all CRP monomers dimer and ignore the importance of CRP monomer in allosteric activation. Labeling CRP monomers with fluorophores exterminate using excess protein concentration and allow monitoring CRP monomer behavior. CRP monomer exchange accelerates in the presence of non specific DNA whereas the exchange is inhibited in the presence of specific DNA and cAMP ligand. Degree of subunit exchange depends on the stability of CRP dimer. Cyclic AMP forms a single molecule from two monomers and addition of specific DNA further stabilizes CRP dimer and decreases monomer exchange. On the other hand, addition of non specific DNA increases CRP monomer exchange and may explain the mechanism of CRP monomer removal and dissociation of CRP dimer:cAMP:DNA complex. The exchange behavior of CRP in the presence of different factors implies importance of monomer in transcription complex association and dissociation.
Collapse
Affiliation(s)
- Yusuf Tutar
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
5
|
CRP binding and transcription activation at CRP-S sites. J Mol Biol 2008; 383:313-23. [PMID: 18761017 DOI: 10.1016/j.jmb.2008.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/11/2008] [Accepted: 08/13/2008] [Indexed: 12/27/2022]
Abstract
In Haemophilus influenzae, as in Escherichia coli, the cAMP receptor protein (CRP) activates transcription from hundreds of promoters by binding symmetrical DNA sites with the consensus half-site 5'-A(1)A(2)A(3)T(4)G(5)T(6)G(7)A(8)T(9)C(10)T(11). We have previously identified 13 H. influenzae CRP sites that differ from canonical (CRP-N) sites in the following features: (1) Both half-sites of these noncanonical (CRP-S) sites have C(6) instead of T(6), although they otherwise have an unusually high level of identity with the binding site consensus. (2) Only promoters with CRP-S sites require both the CRP and Sxy proteins for transcription activation. To study the functional significance of CRP-S site sequences, we purified H. influenzae (Hi)CRP and compared its DNA binding properties to those of the well-characterized E. coli (Ec)CRP. All EcCRP residues that contact DNA are conserved in HiCRP, and both proteins demonstrated a similar high affinity for the CRP-N consensus sequence. However, whereas EcCRP bound specifically to CRP-S sites in vitro, HiCRP did not. By systematically substituting base pairs in native promoters and in the CRP-N consensus sequence, we confirmed that HiCRP is highly specific for the perfect core sequence T(4)G(5)T(6)G(7)A(8) and is more selective than EcCRP at other positions in CRP sites. Even though converting C(6)-->T(6) greatly enhanced HiCRP binding to a CRP-S site, this had the unexpected effect of nearly abolishing promoter activity. A+T-rich sequences upstream of CRP-S sites were also found to be required for promoter activation, raising the possibility that Sxy binds these A+T sequences to simultaneously enable CRP-DNA binding and assist in RNA polymerase recruitment.
Collapse
|
6
|
Moore LJ, Mettert EL, Kiley PJ. Regulation of FNR Dimerization by Subunit Charge Repulsion. J Biol Chem 2006; 281:33268-75. [PMID: 16959764 DOI: 10.1074/jbc.m608331200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization of the global anaerobic transcription factor FNR is essential for FNR activity. Under aerobic conditions FNR is an inactive monomeric species because it lacks the oxygen labile [4Fe-4S] cluster required for dimerization. In this study, we investigated the protein side chains that inhibit FNR dimerization under aerobic conditions. Substitution of Asp(154) within the predicted dimerization helix with residues containing neutral or positively charged side chains increased FNR activity under aerobic conditions, whereas replacement of Asp(154) with Glu inhibited FNR activity similar to WT-FNR. Similar results were obtained when making analogous substitutions of Glu(150). In vitro analysis of representative FNR mutant proteins indicated that their increased activity under aerobic conditions resulted from an [4Fe-4S] independent mechanism of dimerization. In addition, simultaneous substitution of residues 150 and 154 with Lys restored inhibition of FNR activity under aerobic growth conditions. Collectively, these data indicate that charge repulsion by side chains at positions 150 and 154 is necessary to inhibit dimerization under aerobic conditions. They also suggest that a [4Fe-4S]-dependent conformational change overcomes charge repulsion between subunits under anaerobic conditions. Comparison of the trypsin sensitivity of [4Fe-4S]-FNR and apoFNR indicated that there are no major differences in protease sensitivity between these forms, whereas circular dichroism suggested that small changes in secondary structure occur between the cluster-containing FNR and apoFNR. Thus, the [4Fe-4S]-dependent conformational change necessary to overcome inter-subunit charge repulsion and create a subunit interface more favorable for dimerization must be small.
