1
|
Barzola FN, Laiolo J, Cotelo C, Joray MB, Volpini X, Rivero MR, Rópolo AS, Touz MC, Feliziani C. Cytotoxic effects of ivermectin on Giardia lamblia: induction of apoptosis and cell cycle arrest. Front Microbiol 2024; 15:1484805. [PMID: 39545240 PMCID: PMC11560887 DOI: 10.3389/fmicb.2024.1484805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Giardia lamblia is a flagellated protozoan parasite causing giardiasis, a common intestinal infection characterized by diarrhea, abdominal cramps, and nausea. Treatments employed to combat this parasitic infection have remained unchanged for the past 40 years, leading to the emergence of resistant strains and prompting the search for new therapeutic agents. Methods This study investigated the cytotoxic effects of ivermectin (IVM) on G. lamblia trophozoites. We conducted dose-response experiments to assess IVM-induced cytotoxicity. We utilized various biochemical and ultrastructural analyses to explore the underlying mechanisms of cell death, including reactive oxygen species (ROS) production, DNA fragmentation, cell cycle arrest, and apoptosis markers. Results Our findings demonstrate that IVM induces dose-dependent cytotoxicity and triggers cell death pathways. We found that IVM treatment generates elevated levels of reactive oxygen species (ROS), DNA fragmentation, and arrests of trophozoites in the cell cycle's S phase. Additionally, ultrastructural analysis reveals morphological alterations consistent with apoptosis, such as cytoplasmic vacuolization, chromatin condensation, and tubulin distribution. Discussion The insights gained from this study may contribute to developing new therapeutic strategies against giardiasis, addressing the challenge posed by drug-resistant strains.
Collapse
Affiliation(s)
- Florencia Nicole Barzola
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica De Córdoba, Córdoba, Argentina
| | - Camilo Cotelo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Cientí-ficas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Ximena Volpini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología – Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - María Romina Rivero
- Instituto De Desarrollo Agroindustrial y De La Salud (IDAS-CONCIET), Universidad Nacional De Rio Cuarto, Rio Cuarto, Argentina
| | - Andrea Silvana Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
de Paula Baptista R, Tucker MS, Valente MJ, Srivastava SK, Chehab N, Li A, Shaik JS, Ramirez JD, Rosenthal BM, Khan A. Comparative genomics of Giardia duodenalis sub-assemblage AI beaver (Be-2) and human (WB-C6) strains show remarkable homozygosity, sequence similarity, and conservation of VSP genes. Sci Rep 2024; 14:13582. [PMID: 38866814 PMCID: PMC11169602 DOI: 10.1038/s41598-024-63783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Giardia duodenalis, a major cause of waterborne infection, infects a wide range of mammalian hosts and is subdivided into eight genetically well-defined assemblages named A through H. However, fragmented genomes and a lack of comparative analysis within and between the assemblages render unclear the molecular mechanisms controlling host specificity and differential disease outcomes. To address this, we generated a near-complete de novo genome of AI assemblage using the Oxford Nanopore platform by sequencing the Be-2 genome. We generated 148,144 long-reads with quality scores of > 7. The final genome assembly consists of only nine contigs with an N50 of 3,045,186 bp. This assembly agrees closely with the assembly of another strain in the AI assemblage (WB-C6). However, a critical difference is that a region previously placed in the five-prime region of Chr5 belongs to Chr4 of Be-2. We find a high degree of conservation in the ploidy, homozygosity, and the presence of cysteine-rich variant-specific surface proteins (VSPs) within the AI assemblage. Our assembly provides a nearly complete genome of a member of the AI assemblage of G. duodenalis, aiding population genomic studies capable of elucidating Giardia transmission, host range, and pathogenicity.
Collapse
Affiliation(s)
- Rodrigo de Paula Baptista
- Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Medicine, Weill Cornell Medicine College, New York, NY, 10065, USA
| | - Matthew S Tucker
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Matthew J Valente
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Subodh K Srivastava
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Nadya Chehab
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Alison Li
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Jahangheer S Shaik
- Insights and Analytics, Applied Data Science and Learning, Data Science Institute, Takeda, Cambridge, MA, 02142, USA
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin M Rosenthal
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Asis Khan
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Grajeda BI, De Chatterjee A, Villalobos CM, Pence BC, Ellis CC, Enriquez V, Roy S, Roychowdhury S, Neumann AK, Almeida IC, Patterson SE, Das S. Giardial lipid rafts share virulence factors with secreted vesicles and participate in parasitic infection in mice. Front Cell Infect Microbiol 2022; 12:974200. [PMID: 36081774 PMCID: PMC9445159 DOI: 10.3389/fcimb.2022.974200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 μM) and oseltamivir (20 μM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.
Collapse
Affiliation(s)
- Brian I. Grajeda
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Carmen M. Villalobos
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Breanna C. Pence
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C. Ellis
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Vanessa Enriquez
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sourav Roy
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sukla Roychowdhury
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Aaron K. Neumann
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Igor C. Almeida
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Steven E. Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN, United States
| | - Siddhartha Das
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
4
|
Comprehensive characterization of Cysteine-rich protein-coding genes of Giardia lamblia and their role during antigenic variation. Genomics 2022; 114:110462. [PMID: 35998788 DOI: 10.1016/j.ygeno.2022.110462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation is presented as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.
Collapse
|
5
|
Abstract
Giardia duodenalis captured the attention of Leeuwenhoek in 1681 while he was examining his own diarrheal stool, but, ironically, it did not really gain attention as a human pathogen until the 1960s, when outbreaks were reported. Key technological advances, including in vitro cultivation, genomic and proteomic databases, and advances in microscopic and molecular approaches, have led to an understanding that this is a eukaryotic organism with a reduced genome rather than a truly premitochondriate eukaryote. This has included the discovery of mitosomes (vestiges of mitochondria), a transport system with many of the features of the Golgi apparatus, and even evidence for a sexual or parasexual cycle. Cell biology approaches have led to a better understanding of how Giardia survives with two nuclei and how it goes through its life cycle as a noninvasive organism in the hostile environment of the lumen of the host intestine. Studies of its immunology and pathogenesis have moved past the general understanding of the importance of the antibody response in controlling infection to determining the key role of the Th17 response. This work has led to understanding of the requirement for a balanced host immune response that avoids the extremes of an excessive response with collateral damage or one that is unable to clear the organism. This understanding is especially important in view of the remarkable ranges of early manifestations, which range from asymptomatic to persistent diarrhea and weight loss, and longer-term sequelae that include growth stunting in children who had no obvious symptoms and a high frequency of postinfectious irritable bowel syndrome (IBS).
Collapse
|
6
|
Comparative proteomics of three Giardia lamblia strains: investigation of antigenic variation in the post-genomic era. Parasitology 2020; 147:1008-1018. [PMID: 32338227 PMCID: PMC7332775 DOI: 10.1017/s0031182020000657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Giardia lamblia is a causative agent of persistent diarrhoea widespread in regions with low hygienic standards. Laboratory research is based on cloned lines issuing from various patient isolates typed in the late 1980s and 90s using restriction analysis and serology. In the present study, we compared the well-characterized strain WBC6 with another clone of the parent WB isolate termed WBA1 and with a clone from another isolate, GS/M-83-H7, using shotgun mass spectrometry proteomics. We identified 398 proteins differentially expressed between the GS and both WB isolates and 97 proteins differentially expressed between the two WB isolates. We investigated the expression levels of the predominant variant-specific surface proteins (VSPs) in each clone and matched the previously described major VSPs of each strain to the corresponding open reading frame sequences identified by whole-genome sequencing efforts. Furthermore, since the original WB isolate comes from a patient treated with metronidazole, we compared the susceptibilities of the strains to nitro compounds, as well the expression levels of enzymes involved in nitro reduction and on the corresponding enzyme activities and found distinct differences between the three strains.