Collapse
Affiliation(s)
- Laura J Moore
- Department of Chemistry, Monmouth College, Monmouth, Illinois 61462, USA.
| | | | | |
Collapse
|
7
|
Popovych N, Sun S, Ebright RH, Kalodimos CG. Dynamically driven protein allostery. Nat Struct Mol Biol 2006; 13:831-8. [PMID: 16906160 PMCID: PMC2757644 DOI: 10.1038/nsmb1132] [Citation(s) in RCA: 511] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/17/2006] [Indexed: 12/15/2022]
Abstract
Allosteric interactions are typically considered to proceed through a series of discrete changes in bonding interactions that alter the protein conformation. Here we show that allostery can be mediated exclusively by transmitted changes in protein motions. We have characterized the negatively cooperative binding of cAMP to the dimeric catabolite activator protein (CAP) at discrete conformational states. Binding of the first cAMP to one subunit of a CAP dimer has no effect on the conformation of the other subunit. The dynamics of the system, however, are modulated in a distinct way by the sequential ligand binding process, with the first cAMP partially enhancing and the second cAMP completely quenching protein motions. As a result, the second cAMP binding incurs a pronounced conformational entropic penalty that is entirely responsible for the observed cooperativity. The results provide strong support for the existence of purely dynamics-driven allostery.
Collapse
Affiliation(s)
- Nataliya Popovych
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | |
Collapse
|
8
|
Stickle DF, Fried MG. Cation binding linked to a sequence-specific CAP-DNA interaction. Biophys Chem 2006; 126:106-16. [PMID: 16782261 PMCID: PMC1941696 DOI: 10.1016/j.bpc.2006.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Accepted: 05/13/2006] [Indexed: 10/24/2022]
Abstract
The equilibrium association constant observed for many DNA-protein interactions in vitro (K(obs)) is strongly dependent on the salt concentration of the reaction buffer ([MX]). This dependence is often used to estimate the number of ionic contacts between protein and DNA by assuming that release of cations from the DNA is the dominant involvement of ions in the binding reaction. With this assumption, the graph of logK(obs) versus log[MX] is predicted to have a constant slope proportional to the number of ions released from the DNA upon protein binding. However, experimental data often deviate from log-linearity at low salt concentrations. Here we show that for the sequence-specific interaction of CAP with its primary site in the lactose promoter, ionic stoichiometries depend strongly on cation identity and weakly on anion identity. This outcome is consistent with a simple linkage model in which cation binding by the protein accompanies its association with DNA. The order of ion affinities deduced from analysis of DNA binding is the same as that inferred from urea-denaturation experiments performed in the absence of DNA, suggesting that ion binding to free CAP contributes significantly to the ionic stoichiometry of DNA binding. In living cells, the coupling of ion-uptake and DNA binding mechanisms could reduce the sensitivity of gene-regulatory interactions to changes in environmental salt concentration.