Collapse
|
7
|
Cabrera-Licona A, Solano-González E, Fonseca-Liñán R, Bazán-Tejeda ML, Raúl Argüello-García, Bermúdez-Cruz RM, Ortega-Pierres G. Expression and secretion of the Giardia duodenalis variant surface protein 9B10A by transfected trophozoites causes damage to epithelial cell monolayers mediated by protease activity. Exp Parasitol 2017; 179:49-64. [PMID: 28668253 DOI: 10.1016/j.exppara.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is the protozoan parasite responsible for most cases of parasitic diarrhea worldwide. The pathogenic mechanisms of giardiasis have not yet been fully characterized. In this context parasite's excretory/secretory products have been related to the damage induced by the parasite on enterocytes. Among these is the Variable Surface Proteins (VSPs) family involved in antigenic variation and in the induction of protective response. In proteomic analyses carried out to identify the proteases with high molecular weight secreted by Giardia trophozoites during the initial phase of interaction with IEC-6 cell monolayers we identified the VSP9B10A protein. In silico bioinformatics analyses predicted a central region in residues 324-684 displaying the catalytic triad and the substrate binding pocket of cysteine proteases. The analysis of the effect of the VSP9B10A protein on epithelial cell monolayers using trophozoites that were transfected with a plasmid carrying the vsp9b10a gene sequence under the control of a constitutive promoter showed that transfected trophozoites expressing the VSP9B10A protein caused cytotoxic damages on IEC-6 and MDCK cell monolayers. This was characterized by loss of cell-cell contacts and cell detachment from the substrate while no damage was observed with trophozoites that did not express the VSP9B10A protein. The same cytotoxic effect was detected when IEC-6 cell monolayers were incubated only with supernatants from co-cultures of IEC-6 cell monolayers with VSP9B10A transfected trophozoites and this effect was not observed when transfected trophozoites were incubated with a monospecific polyclonal antibody anti-VSP9B10A previous to interaction with IEC-6 monolayers. These results demonstrate that the VSP9B10A protein secreted upon interaction with epithelial cells caused damage in these cells. Thus this protein might be considered as a conditional virulence factor candidate. To our knowledge this is the first report on the proteolytic activity from a Giardia VSP opening new research lines on these proteins.
Collapse
Affiliation(s)
- Ariana Cabrera-Licona
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Eduardo Solano-González
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Ma Luisa Bazán-Tejeda
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Rosa Ma Bermúdez-Cruz
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| |
Collapse
|
8
|
Quintero J, Valdez A, Samaniego B, Lopez-Romero G, Astiazaran-Garcia H, Rascon L, Breci L, Garibay-Escobar A, Robles-Zepeda R, Velazquez C. Isolation and partial characterization of an immunogenic antigen of Giardia lamblia. Parasitol Int 2017; 66:324-330. [DOI: 10.1016/j.parint.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/26/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
|
9
|
Gargantini PR, Serradell MDC, Ríos DN, Tenaglia AH, Luján HD. Antigenic variation in the intestinal parasite Giardia lamblia. Curr Opin Microbiol 2016; 32:52-58. [DOI: 10.1016/j.mib.2016.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/25/2023]
|
10
|
Einarsson E, Troell K, Hoeppner MP, Grabherr M, Ribacke U, Svärd SG. Coordinated Changes in Gene Expression Throughout Encystation of Giardia intestinalis. PLoS Negl Trop Dis 2016; 10:e0004571. [PMID: 27015092 PMCID: PMC4807828 DOI: 10.1371/journal.pntd.0004571] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/03/2016] [Indexed: 12/29/2022] Open
Abstract
Differentiation into infectious cysts through the process of encystation is crucial for transmission and survival of the intestinal protozoan parasite Giardia intestinalis. Hitherto the majority of studies have focused on the early events, leaving late encystation poorly defined. In order to further study encystation, focusing on the later events, we developed a new encystation protocol that generates a higher yield of mature cysts compared to standard methods. Transcriptome changes during the entire differentiation from trophozoites to cysts were thereafter studied using RNA sequencing (RNA-seq). A high level of periodicity was observed for up- and down-regulated genes, both at the level of the entire transcriptome and putative regulators. This suggests the trajectory of differentiation to be coordinated through developmentally linked gene regulatory activities. Our study identifies a core of 13 genes that are consistently up-regulated during initial encystation. Of these, two constitute previously uncharacterized proteins that we were able to localize to a new type of encystation-specific vesicles. Interestingly, the largest transcriptional changes were seen in the late phase of encystation with the majority of the highly up-regulated genes encoding hypothetical proteins. Several of these were epitope-tagged and localized to further characterize these previously unknown genetic components of encystation and possibly excystation. Finally, we also detected a switch of variant specific surface proteins (VSPs) in the late phase of encystation. This occurred at the same time as nuclear division and DNA replication, suggesting a potential link between the processes. The intestinal protozoan parasite Giardia intestinalis and many other medically important protozoan parasites must encyst and form infective cysts in order to transmit to new hosts. Encystation efficiency is in that way connected to efficiency of transmission. We have developed new in vitro differentiation protocols and made the first RNA-seq based gene expression study of the complete Giardia encystation process. Our data provides a road map of Giardia encystation and a starting point from where it is possible to further explore important processes occurring during encystation. Information about this vital process for survival in the environment of this and other cyst forming parasites can be used in the development of new types of interventions.
Collapse
Affiliation(s)
- Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Karin Troell
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Marc P. Hoeppner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ulf Ribacke
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
11
|
Ansell BRE, McConville MJ, Ma'ayeh SY, Dagley MJ, Gasser RB, Svärd SG, Jex AR. Drug resistance in Giardia duodenalis. Biotechnol Adv 2015; 33:888-901. [PMID: 25922317 DOI: 10.1016/j.biotechadv.2015.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia.
| | - Malcolm J McConville
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Michael J Dagley
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Hong Y, Zhang M, Yang J, Cao X, Han Q, Han Y, Qiu C, Zhu C, Lu K, Li H, Fu Z, Lin J. Immunoproteomic analysis of Schistosoma japonicum schistosomulum proteins recognized by immunoglobulin G in the sera of susceptible and non-susceptible hosts. J Proteomics 2015; 124:25-38. [PMID: 25896740 DOI: 10.1016/j.jprot.2015.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 01/20/2023]
Abstract
UNLABELLED The aim of this study was to search for immunogenic schistosomula proteins in the hope of identifying novel intervention targets. Schistosomula proteins were analyzed by immunoproteomic which the probes were sera derived from BALB/c mice (susceptible hosts) and Microtus fortis (resistant hosts). A total of 116 immunoreactive proteins recognized by 10 days post-infected BALB/c mice, M. fortis sera, and uninfected M. fortis sera were selected for further analysis. Finally, 95 protein spots were identified by mass spectrometry (MS) analysis. Bioinformatics analysis showed that the differentially identified immunogenic proteins participated mainly in cytoskeleton organization, cell motility, energy metabolism, responses to stimuli, and protein folding. Many of these proteins were the tegument or excretory-secretory products of schistosomes reported in previous studies. Among of them, Schistosoma japonicum DnaJ (Hsp40) homologue (SjDnaJ) was successfully expressed and the purified recombinant product was evaluated by immunoprotective experiment. After immunization of BALB/c mice with recombinant SjDnaJ, it could induce 34.5% and 48.9% reductions in the numbers of worms and eggs in the liver. These results contribute to a better understanding of the molecular mechanisms underlying the host-parasite relationship and provide a major dataset to facilitate the further development of new vaccine candidates and/or diagnostic markers for schistosomiasis. BIOLOGICAL SIGNIFICANCE Schistosomiasis is caused by parasitic blood-dwelling flukes in tropical and subtropical areas, and it is one of the world's most prevalent tropical diseases. The lack of effective vaccine and reliable diagnostic methods make this disease difficult to control. In China, S. japonicum can infect more than 40 different susceptible mammals for this parasite. However, M. fortis is the only known mammal where the schistosome cannot develop and it exhibits no significant pathological effects. Many studies' results showed that native antibodies against S. japonicum are present in M. fortis that may have important anti-schistosomiasis roles during the infection process. The aim of this study was to search for immunogenic schistosomula proteins in the hope of identifying novel intervention targets. We present a comparative immunoproteomics analysis of the proteins recognized by susceptible and resistant host antibodies before and 10-days after infections. The results of this analysis will be helpful for identifying the key molecules required for the survival and development of schistosomes. At the same time, the study contributes to a better understanding of the molecular mechanisms underlying the host-parasite relationship associated with schistosomes and they also provide a major dataset to facilitate the further development of new diagnostic assays and/or vaccine candidates for schistosomiasis.
Collapse
Affiliation(s)
- Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province 471023, PR China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Xiaodan Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Qian Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Yanhui Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, PR China
| | - Chunhui Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; College of Life Sciences, Fujian Agriculture and Forestry University, FuZhou, Fujian Province 350002, PR China
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China.
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, PR China.
| |
Collapse
|
13
|
Cao X, Hong Y, Zhang M, Han Y, Wu M, Wang X, Guo X, Li C, Lu K, Li H, Fu Z, Lin J. Cloning, expression and characterization of protein disulfide isomerase of Schistosoma japonicum. Exp Parasitol 2015; 146:43-51. [PMID: 25300760 DOI: 10.1016/j.exppara.2014.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/09/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
The excretory/secretory (ES) proteins of schistosomes play important roles in modulating host immune systems and are regarded as potential vaccine candidates and drug targets. Protein disulfide isomerase (PDI) is an essential enzyme that is involved in disulfide bond formation and rearrangement. In the present study, SjPDI, a 52.8 kDa protein previously identified in a proteomics analysis as one of the ES proteins of Schistosoma japonicum, was cloned and characterized. Western blot analysis showed that recombinant SjPDI (rSjPDI) was recognized by serum from rabbits vaccinated with schistosome worm antigen. Worm protein extracts and ES protein extracts from S. japonicum could react with anti-rSjPDI mouse serum. Real-time PCR analysis indicated that SjPDI was expressed at all developmental stages tested, and a high expression level was detected in 42-day-old male worms. Immunofluorescence analysis revealed that SjPDI was mainly distributed on the tegument and parenchyma of S. japonicum worms. An enzyme-linked immunosorbent assay (ELISA) demonstrated that rSjPDI could induce a high level of rSjPDI-specific IgG antibodies. The biological activity of purified rSjPDI was confirmed by isomerization and antioxidative activity assays. The 35.32%, 26.19% reduction in the worm burden and 33.17%, 31.7% lower liver egg count were obtained in mice vaccinated with rSjPDI compared with the blank control group in two independent trials. Our preliminary results suggest that rSjPDI plays an important role in the development of the schistosome and is a potential vaccine candidate for schistosomiasis.
Collapse
Affiliation(s)
- Xiaodan Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Molecular characterization and analysis of a novel protein disulfide isomerase-like protein of Eimeria tenella. PLoS One 2014; 9:e99914. [PMID: 24932912 PMCID: PMC4059736 DOI: 10.1371/journal.pone.0099914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/19/2014] [Indexed: 12/13/2022] Open
Abstract
Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDIL cDNA contained 1129 nucleotides encoding 216 amino acids. The deduced EtPDIL protein belonged to thioredoxin-like superfamily and had a single predicted thioredoxin domain with a non-classical thioredoxin-like motif (SXXC). BLAST analysis showed that the EtPDIL protein was 55–59% identical to PDI-like proteins of other apicomplexan parasites. The transcript and protein levels of EtPDIL at different development stages were investigated by real-time quantitative PCR and western blot. The messenger RNA and protein levels of EtPDIL were higher in sporulated oocysts than in unsporulated oocysts, sporozoites or merozoites. Protein expression was barely detectable in unsporulated oocysts. Western blots showed that rabbit antiserum against recombinant EtPDIL recognized only a native 24 kDa protein from parasites. Immunolocalization with EtPDIL antibody showed that EtPDIL had a disperse distribution in the cytoplasm of whole sporozoites and merozoites. After sporozoites were incubated in complete medium, EtPDIL protein concentrated at the anterior of the sporozoites and appeared on the surface of parasites. Specific staining was more intense and mainly located on the parasite surface after merozoites released from mature schizonts invaded DF-1 cells. After development of parasites in DF-1 cells, staining intensified in trophozoites, immature schizonts and mature schizonts. Antibody inhibition of EtPDIL function reduced the ability of E. tenella to invade DF-1 cells. These results suggested that EtPDIL might be involved in sporulation in external environments and in host cell adhesion, invasion and development of E. tenella.
Collapse
|
15
|
Experimental verification of the identity of variant-specific surface proteins in Giardia lamblia trophozoites. mBio 2013; 4:e00321-13. [PMID: 23695837 PMCID: PMC3656445 DOI: 10.1128/mbio.00321-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The cell membrane of a Giardia lamblia trophozoite is covered with a single species of variant-specific surface protein (VSP) that is replaced by another VSP every 6 to 13 generations of cell growth, possibly for an evasion of host immunity. Experimentally, only six VSP species have been verified to localize to the cell membrane thus far. By assuming that VSP contains multiple CXXC motifs, 219 vsp genes were annotated in GiardiaDB of the WB isolate. By further assuming that VSP possesses both CXXC motifs and a CRGKA tail at the C terminus, Adam et al. (BMC Genomics 11:424, 2010) identified a total of 303 potential vsp genes in Giardia WB. The discrepancies between these two assumed VSP identities have caused some confusion. Here, we used experimental approaches to further verify what is required of the structures of a VSP to localize to the surface of cell membrane. The data led to the following conclusions. (i) The C-terminal CRGKA sequence is not essential for localizing VSPs to the cell membrane. (ii) A “motif 1” of 45 residues, consisting of two CXXCs separated by 12 to 15 amino acid residues, located close to the C terminus and a hydrophobic “motif 2” of 38 residues at the C terminus are both essential and sufficient for localizing the protein to the cell membrane. (ii) An N-terminal sequence upstream from motif 1 is not required for targeting VSPs to the cell membrane. By these criteria, we are able to identify 73 open reading frames as the putative vsp genes in Giardia. The intestinal pathogen Giardia lamblia expresses only one variant-specific surface protein (VSP) on the cell membrane surface at a given time, but it changes spontaneously every 6 to 13 generations of growth, presumably for evading the host immunity. Only 6 VSPs have been empirically shown to localize to the cell membrane surface thus far. Here, we used mutations of VSPs and methods of identifying their locations in Giardia cells and found that a “motif 1” of 45 residues, consisting of two CXXCs separated by 12 to 15 amino acid residues, located close to the C terminus and a hydrophobic “motif 2” of 38 residues at the C terminus are the only essential and sufficient structural requirements for localizing a protein to the cell membrane. By these criteria, 73 genes are identified in the Giardia WB strain genome database as the putative repertoire of VSPs.