Collapse
Affiliation(s)
- Douglas F Stickle
- Department of Pathology and Microbiology, 986495 Nebraska Medical Center, Omaha, NE 69198-6495, USA
| | | |
Collapse
|
9
|
Kerby RL, Youn H, Thorsteinsson MV, Roberts GP. Repositioning about the dimer interface of the transcription regulator CooA: a major signal transduction pathway between the effector and DNA-binding domains. J Mol Biol 2003; 325:809-23. [PMID: 12507482 DOI: 10.1016/s0022-2836(02)01203-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the homodimeric transcriptional regulator CooA depends on the coupling of CO binding at an effector domain heme with the allosteric repositioning of the DNA-binding domain F-helix that promotes specific DNA interaction. By analogy to the homologous cAMP receptor protein (CRP), it has been proposed that effector binding elicits subunit reorientation about their coiled-coil C-helix interface, and that this effector domain reorientation stabilizes the active position of the DNA-binding domains. Here, we describe experiments in which effector-independent "CooA*" variants were selected following randomization of a six-residue portion of the C-helix dimerization domain. Subsequent activity analyses, both in vivo and in vitro, were consistent with a model wherein improved C-helix "leucine zipper" interactions modestly shifted the regulator population equilibrium towards the active conformation, although full activation remained CO-dependent. However, in addition to the improved leucine zipper, maximal CooA* activity required additional C-helix changes which in a WT background decreased normal CO-dependent DNA-binding 100-fold. This seemingly paradoxical combination suggested that maximal CooA* activity depended both on the improved coiled-coil interactions and the decoupling of the signal pathway within the effector domain. Both types of C-helix changes indicate that its repositioning is crucial for the allosteric shift in the inactive/active equilibrium of the DNA-binding domain.
Collapse
Affiliation(s)
- Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, 106 E. B. Fred Hall, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The cyclic AMP receptor protein (CRP) of Escherichia coli is a dimer made up of identical subunits. Each CRP subunit contains a cyclic nucleotide binding pocket and the CRP dimer exhibits negative cooperativity in binding cAMP. In solutions containing cAMP, CRP undergoes sequential conformation changes from the inactive apo-form through the active CRP:(cAMP)(1) complex to the less active CRP:(cAMP)(2) complex depending on the cAMP concentration. Apo-CRP binds DNA with low affinity and no apparent sequence specificity. The CRP:(cAMP)(1) complex exhibits high affinity, sequence-specific DNA binding and interacts with RNA polymerase, whether free in solution or complexed with DNA. The results of genetic, biochemical and biophysical studies have helped to uncover many of the details of cAMP-mediated allosteric control over CRP conformation and activity as a transcription factor. These studies indicate that cAMP binding produces only small, but significant, changes in CRP structure; changes that include subunit realignment and concerted motion of the secondary structure elements within the C-terminal DNA binding domain of each subunit. These adjustments promote CRP surface-patch interaction with RNA polymerase and protrusion of the F-helix to promote CRP site-specific interaction with DNA. Interactions between CRP and RNA polymerase at CRP-dependent promoters produce active ternary transcription complexes.
Collapse
Affiliation(s)
- J G Harman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
11
|
Chu SY, Tordova M, Gilliland GL, Gorshkova I, Shi Y, Wang S, Schwarz FP. The structure of the T127L/S128A mutant of cAMP receptor protein facilitates promoter site binding. J Biol Chem 2001; 276:11230-6. [PMID: 11124966 DOI: 10.1074/jbc.m010428200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray crystal structure of the cAMP-ligated T127L/S128A double mutant of cAMP receptor protein (CRP) was determined to a resolution of 2.2 A. Although this structure is close to that of the x-ray crystal structure of cAMP-ligated CRP with one subunit in the open form and one subunit in the closed form, a bound syn-cAMP is clearly observed in the closed subunit in a third binding site in the C-terminal domain. In addition, water-mediated interactions replace the hydrogen bonding interactions between the N(6) of anti-cAMP bound in the N-terminal domains of each subunit and the OH groups of the Thr(127) and Ser(128) residues in the C alpha-helix of wild type CRP. This replacement induces flexibility in the C alpha-helix at Ala(128), which swings the C-terminal domain of the open subunit more toward the N-terminal domain in the T127L/S128A double mutant of CRP (CRP*) than is observed in the open subunit of cAMP-ligated CRP. Isothermal titration calorimetry measurements on the binding of cAMP to CRP* show that the binding mechanism changes from an exothermic independent two-site binding mechanism at pH 7.0 to an endothermic interacting two-site mechanism at pH 5.2, similar to that observed for CRP at both pH levels. Differential scanning calorimetry measurements exhibit a broadening of the thermal denaturation transition of CRP* relative to that of CRP at pH 7.0 but similar to the multipeak transitions observed for cAMP-ligated CRP. These properties and the bound syn-cAMP ligand, which has only been previously observed in the DNA bound x-ray crystal structure of cAMP-ligated CRP by Passner and Steitz (Passner, J. M., and Steitz, T. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2843-2847), imply that the cAMP-ligated CRP* structure is closer to the conformation of the allosterically activated structure than cAMP-ligated CRP. This may be induced by the unique flexibility at Ala(128) and/or by the bound syn-cAMP in the hinge region of CRP*.