Collapse
|
16
|
Molecular cloning, expression, and immunolocalization of protein disulfide isomerase in excretory-secretory products from Clonorchis sinensis. Parasitol Res 2012; 111:983-9. [PMID: 22538482 DOI: 10.1007/s00436-012-2922-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/10/2012] [Indexed: 01/25/2023]
Abstract
Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum with folding and chaperone activities in different biological systems. Here, PDI of Clonorchis sinensis (CsPDI) was isolated from the cDNA library of adult C. sinensis. The open reading frame contains 1,317 bp encoding 438 amino acids and shares 53 %, 49 %, and 43 % identity with PDI from Bos taurus, Homo sapiens, and Schistosoma mansoni, respectively. Two catalytic thioredoxin motifs CxxC were found in this sequence, which were characteristic domains of thioredoxin superfamily. The CsPDI protein was expressed and purified from Escherichia coli BL21 (DE3). According to western blotting analysis, the recombinant CsPDI could be recognized by anti-CsPDI rat serum, anti-excretory/secretory products rat serum, and serum of rat infected with C. sinensis, respectively. Quantitative real-time polymerase chain reaction showed that transcription level of CsPDI in the metacercaria stage was six and four times higher than that in the adult worm and egg stage, respectively. Immunolocalization analysis showed CsPDI could be detected in the intestine, vitellarium, and intrauterine eggs of adult worm, as well as in the cyst wall and vitellarium of metacercaria. In addition, the strong fluorescence signal was observed both on the wall of bile duct and in the lumen of liver tissue of C. sinensis-infected cat. Those results demonstrated that CsPDI was a component of C. sinensis excretory-secretory products. The present study will enhance our understanding of biological functions of CsPDI and pave the way for further studies on host-parasite interaction during C. sinensis infection.
Collapse
|
17
|
Alum A, Sbai B, Asaad H, Rubino JR, Khalid Ijaz M. ECC-RT-PCR: a new method to determine the viability and infectivity of Giardia cysts. Int J Infect Dis 2012; 16:e350-3. [PMID: 22390842 DOI: 10.1016/j.ijid.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Giardia sp is a major cause of diarrheal illness worldwide, and millions of people are infected each year. Rapid methods to determine the infectivity and virulence of isolates are critical for the development of intervention strategies to control the transmission of Giardia sp cysts, which occurs through contaminated surfaces, food, and water. However, determining the viability, infectivity, and virulence of Giardia sp cysts using molecular methods is a technical challenge because of the lack of a cell culture model. METHOD This study was designed to evaluate mRNA expression in trophozoites and to assess trophozoite attachment to cell monolayer and changes in transcellular resistance as an indicator of Giardia sp viability and infectivity. Heat shock mRNA in Giardia cysts and variant-specific protein (VSP) mRNA in trophozoites were quantified by reverse transcription polymerase chain reaction (RT-PCR). C2bb (Caco-2) cells were grown on transwell chambers to study the attachment of trophozoites, changes in transcellular resistance, and expression of VSP in trophozoites. RESULTS The results of these molecular and cell culture studies indicate a direct linear correlation between the viability and infectivity of fresh stocks of Giardia sp cysts. The attachment of trophozoites to cell monolayer, expression of VSP, and change in the transcellular resistance was directly correlated with their infectivity in neonatal mice. PCR was successfully combined with the electrophysiological analysis of cell culture (ECC-RT-PCR) post-trophozoite attachment. CONCLUSION This study shows that the ECC-RT-PCR, a new integrated cell culture assay, can be used as a rapid and cost-effective tool for assessing the viability and infectivity of environmental isolates of Giardia sp cysts.
Collapse
Affiliation(s)
- Absar Alum
- Arizona State University, Department of Civil & Environmental Engineering, Tempe, Arizona, USA; DH Laboratory, Chandler, Arizona, USA
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- César G. Prucca
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Fernando D. Rivero
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Hugo D. Luján
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| |
Collapse
|
19
|
Adam RD, Nigam A, Seshadri V, Martens CA, Farneth GA, Morrison HG, Nash TE, Porcella SF, Patel R. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution. BMC Genomics 2010; 11:424. [PMID: 20618957 PMCID: PMC2996952 DOI: 10.1186/1471-2164-11-424] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022] Open
Abstract
Background Giardia lamblia trophozoites colonize the intestines of susceptible mammals and cause diarrhea, which can be prolonged despite an intestinal immune response. The variable expression of the variant-specific surface protein (VSP) genes may contribute to this prolonged infection. Only one is expressed at a time, and switching expression from one gene to another occurs by an epigenetic mechanism. Results The WB Giardia isolate has been sequenced at 10× coverage and assembled into 306 contigs as large as 870 kb in size. We have used this assembly to evaluate the genomic organization and evolution of the vsp repertoire. We have identified 228 complete and 75 partial vsp gene sequences for an estimated repertoire of 270 to 303, making up about 4% of the genome. The vsp gene diversity includes 30 genes containing tandem repeats, and 14 vsp pairs of identical genes present in either head to head or tail to tail configurations (designated as inverted pairs), where the two genes are separated by 2 to 4 kb of non-coding DNA. Interestingly, over half the total vsp repertoire is present in the form of linear gene arrays that can contain up to 10 vsp gene members. Lastly, evidence for recombination within and across minor clades of vsp genes is provided. Conclusions The data we present here is the first comprehensive analysis of the vsp gene family from the Genotype A1 WB isolate with an emphasis on vsp characterization, function, evolution and contributions to pathogenesis of this important pathogen.
Collapse
Affiliation(s)
- Rodney D Adam
- Departments of Medicine and Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The eukaryotic intestinal parasite Giardia intestinalis was first described in 1681, when Antonie van Leeuwenhoek undertook a microscopic examination of his own diarrhoeal stool. Nowadays, although G. intestinalis is recognized as a major worldwide contributor to diarrhoeal disease in humans and other mammals, the disease mechanisms are still poorly understood. Owing to its reduced complexity and proposed early evolutionary divergence, G. intestinalis is used as a model eukaryotic system for studying many basic cellular processes. In this Review we discuss recent discoveries in the molecular cell biology and pathogenesis of G. intestinalis.
Collapse
|
21
|
Xiao Y, Yin J, Jiang N, Xiang M, Hao L, Lu H, Sang H, Liu X, Xu H, Ankarklev J, Lindh J, Chen Q. Seroepidemiology of human Toxoplasma gondii infection in China. BMC Infect Dis 2010; 10:4. [PMID: 20055991 PMCID: PMC2818656 DOI: 10.1186/1471-2334-10-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 01/07/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toxoplasmosis is an important zoonotic parasitic disease worldwide. In immune competent individuals, Toxoplasma gondii preferentially infects tissues of central nervous systems, which might be an adding factor of certain psychiatric disorders. Congenital transmission of T. gondii during pregnancy has been regarded as a risk factor for the health of newborn infants. While in immune-compromised individuals, the parasite can cause life-threatening infections. This study aims to investigate the prevalence of T. gondii infection among clinically healthy individuals and patients with psychiatric disorders in China and to identify the potential risk factors related to the vulnerability of infection in the population. METHODS Serum samples from 2634 healthy individuals and 547 patients with certain psychiatric disorders in Changchun and Daqing in the northeast, and in Shanghai in the south of China were examined respectively for the levels of anti-T. gondii IgG by indirect ELISA and a direct agglutination assay. Prevalence of T. gondii infection in the Chinese population in respect of gender, age, residence and health status was systematically analyzed. RESULTS The overall anti-T. gondii IgG prevalence in the study population was 12.3%. In the clinically healthy population 12.5% was sero-positive and in the group with psychiatric disorders 11.3% of these patients were positive with anti-T. gondii IgG. A significant difference (P = 0.004) was found between male and female in the healthy population, the seroprevalence was 10.5% in men versus 14.3% in women. Furthermore, the difference of T. gondii infection rate between male and female in the 20-19 year's group was more obvious, with 6.4% in male population and 14.6% in female population. CONCLUSION A significant higher prevalence of T. gondii infection was observed in female in the clinically healthy population. No correlation was found between T. gondii infection and psychiatric disorders in this study. Results suggest that women are more exposed to T. gondii infection than men in China. The data argue for deeper investigations for the potential risk factors that threat the female populations.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Jigang Yin
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Ning Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Mei Xiang
- The Second Hospital of Jilin University, Ziqiang Street 218, Changchun 10041, PR China
| | - Lili Hao
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, Dong Dan San Tiao, Beijing 100730, PR China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
| | - Hong Sang
- The Sixth Hospital of Changchun City, North Round Road 4596, Changchun 130040, PR China
| | - Xianying Liu
- The Second Hospital of Jilin University, Ziqiang Street 218, Changchun 10041, PR China
| | - Huiji Xu
- Changzheng Hospital, Shanghai, Fengyang Road 415, Shanghai 200003, PR China
| | - Johan Ankarklev
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| | - Johan Lindh
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| | - Qijun Chen
- Key Laboratory of Zoonosis, Ministry of Education, Jilin University, Xi An Da Lu 5333, Changchun 130062, PR China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, Dong Dan San Tiao, Beijing 100730, PR China
- Department of Parasitology, Mycology and Environmental Microbiology, Swedish Institute for Infectious Disease Control, Nobels väg 18, 171 82 Solna, Sweden
| |
Collapse
|
22
|
|
23
|
ORF-C4 from the early branching eukaryote Giardia lamblia displays characteristics of alpha-crystallin small heat-shock proteins. Biosci Rep 2009; 29:25-34. [PMID: 18680481 DOI: 10.1042/bsr20080101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Giardia lamblia is a medically important protozoan parasite with a basal position in the eukaryotic lineage and is an interesting model to explain the evolution of biochemical events in eukaryotic cells. G. lamblia trophozoites undergo significant changes in order to survive outside the intestine of their host by differentiating into infective cysts. In the present study, we characterize the previously identified Orf-C4 (G. lamblia open reading frame C4) gene, which is considered to be specific to G. lamblia. It encodes a 22 kDa protein that assembles into high-molecular-mass complexes during the entire life cycle of the parasite. ORF-C4 localizes to the cytoplasm of trophozoites and cysts, and forms large spherical aggregates when overexpressed. ORF-C4 overexpression and down-regulation do not affect trophozoite viability; however, differentiation into cysts is slightly delayed when the expression of ORF-C4 is down-regulated. In addition, ORF-C4 protein expression is modified under specific stress-inducing conditions. Neither orthologous proteins nor conserved domains are found in databases by conventional sequence analysis of the predicted protein. However, ORF-C4 contains a region which is similar structurally to the alpha-crystallin domain of sHsps (small heat-shock proteins). In the present study, we show the potential role of ORF-C4 as a small chaperone which is involved in the response to stress (including encystation) in G. lamblia.
Collapse
|
24
|
Hernández-Sánchez J, Liñan RF, Salinas-Tobón MDR, Ortega-Pierres G. Giardia duodenalis: adhesion-deficient clones have reduced ability to establish infection in Mongolian gerbils. Exp Parasitol 2008; 119:364-72. [PMID: 18456259 DOI: 10.1016/j.exppara.2008.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/20/2008] [Accepted: 03/22/2008] [Indexed: 11/15/2022]
Abstract
The role of Giardia duodenalis surface molecules in the attachment of trophozoites to epithelial cells has been established through the dual strategies of characterizing G. duodenalis clones with deficient adhesion and blocking experiments with surface-specific monoclonal antibodies. Also, the infectivity of the analyzed clones was tested using Mongolian gerbils as experimental model. Two adhesion-deficient G. duodenalis clones, C6 and C7, were isolated from the wild type C5 clone which in turn was obtained from the WB strain. The adhesion efficiencies of C6 and C7 clones (48.2+/-4.9 and 32.6+/-2.4, respectively) were significantly lower as compared with WB strain or C5 clone (82.8+/-6.4 and 79.9+/-7.9). Analysis of radiolabel surface proteins by 1D and 2D SDS-PAGE revealed prominently labelled 28 and 88 kDa components in C6 and C7 clones and a major 200 kDa protein in the C5 clone and the WB strain. The 88 and 200 kDa components are acidic proteins by two-dimensional electrophoretic analyses. The most striking difference between wild-type and adhesion-deficient Giardia trophozoites was the reduced expression of a 200 kDa surface protein in the latter. Significantly, a mAb (IG3) specific for the 200 kDa protein that reacted with more than 99% of WB and C5 trophozoites and less than 1% of C6 and C7 trophozoites as determined by indirect immunofluorescence inhibited the adhesion of trophozoites from WB and C5 clone to Madin Darby Canine Kidney cells by 52% and 40.9%, respectively, suggesting a participation of this antigen in adherence. Finally, the functional relevance of trophozoite adhesion to epithelial cells was indicated by the reduced capacity of the adhesion-deficient clones to establish the infection in Mongolian gerbils.
Collapse
Affiliation(s)
- Javier Hernández-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
25
|
Prabhu A, Morrison HG, Martinez CR, Adam RD. Characterisation of the subtelomeric regions of Giardia lamblia genome isolate WBC6. Int J Parasitol 2007; 37:503-13. [PMID: 17275000 DOI: 10.1016/j.ijpara.2006.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/13/2006] [Accepted: 12/04/2006] [Indexed: 11/19/2022]
Abstract
Giardia trophozoites are polyploid and have five chromosomes. The chromosome homologues demonstrate considerable size heterogeneity due to variation in the subtelomeric regions. We used clones from the genome project with telomeric sequence at one end to identify six subtelomeric regions in addition to previously identified subtelomeric regions, to study the telomeric arrangement of the chromosomes. The subtelomeric regions included two retroposons, one retroposon pseudogene, and two vsp genes, in addition to the previously identified subtelomeric regions that include ribosomal DNA repeats. The presence of vsp genes in a subtelomeric region suggests that telomeric rearrangements may contribute to the generation of vsp diversity. These studies of the subtelomeric regions of Giardia may contribute to our understanding of the factors that maintain stability, while allowing diversity in chromosome structure.
Collapse
Affiliation(s)
- Anjali Prabhu
- Department of Immunobiology, University of Arizona College of Medicine, 1501 N. Campbell, Tucson, AZ 85724-5049, USA
| | | | | | | |
Collapse
|
26
|
Abstract
In the past decades, the major focus of antigen variation research has been on parasitic protists. However, antigenic variation occurs also in free-living protists. The antigenic systems of the ciliates Paramecium and Tetrahymena have been studied for more than 100 yr. In spite of different life strategies and distant phylogenetic relationships of free-living ciliates and parasitic protists, their antigenic systems have features in common, such as the presence of repeated protein motifs and multigene families. The function of variable surface antigens in free-living ciliates is still unknown. Up to now no detailed monitoring of antigen expression in free-living ciliates in natural habitats has been performed. Unlike stochastic switching in parasites, antigen expression in ciliates can be directed, e.g. by temperature, which holds great advantages for research on the expression mechanism. Regulated expression of surface antigens occurs in an exclusive way and the responsible mechanism is complex, involving both transcriptional and post-transcriptional features. The involvement of homology-dependent effects has been proposed several times but has not been proved yet.
Collapse
Affiliation(s)
- Martin C Simon
- Department of Ecology, University of Kaiserslautern, Building 14, Gottlieb-Daimler-Street, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
27
|
Davids BJ, Reiner DS, Birkeland SR, Preheim SP, Cipriano MJ, McArthur AG, Gillin FD. A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS One 2006; 1:e44. [PMID: 17183673 PMCID: PMC1762436 DOI: 10.1371/journal.pone.0000044] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022] Open
Abstract
Since the Giardia lamblia cyst wall is necessary for survival in the environment and host infection, we tested the hypothesis that it contains proteins other than the three known cyst wall proteins. Serial analysis of gene expression during growth and encystation revealed a gene, "HCNCp" (High Cysteine Non-variant Cyst protein), that was upregulated late in encystation, and that resembled the classic Giardia variable surface proteins (VSPs) that cover the trophozoite plasmalemma. HCNCp is 13.9% cysteine, with many "CxxC" tetrapeptide motifs and a transmembrane sequence near the C-terminus. However, HCNCp has multiple "CxC" motifs rarely found in VSPs, and does not localize to the trophozoite plasmalemma. Moreover, the HCNCp C-terminus differed from the canonical VSP signature. Full-length epitope-tagged HCNCp expressed under its own promoter was upregulated during encystation with highest expression in cysts, including 42 and 21 kDa C-terminal fragments. Tagged HCNCp targeted to the nuclear envelope in trophozoites, and co-localized with cyst proteins to encystation-specific secretory vesicles during encystation. HCNCp defined a novel trafficking pathway as it localized to the wall and body of cysts, while the cyst proteins were exclusively in the wall. Unlike VSPs, HCNCp is expressed in at least five giardial strains and four WB subclones expressing different VSPs. Bioinformatics identified 60 additional large high cysteine membrane proteins (HCMp) containing > or = 20 CxxC/CxC's lacking the VSP-specific C-terminal CRGKA. HCMp were absent or rare in other model or parasite genomes, except for Tetrahymena thermophila with 30. MEME analysis classified the 61 gHCMp genes into nine groups with similar internal motifs. Our data suggest that HCNCp is a novel invariant cyst protein belonging to a new HCMp family that is abundant in the Giardia genome. HCNCp and the other HCMp provide a rich source for developing parasite-specific diagnostic reagents, vaccine candidates, and subjects for further research into Giardia biology.