Collapse
Affiliation(s)
- S Y Chu
- Center for Advanced Research in Biotechnology of the National Institute of Standards and Technology and the University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Yoshimura H, Hisabori T, Yanagisawa S, Ohmori M. Identification and characterization of a novel cAMP receptor protein in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2000; 275:6241-5. [PMID: 10692419 DOI: 10.1074/jbc.275.9.6241] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three open reading frames of Synechocystis sp. PCC 6803 encoding a domain homologous with the cAMP binding domain of bacterial cAMP receptor protein were analyzed. These three open reading frames, sll1371, sll1924, and slr0593, which were named sycrp1, sycrp2, and sypk, respectively, were expressed in Escherichia coli as His-tagged or glutathione S-transferase fusion proteins and purified, and their biochemical properties were investigated. The results obtained for equilibrium dialysis measurements using these recombinant proteins suggest that SYCRP1 and SYPK show a binding affinity for cAMP while SYCRP2 does not. The dissociation constant of His-tagged SYCRP1 for cAMP is approximately 3 microM. A cross-linking experiment using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide revealed that His-tagged SYCRP1 forms a homodimer, and the presence or absence of cAMP does not affect the formation of the homodimer. The amino acid sequence reveals that SYCRP1 has a domain similar to the DNA binding domain of bacterial cAMP receptor protein in the COOH-terminal region. Consistent with this, His-tagged SYCRP1 forms a complex with DNA that contains the consensus sequence for E. coli cAMP receptor protein in the presence of cAMP. These results strongly suggest that SYCRP1 is a novel cAMP receptor protein.
Collapse
Affiliation(s)
- H Yoshimura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
13
|
Shi Y, Wang S, Krueger S, Schwarz FP. Effect of mutations at the monomer-monomer interface of cAMP receptor protein on specific DNA binding. J Biol Chem 1999; 274:6946-56. [PMID: 10066748 DOI: 10.1074/jbc.274.11.6946] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the thermodynamic role of binding of an operon to cAMP receptor protein (CRP) in the activation of transcription, isothermal titration calorimetry measurements were performed on the binding of three 40-base pair DNA sequences to the cyclic nucleoside complexes of CRP and its mutants at 296 K. The three 40-base pair sequences consisted of a consensus DNA (conDNA) duplex derived from the CRP-binding site sequences of the operons activated by CRP and two DNA sequences based on the CRP-binding site sequences of the lac operon (lacDNA) and of the gal operon (galDNA). The mutants of CRP consisted of a T127L mutant, a S128A mutant, and a mutant containing both mutations (CRP*) which not only alter the transcriptional activity of the CRP complexes but also are involved in the monomer-monomer interfacial interactions of the CRP dimer. The binding reactions of the DNA duplexes to the fully cNMP-ligated CRP-mutant complexes were endothermic with binding constants as high as 6.6 +/- 1.1 x 10(6) M-1 (conDNA.CRP(cAMP)2). ConDNA binding to the unligated T127L and CRP* mutants was observed as well as conDNA and lacDNA binding to CRP with cAMP bound to only one monomer. The reduction of the binding constants with increase in KCl concentration indicated the formation of two ion pairs for the cAMP-ligated CRP and S128A complexes and four ion pairs for the cAMP-ligated T127L and CRP* complexes. Reduction of the DNA binding constants upon substitution of D2O for H2O in the buffer, the large heat capacity changes, and the enthalpy-entropy compensation exhibited by the binding reactions indicate the importance of dehydration in the binding reaction. Small angle neutron scattering measurements on the lacDNA.CRP(cAMP)2 complex in D2O/H2O mixtures show that the DNA is bent around the cAMP-ligated protein in solution.