Collapse
Affiliation(s)
- Barbara J Davids
- Department of Pathology, Division of Infectious Diseases, University of California, San Diego, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ropolo AS, Saura A, Carranza PG, Lujan HD. Identification of variant-specific surface proteins in Giardia muris trophozoites. Infect Immun 2005; 73:5208-11. [PMID: 16041041 PMCID: PMC1201240 DOI: 10.1128/iai.73.8.5208-5211.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia undergoes antigenic variation, a process that might allow the parasite to evade the host's immune response and adapt to different environments. Here we show that Giardia muris, a related species that naturally infects rodents, possesses multiple variant-specific surface proteins (VSPs) and expresses VSPs on its surface, suggesting that it undergoes antigenic variation similar to that of G. lamblia.
Collapse
Affiliation(s)
- Andrea S Ropolo
- Cátedra de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Nacional de Córdoba, Haya de la Torre S/N, Pabellón Argentina 2do piso, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
29
|
Téllez A, Palm D, Weiland M, Alemán J, Winiecka-Krusnell J, Linder E, Svärd S. Secretory antibodies against Giardia intestinalis in lactating Nicaraguan women. Parasite Immunol 2005; 27:163-9. [PMID: 15987339 DOI: 10.1111/j.1365-3024.2005.00758.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Secretory IgA (sIgA) antibodies are important in the host defence against the intestinal protozoan parasite Giardia intestinalis. However, few antigens have been identified. In this study 100 milk and saliva samples from lactating women, living in an endemic region (León, Nicaragua), were screened for the presence of antibodies against G. intestinalis. Most milk and saliva samples contained anti-Giardia antibodies (59% and 52%, respectively), with a mean sIgA content 50 times higher in milk than in saliva. The positive samples reacted with trophozoite membrane, flagella and cytoplasmic antigens. Western blot analysis showed that milk and saliva anti-Giardia sIgA recognized up to 16 different Giardia proteins in the molecular weight region 20-165 kDa. Two-dimensional Western blotting showed that the major immunoreactive proteins were the same as the immunoreactive proteins identified by serum from acute giardiasis patients in a non-endemic country. The major difference was a stronger reactivity against the variant surface proteins (VSPs) in the milk samples. Milk sIgAs also recognized recombinant Giardia proteins such as alpha-1 giardin, ornithine carbamoyl transferase, VSP-4EX, arginine deaminase and alpha-enolase. These antigens will be important targets in the development of new immunodiagnostic tools and vaccines.
Collapse
Affiliation(s)
- A Téllez
- Department of Microbiology and Parasitology, Faculty of Medicine, National University, León, Nicaragua
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Early diverged extant organisms, which may serve as convenient laboratory models to look for and study evolutionary ancient features of eukaryotic cell biology, are rare. The diplomonad Giardia intestinalis, a protozoan parasite known to cause diarrhoeal disease, has become an increasingly popular object of basic research in cell biology, not least because of a genome sequencing project nearing completion. Commensurate with its phylogenetic status, the Giardia trophozoite has a very basic secretory system and even lacks hallmark structures such as a morphologically identifiable Golgi apparatus. The cell's capacity for protein sorting is nevertheless unimpeded, exemplified by its ability to cope with massive amounts of newly synthesized cyst wall proteins and glycans, which are sorted to dedicated Golgi-like compartments termed encystation-specific vesicles (ESVs) generated from endoplasmic reticulum (ER)-derived transport intermediates. This soluble bulk cargo is kept strictly separate from constitutively transported variant surface proteins during export, a function that is dependent on the stage-specific recognition of trafficking signals. Encysting Giardia therefore provide a unique system for the study of unconventional, Golgi-independent protein trafficking mechanisms in the broader context of eukaryotic endomembrane organization and evolution.
Collapse
Affiliation(s)
- Adrian B Hehl
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
31
|
Bermúdez-Cruz RM, Ortega-Pierres G, Ceja V, Coral-Vázquez R, Fonseca R, Cervantes L, Sánchez A, Depardón F, Newport G, Montañéz C. A 63 kDa VSP9B10A-like protein expressed in a C-8 Giardia duodenalis Mexican clone. Arch Med Res 2004; 35:199-208. [PMID: 15163460 DOI: 10.1016/j.arcmed.2003.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND It is well documented that Giardia duodenalis undergoes surface antigenic variation both in vivo and in vitro. Proteins involved have been characterized and referred to as VSP (variable surface protein). METHODS Two cloned cDNA inserts of 0.45 and 1.95 kb were obtained from G. duodenalis expression library and sequenced. Comparison sequence analyses were made against Genbank. PCR analysis was performed on G. duodenalis isolates to identify isolates bearing genes encoding such a peptide. Specific antiserum was prepared against 450-bp encoded peptide and tested by Western blot, immunofluorescence, and inhibition of adhesion of G. duodenalis to target cells. RESULTS We cloned and characterized a G. duodenalis 450-bp DNA fragment; its DNA sequence analysis revealed that this fragment displayed 99% identity with vsp9B10A gene. Predicted amino acid sequence for this fragment also had significant (99%) identity to VSP9B10A. A second 1.95-kb insert, which encompassed the 450-bp cDNA fragment, was also isolated; its DNA and amino acid sequence displayed 99.5% identity with vsp9B10A gene and 99.2% with the corresponding inferred protein, respectively. This inferred protein contained 24 Cys-X-X-Cys motifs and long ORF of 642 aminoacids. PCR analysis showed that DNA sequence encoding a fragment of this gene was present in P1, CIEA:0487:2-C-8 clone and in INP:180800-B2 G. duodenalis human isolates, while it was absent in sheep isolate of G. duodenalis INP:150593-J10. CONCLUSIONS Immunofluorescence analysis using antibodies raised against the peptide encoded by 450-bp fragment showed that expression of this epitope varies on trophozoite surface of the C-8 Mexican clone and is involved in parasite adhesion to target epithelial cells.
Collapse
Affiliation(s)
- Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico National (Cinvestav del IPN), Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tachibana H, Cheng XJ, Masuda G, Horiki N, Takeuchi T. Evaluation of recombinant fragments of Entamoeba histolytica Gal/GalNAc lectin intermediate subunit for serodiagnosis of amebiasis. J Clin Microbiol 2004; 42:1069-74. [PMID: 15004055 PMCID: PMC356887 DOI: 10.1128/jcm.42.3.1069-1074.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently identified a 150-kDa surface antigen of Entamoeba histolytica as an intermediate subunit (Igl) of galactose- and N-acetyl-D-galactosamine-inhibitable lectin, which is a cysteine-rich protein consisting of 1,101 amino acids (aa) and containing multiple CXXC motifs in amino acid sequences. In the present study, full-length Igl except for the signal sequences (aa 14 to 1088) and three fragments of Igl-the N-terminal part (aa 14 to 382), the middle part (aa 294 to 753), and the C-terminal part (aa 603 to 1088)-were prepared in Escherichia coli, and the reactivity of these recombinant proteins with sera from patients with amebiasis was examined by means of enzyme-linked immunosorbent assay (ELISA). Sera from 57 symptomatic patients with amebic liver abscess or amebic colitis, sera from 15 asymptomatic cyst passers, sera from 40 individuals with other protozoan infections, and sera from 50 healthy controls were used. The sensitivity and specificity of the recombinant full-length Igl in the ELISA were 90 and 94%, respectively. When three fragments were used as antigens in the ELISA, the sensitivities were 56% in the N terminus, 92% in the middle part, and 97% in the C terminus. The specificities of the three antigens were 96% in the N terminus and 99% in both the middle and C-terminal fragments. These results demonstrate that Igl is well recognized in not only symptomatic but also asymptomatic patients with E. histolytica infection and that the carboxyl terminus of Igl is an especially useful antigen for the serodiagnosis of amebiasis.
Collapse
Affiliation(s)
- Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
33
|
Wu G, Müller M. Glycogen Phosphorylase Sequences from the Amitochondriate Protists, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica and Giardia intestinalis1. J Eukaryot Microbiol 2003; 50:366-72. [PMID: 14563176 DOI: 10.1111/j.1550-7408.2003.tb00151.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycogen phosphorylase genes or messages from four amitochondriate eukaryotes, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica (two genes) and Giardia intestinalis, have been isolated and sequenced. The sequences of the amitochondriate protist enzymes appear to share a most recent common ancestor. The clade containing these sequences is closest to that of another protist, the slime mold (Dictyostelium discoideum), and is more closely related to fungal and plant phosphorylases than to mammalian and eubacterial homologs. Structure-based amino acid alignment shows conservation of the residues and domains involved in catalysis and allosteric regulation by glucose 6-phosphate but high divergence at domains involved in phosphorylation-dependent regulation and AMP binding in fungi and animals. Protist phosphorylases, as their prokaryotic and plant counterparts, are probably not regulated by phosphorylation.
Collapse
Affiliation(s)
- Gang Wu
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
34
|
Salazar-Calderón M, Martín-Alonso JM, Castro AM, Parra F. Cloning, heterologous expression in Escherichia coli and characterization of a protein disulfide isomerase from Fasciola hepatica. Mol Biochem Parasitol 2003; 126:15-23. [PMID: 12554080 DOI: 10.1016/s0166-6851(02)00269-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A Fasciola hepatica cDNA clone of 1752 bp was isolated from an adult worm cDNA expression library by immunological screening using a rabbit serum against the excretory-secretory antigens. The nucleotide sequence of the cDNA revealed the presence of an open reading frame of 489 codons which encoded a 55 kDa polypeptide, showing a high degree of homology to protein disulfide isomerases. This putative antioxidant protein cDNA was expressed in Escherichia coli as a GST fusion protein. The cleaved recombinant protein was shown to be biologically active in vitro by mediating the oxidative refolding of reduced RNase. Immunoblotting studies using a specific antiserum raised against the recombinant protein showed the presence of a polypeptide of similar molecular mass in the excretory-secretory extract of the adult parasite. The extracellular location of this protein was also supported by the specific immune responses found against this protein in F. hepatica experimentally infected rabbits.
Collapse
Affiliation(s)
- Mara Salazar-Calderón
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
35
|
Abstract
Giardia lamblia, a common intestinal dwelling protozoan and a cause of diarrhoea in humans and animals world-wide, undergoes surface antigenic variation. The variant-specific surface proteins (VSPs) are a family of related, highly unusual proteins that cover the entire surface of the parasite. VSPs are cysteine-rich proteins containing many CXXC motifs, one or two GGCY motifs, a conserved hydrophobic tail and a Zn finger motif. The biological role(s) of VSPs is unclear. As VSPs are resistant to the effects of intestinal proteases, they likely allow the organism to survive in the protease-rich small intestine. Although immune escape is commonly mentioned as the reason antigenic variation occurs, VSP expression changes in vivo even in the absence of an adaptive immune system suggesting the biological role of antigenic variation is more complex. The molecular mechanisms involved in antigenic variation are not known but appear to differ from those known to occur in other protozoa.
Collapse
Affiliation(s)
- Theodore E Nash
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA.
| |
Collapse
|
36
|
Ey PL, Darby JM. VSP417-6, a variant-specific surface protein encoded at a sixth locus within the vsp417 gene subfamily of Giardia intestinalis. Int J Parasitol 2002; 32:425-36. [PMID: 11849639 DOI: 10.1016/s0020-7519(01)00366-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A sixth locus (vsp417-6) belonging to the vsp417 gene subfamily, a subset of the family of genes that encodes 'variant-specific' surface proteins (VSP) in Giardia, is described. The sequence of vsp417-6(A-I), the ortholog representing the vsp417-6 locus in isolates of the type A-I (Assemblage A, Group I) genotype of Giardia intestinalis, was determined from a cloned 5.5-kb Hind III fragment of genomic DNA derived from isolate Ad-1/C1. The gene encodes a 704 residue polypeptide (VSP417-6(A-I), Mr 71,674) that has 75% identity (92% similarity) over a 718 residue overlap with the prototype of the VSP417 subfamily, VSP417-1(A-I)-encoded by the vsp417-1 (syn. tsa417) locus in type A-I isolates. Alignment of VSP417-6(A-I) with the deduced sequences of other known members of this subfamily identified one polypeptide, encoded by a gene found in type A-II (Assemblage A, Group II) isolates, whose homology with VSP417-6(A-I) (91% identity, 98% similarity over 713-residues) indicated that it was VSP417-6(A-II), the VSP417-6 ortholog in type A-II isolates. Sequence-based phylogenetic analyses of known VSP417 subfamily members defined several loci that predate the emergence of the A-I and A-II sublineages of G. intestinalis. Related sequences that may correspond to additional, uncharacterised vsp417 subfamily genes were identified in genomic DNA by Southern hybridisation using subfamily- and locus-specific probes. Variant-specific expression of vsp417-1 and vsp417-6 within axenic cultures of G. intestinalis was detected by in situ mRNA hybridization, indicating that these genes are functional and that they are expressed in an alternative fashion with other vsp genes in these organisms.
Collapse
Affiliation(s)
- Peter L Ey
- Discipline of Microbiology and Immunology, Department of Molecular Biosciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | | |
Collapse
|
37
|
Marti M, Li Y, Köhler P, Hehl AB. Conformationally correct expression of membrane-anchored Toxoplasma gondii SAG1 in the primitive protozoan Giardia duodenalis. Infect Immun 2002; 70:1014-6. [PMID: 11796643 PMCID: PMC127713 DOI: 10.1128/iai.70.2.1014-1016.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/19/2001] [Accepted: 11/12/2001] [Indexed: 11/20/2022] Open
Abstract
To explore the possibility of expressing membrane-anchored exodomains of heterologous surface antigens in Giardia, a chimeric construct containing the Toxoplasma gondii SAG1 gene was made. The Giardia system is shown here to provide a means of generating correctly folded chimeric surface proteins in a native and unmodified form.