Collapse
Affiliation(s)
- Y Shi
- Center for Advanced Research in Biotechnology, National Institute of Standards and Technology, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
14
|
Stites WE. Proteinminus signProtein Interactions: Interface Structure, Binding Thermodynamics, and Mutational Analysis. Chem Rev 1997; 97:1233-1250. [PMID: 11851449 DOI: 10.1021/cr960387h] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wesley E. Stites
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701-1201
| |
Collapse
|
15
|
York D, Reznikoff WS. Purification and biochemical analyses of a monomeric form of Tn5 transposase. Nucleic Acids Res 1996; 24:3790-6. [PMID: 8871560 PMCID: PMC146150 DOI: 10.1093/nar/24.19.3790] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The binding of transposase (Tnp) to the specific Tn5 end sequences is the first dedicated reaction during transposition. In this study, comparative DNA-binding analyses were performed using purified full-length Tnp and a C-terminal deletion variant (delta369) that lacks the putative dimerization domain. The shape of the binding curve of full-length Tnp is sigmoidal in contrast to the hyperbolic-shaped binding curve of delta369. This observation is consistent with previous observations as well as a rate of binding study presented here, which suggest that the full-length Tnp-end interaction, unlike that of the truncated protein, is a complex time-dependent reaction possibly involving a subunit exchange. Circular permutation assay results indicate that both proteins are capable of distorting the Tn5end sequences upon binding. Molecular weight determinations based on the migratory patterns of complexed DNA in polyacrylamide gels has shown that delta369 specifically binds the Tn5 end sequences as a monomer while full-length Tnp in complex represents a heterodimer.
Collapse
Affiliation(s)
- D York
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|
16
|
Byrne MP, Broomfield CA, Stites WE. Mustard gas crosslinking of proteins through preferential alkylation of cysteines. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:131-6. [PMID: 8924198 DOI: 10.1007/bf01887394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mustard gas, bis(2-chloroethyl)sulfide, treatment of proteins is shown to generate significant amounts of covalently crosslinked protein dimers. This is due to the preferential alkylation of cysteine residues. Crosslinking does not occur in the model protein staphylococcal nuclease, which has no cysteine residues. Treatment of cysteine-containing mutants of staphylococcal nuclease with this chemical warfare agent did result in crosslinking. However, these dimers are slowly cleaved back to monomers by an unknown mechanism. The alkylation and crosslinking of cysteine-containing proteins by mustard gas may contribute to its toxicity.
Collapse
Affiliation(s)
- M P Byrne
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701-1201, USA
| | | | | |
Collapse
|
17
|
Kuprash DV, Rice NR, Nedospasov SA. Homodimer of p50 (NF kappa B1) does not introduce a substantial directed bend into DNA according to three different experimental assays. Nucleic Acids Res 1995; 23:427-33. [PMID: 7885838 PMCID: PMC306693 DOI: 10.1093/nar/23.3.427] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription factors can distort the conformation of the DNA double helix upon binding to their target sites. Previously, studies utilizing circular permutation--electrophoretic mobility shift assay suggested that the homodimer of p50 (NF kappa B1), canonical NF-kappa B (p65-p50), as well as several non-canonical NF-kappa B/Rel complexes, may induce substantial DNA bending at the binding site. Here we have applied three additional experimental approaches, helical phasing analysis, minicircle binding and cyclization kinetics, and conclude that the homodimer of p50 introduces virtually no directed bend into the consensus kappa B sequences GGGACTTTCC or GGGAATTCCC.
Collapse
Affiliation(s)
- D V Kuprash
- Laboratory of Cytokine Molecular Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
18
|
Fried MG, Liu G. Molecular sequestration stabilizes CAP-DNA complexes during polyacrylamide gel electrophoresis. Nucleic Acids Res 1994; 22:5054-9. [PMID: 7800499 PMCID: PMC523777 DOI: 10.1093/nar/22.23.5054] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The gel electrophoresis mobility shift assay is widely used for qualitative and quantitative characterization of protein complexes with nucleic acids. Often it is found that complexes that are short-lived in free solution (t1/2 of the order of minutes) persist for hours under the conditions of gel electrophoresis. We have investigated the influence of polyacrylamide gels on the pseudo first-order dissociation kinetics of complexes containing the E.coli cyclic AMP receptor protein (CAP) and lactose promoter DNA. Within the gel matrix, kdiss decreased with increasing [polyacrylamide] and the order of the reaction was changed. In free solution, kdiss was proportional to [DNA]2, while in 5% gels, kdiss was proportional to [DNA]0.3. In gels of [polyacrylamide] > or = 10%, kdiss was nearly independent of [DNA] until fragment concentrations exceeded 0.1 microM. Even in the absence of competing DNA, kdiss(gel) < kdiss(solution). These results suggest that the lifetime of CAP-DNA complexes in free solution is limited by their encounter frequency with molecules of DNA or with protein-DNA complexes; some or all of the stabilization observed in gels may be due to a reduction in this frequency.
Collapse
Affiliation(s)
- M G Fried
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033
| | | |
Collapse
|
19
|
Fried MG, Stickle DF. Ion-exchange reactions of proteins during DNA binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:469-75. [PMID: 8269936 DOI: 10.1111/j.1432-1033.1993.tb18398.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The equilibrium association constant observed for many DNA/protein interactions in vitro (K(obs)) is strongly dependent on the salt concentration of the reaction buffer ([MX]). This dependence is often used to estimate the number of ionic contacts between protein and DNA by assuming that displacement of cations from the DNA is the predominant form of the involvement of ions in the binding reaction. With this assumption, the graph of log K(obs) versus log [MX] is predicted to have a constant slope proportional to the number of ions displaced from the DNA upon protein binding [Record, M. T., Lohman, T. M. & deHaseth, P. L. (1976) J. Mol. Biol. 107, 145-158]. Experimental data often deviate from linearity, however, at lower salt concentrations. Such deviations can be due to differential cation binding, anion binding or changes in macromolecular hydration, or differential screening effects of the electrolyte on protein and/or DNA charges. Here the theoretical effects on K(obs) of a simple form of ion-protein interaction are examined. A model for binding interactions is used that includes a mass balance of ions bound to both protein and DNA as the protein is transferred from the salt concentration of bulk solvent to the typically higher cation and lower anion concentrations characteristic of the volume adjacent to the DNA. We show that models in which the cation and anion stoichiometries of a protein change as it associates with DNA are consistent with the curvature of plots of log K(obs) versus log [MX]. Such mechanisms could reduce the sensitivity of gene-regulatory interactions to changes in environmental salt concentration.
Collapse
Affiliation(s)
- M G Fried
- Department of Biological Chemistry, Pennsylvania State University College of Medicine, Hershey 17033
| | | |
Collapse
|
20
|
Cheng X, Gonzalez ML, Lee JC. Energetics of intersubunit and intrasubunit interactions of Escherichia coli adenosine cyclic 3',5'-phosphate receptor protein. Biochemistry 1993; 32:8130-9. [PMID: 8394127 DOI: 10.1021/bi00083a011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Escherichia coli cAMP receptor protein (CRP) regulates the expression of a large number of catabolite-sensitive genes. The mechanism of CRP regulation most likely involves communication between subunits and domains. A specific message, such as the activation of CRP, may be manifested as a change in the interactions between these structural entities. Hence, the elucidation of the regulatory mechanism would require a quantitative evaluation of the energetics involved in these interactions. Thus, a study was initiated to define the conditions for reversible denaturation of CRP and to quantitatively assess the energetics involved in the intra- and intersubunit interactions in CRP. The denaturation of CRP was induced by guanidine hydrochloride. The equilibrium unfolding reaction of CRP was monitored by three spectroscopic techniques, namely, fluorescence intensity, fluorescence anisotropy, and circular dichroism. The spectroscopic data implied that CRP unfolds in a single cooperative transition. Sedimentation equilibrium data showed that CRP is dissociated into its monomeric state in high concentrations of denaturant. Unfolding of CRP is completely reversible, as indicated by fluorescence and circular dichroism measurements, and sedimentation data indicated that a dimeric structure of CRP was recovered. The functional and other structural properties of renatured and native CRP have also been examined. Quantitatively identical results were obtained. Results from additional studies as a function of protein concentration and from computer simulation demonstrated that the denaturation of CRP induced by guanidine hydrochloride proceeds according to the following pathway: (CRP2)Native<-->2(CRP)Native<-->2(CRP)Denatured. The delta G values for dissociation (delta Gd) and unfolding (delta G(u)) in the absence of guanidine hydrochloride were determined by linear extrapolation, yielding values of 12.0 +/- 0.6 and 7.2 +/- 0.1 kcal/mol, respectively. To examine the effect of the DNA binding domain on the stability of the cAMP binding domain, two proteolytically resistant cAMP binding cores were prepared from CRP in the presence of cAMP by subtilisin and chymotrypsin digestion, yielding S-CRP and CH-CRP, respectively. Results from an equilibrium denaturation study indicated that the denaturation of both CH-CRP and S-CRP is also completely reversible. Both S-CRP and CH-CRP exist as stable dimers with similar delta Gd values of 10.1 +/- 0.4 and 9.5 +/- 0.4 kcal/mol, respectively. Results from this study in conjunction with crystallographic data [McKay, D. B., Weber, I. T., & Stietz, T. A. (1982) J. Biol. Chem. 257, 9518-9524] indicate that the DNA binding domain and the C-helix are not the only structural elements that are responsible for subunit dimerization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- X Cheng
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
21
|
Abstract
Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth.
Collapse
Affiliation(s)
- J L Botsford
- Department of Biology, New Mexico State University, Las Cruces 88003
| | | |
Collapse
|
22
|
Abstract
Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth.
Collapse
Affiliation(s)
- J L Botsford
- Department of Biology, New Mexico State University, Las Cruces 88003
| | | |
Collapse
|
23
|
Global conformational changes in allosteric proteins. A study of Escherichia coli cAMP receptor protein and muscle pyruvate kinase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50716-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Yang ZH, Bobin S, Krakow JS. Characterization of the CRPCY core formed after treatment with carboxypeptidase Y. Nucleic Acids Res 1991; 19:4253-7. [PMID: 1651482 PMCID: PMC328570 DOI: 10.1093/nar/19.15.4253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CRP is resistant to attack by carboxypeptidase Y at 37 degrees C, whereas cAMP-CRP is digested yielding a core terminating at Thr-202 and lacking the seven carboxyl-terminal amino acid residues. A similar core (CRPCY) is formed when CRP is incubated with carboxypeptidase Y at 47 degrees C in the absence of cAMP. CRPCY has a more open conformation than CRP at 37 degrees C. While unliganded CRP is resistant to trypsin, CRPCY is sensitive to tryptic attack. Dithionitrobenzoic acid-mediated intersubunit disulfide crosslinking of CRP requires cAMP, CRPCY subunits are crosslinked in the absence of cAMP. The carboxyl-terminal region of unliganded CRP is conformationally restricted at 37 degrees C. The CRPCY retains cAMP binding activity. The CRPCY which terminates at Thr-202, no longer binds lac P+ DNA nor stimulates abortive initiation by RNA polymerase from the lac P+ promoter. The results indicate that the C-terminal region of CRP participates in the conformational stability of the closed form of CRP and indirectly in DNA binding by the open cAMP-CRP conformer.
Collapse
Affiliation(s)
- Z H Yang
- Department of Biological Sciences, Hunter College of CUNY, NY 10021
| | | | | |
Collapse
|
25
|
Ren YL, Garges S, Adhya S, Krakow JS. Characterization of the binding of cAMP and cGMP to the CRP*598 mutant of the E. coli cAMP receptor protein. Nucleic Acids Res 1990; 18:5127-32. [PMID: 2169605 PMCID: PMC332133 DOI: 10.1093/nar/18.17.5127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Wild type cAMP receptor protein (CRP) activates in vitro lac transcription only in the presence of cAMP. In contrast the mutant CRP*598 (Arg-142 to His, Ala-144 to Thr) can activate lac transcription in the absence of cyclic nucleotide or at concentrations of cAMP below that required by CRP. To further characterize the properties of CRP*598, the binding of cAMP and cGMP to CRP and CRP*598 has been determined. The intrinsic binding constant (K) values obtained for cAMP binding are: CRP, 1.9 x 10(4) M-1; CRP*598, 3.8 x 10(5) M-1. The K values obtained for cGMP binding are: CRP, 2.9 x 10(4) M-1; CRP*598, 2.7 x 10(4) M-1. The results indicate that the affinity of CRP and CRP*598 for cGMP is relatively unchanged while the affinity of CRP*598 for cAMP is approximately twenty times greater than that shown by CRP. Binding of cAMP by CRP and cGMP by CRP or CRP*598 exhibits slight negative cooperativity. The major difference seen is that CRP*598 binds cAMP with strong positive cooperativity. The importance of the unsubstituted N6 position of the adenine moiety is also shown by the similar affinity of both forms of CRP for N6-butyryl cAMP. The cAMP binding properties evinced by CRP*598 suggest that its intrinsically altered conformation may be related to that assumed by CRP in a CRP-DNA or a cAMP-CRP-DNA complex.
Collapse
Affiliation(s)
- Y L Ren
- Department of Biological Sciences, Hunter College, CUNY, NY 10021
| | | | | | | |
Collapse
|
26
|
Heyduk T, Lee JC. Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. Proc Natl Acad Sci U S A 1990; 87:1744-8. [PMID: 2155424 PMCID: PMC53559 DOI: 10.1073/pnas.87.5.1744] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A fluorescence method was developed to study DNA-protein interactions in solution. A 32-base-pair (bp) DNA fragment of the lac promoter containing the primary binding site for Escherichia coli cAMP receptor protein (CRP) was chemically synthesized and labeled specifically at the 5' end with fluorescent probe. Binding of cAMP receptor protein to this fragment can be conveniently followed by measuring changes in polarization of fluorescence of the labeled DNA or by measuring fluorescence energy transfer from protein tryptophan residues to the DNA label. Formation of protein-DNA complex was monitored as a function of cAMP concentration. Various equilibrium constants can be resolved to characterize the binding of cAMP to CRP and the subsequent binding of CRP-cAMP and CRP-(cAMP)2 to DNA. These binding studies showed that the two ligated forms of CRP have significantly different affinities for specific-site DNA. These results show that, in principle, the fluorescence technique can yield thermodynamically valid equilibrium constants under essentially any solution conditions. This technique also has the potential of providing information regarding the structure of protein-DNA complexes.
Collapse
Affiliation(s)
- T Heyduk
- E. A. Doisy Department of Biochemistry, Saint Louis University School of Medicine, MO 63104
| | | |
Collapse
|