Collapse
Affiliation(s)
- Matthias Marti
- Institute of Parasitology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
38
|
Cheng XJ, Hughes MA, Huston CD, Loftus B, Gilchrist CA, Lockhart LA, Ghosh S, Miller-Sims V, Mann BJ, Petri WA, Tachibana H. Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs. Infect Immun 2001; 69:5892-8. [PMID: 11500468 PMCID: PMC98708 DOI: 10.1128/iai.69.9.5892-5898.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Accepted: 06/04/2001] [Indexed: 11/20/2022] Open
Abstract
Killing by Entamoeba histolytica requires parasite adherence to host galactose- and N-acetyl-D-galactosamine (Gal/GalNAc)-containing cell surface receptors. A 260-kDa heterodimeric E. histolytica Gal/GalNAc lectin composed of heavy (Hgl) and light (Lgl) subunits has been previously described. Here we present the cloning and characterization of Igl, a 150-kDa intermediate subunit of the Gal/GalNAc lectin. Igl, Hgl, and Lgl colocalized on the surface membrane of trophozoites. Two unlinked copies of genes encoding Igl shared 81% amino acid sequence identity (GenBank accession no. AF337950 and AF337951). They encoded cysteine-rich proteins with amino- and carboxy-terminal hydrophobic signal sequences characteristic of glycosylphosphatidylinositol (GPI)-anchored membrane proteins. The igl genes lacked carbohydrate recognition domains but were members of a large family of amebic genes containing CXXC and CXC motifs. These data indicate that Igl is part of the parasite's multimolecular Gal/GalNAc adhesin required for host interaction.
Collapse
Affiliation(s)
- X J Cheng
- Department of Infectious Diseases, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reiner DS, McCaffery JM, Gillin FD. Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. Cell Microbiol 2001; 3:459-72. [PMID: 11437832 DOI: 10.1046/j.1462-5822.2001.00129.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To survive in the environment and infect a new host, Giardia lamblia secretes an extracellular cyst wall using a poorly understood pathway. The two cyst wall proteins (CWPs) form disulphide-bonded heterodimers and are exported via novel encystation-specific secretory vesicles (ESVs). Exposure of eukaryotic cells to dithiothreitol (DTT) blocks the formation of disulphide bonds in nascent proteins that accumulate in the endoplasmic reticulum (ER) and induces an unfolded protein response (UPR). Proteins that have exited the ER are not susceptible. Exposure to DTT inhibits ESV formation by > 85%. Addition of DTT to encysting cells causes rapid (t1/2 < 10 min), reversible disappearance of ESVs, correlated with reduction of CWPs to monomers and reformation of CWP oligomers upon removal of DTT. Neither CWPs nor ESVs are affected by mercaptoethanesulphonic acid, a strong reducing agent that does not penetrate cells. DTT does not inhibit the overall protein secretory pathway, and recovery does not require new protein synthesis. We found evidence of protein disulphide isomerases in the ESV and the surface of encysting cells, in which they may catalyse initial CWP folding and recovery from DTT. This is the first suggestion of non-CWP proteins in ESVs and of enzymes on the giardial surface. DTT treatment did not stimulate a UPR, suggesting that Giardia may have diverged before the advent of this conserved form of ER quality control.
Collapse
Affiliation(s)
- D S Reiner
- Department of Pathology, Division of Infectious Diseases, University of California San Diego, School of Medicine, San Diego, CA 92103-8416, USA
| | | | | |
Collapse
|
40
|
Abstract
Giardia lamblia is a common cause of diarrhea in humans and other mammals throughout the world. It can be distinguished from other Giardia species by light or electron microscopy. The two major genotypes of G. lamblia that infect humans are so different genetically and biologically that they may warrant separate species or subspecies designations. Trophozoites have nuclei and a well-developed cytoskeleton but lack mitochondria, peroxisomes, and the components of oxidative phosphorylation. They have an endomembrane system with at least some characteristics of the Golgi complex and encoplasmic reticulum, which becomes more extensive in encysting organisms. The primitive nature of the organelles and metabolism, as well as small-subunit rRNA phylogeny, has led to the proposal that Giardia spp. are among the most primitive eukaryotes. G. lamblia probably has a ploidy of 4 and a genome size of approximately 10 to 12 Mb divided among five chromosomes. Most genes have short 5' and 3' untranslated regions and promoter regions that are near the initiation codon. Trophozoites exhibit antigenic variation of an extensive repertoire of cysteine-rich variant-specific surface proteins. Expression is allele specific, and changes in expression from one vsp gene to another have not been associated with sequence alterations or gene rearrangements. The Giardia genome project promises to greatly increase our understanding of this interesting and enigmatic organism.
Collapse
Affiliation(s)
- R D Adam
- Department of Medicine, University of Arizona College of Medicine, 1501N. Campbell, Tucson, AZ 85724-5049, USA.
| |
Collapse
|
41
|
Abstract
Glycoconjugates are abundant and ubiquitious on the surface of many protozoan parasites. Their tremendous diversity has implicated their critical importance in the life cycle of these organisms. This review highlights our current knowledge of the major glycoconjugates, with particular emphasis on their structures, of representative protozoan parasites, including Leishmania, Trypanosoma, Giardia, Plasmodia, and others.
Collapse
Affiliation(s)
- A Guha-Niyogi
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington KY 40536, USA
| | | | | |
Collapse
|
42
|
Eckmann L, Gillin FD. Microbes and microbial toxins: paradigms for microbial-mucosal interactions I. Pathophysiological aspects of enteric infections with the lumen-dwelling protozoan pathogen Giardia lamblia. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1-6. [PMID: 11123191 DOI: 10.1152/ajpgi.2001.280.1.g1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Giardia lamblia is one of the most important causes of waterborne diarrheal disease worldwide, and giardiasis is the most common protozoan infection of the human small intestine. Symptomatic infection is characterized by diarrhea, abdominal pain, and malabsorption, leading to malnutrition and weight loss, particularly in children. The pathogen resides strictly in the lumen of the small intestine, and infection is typically not accompanied by significant mucosal inflammation. Clinical and experimental studies indicate that B cell-dependent host defenses, particularly IgA, are important for controlling and clearing Giardia infection, although B cell-independent mechanisms also contribute to this outcome. In contrast to antigiardial host defenses, much less is known about the pathophysiological mechanisms underlying the clinical symptoms of giardiasis, partly because of the current lack of suitable model systems. In addition to being an important human enteric pathogen, Giardia is an interesting model organism for gaining basic insights into genetic innovations that led to evolution of eukaryotic cells, since it belongs to the earliest diverging eukaryotic lineage known. The completion of the giardial genome project will increase understanding of the basic biology of the protozoan and will help us to better understand host pathogen-interactions as a basis for developing new vaccination and therapeutic strategies.
Collapse
Affiliation(s)
- L Eckmann
- Departments of Medicine and Pathology, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
43
|
Garat B, Musto H. Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia. Biochem Biophys Res Commun 2000; 279:996-1000. [PMID: 11162464 DOI: 10.1006/bbrc.2000.4051] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Correspondence analysis of amino acid frequencies was applied to 75 complete coding sequences from the unicellular parasite Giardia lamblia, and it was found that three major factors influence the variability of amino acidic composition of proteins. The first trend strongly correlated with (a) the cysteine content and (b) the mean weight of the amino acids used in each protein. The second trend correlated with the global levels of hydropathy and aromaticity of each protein. Both axes might be related with the defense of the parasite to oxygen free radicals. Finally, the third trend correlated with the expressivity of each gene, indicating that in G. lamblia highly expressed sequences display a tendency to preferentially use a subset of the total amino acids.
Collapse
Affiliation(s)
- B Garat
- Laboratorio de Organización y Evolución del Genoma, Sección Bioquímica, Facultad de Ciencias, Universidad de la Republica de Uruguay, Iguá 4225, Montevideo, 11400, Uruguay
| | | |
Collapse
|
44
|
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang AL, Wang CC, Vivarès CP, Weiss LM, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proc Natl Acad Sci U S A 2000; 97:12997-3002. [PMID: 11078517 PMCID: PMC27167 DOI: 10.1073/pnas.230444397] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteinyl-tRNA (Cys-tRNA) is essential for protein synthesis. In most organisms the enzyme responsible for the formation of Cys-tRNA is cysteinyl-tRNA synthetase (CysRS). The only known exceptions are the euryarchaea Methanococcus jannaschii and Methanobacterium thermoautotrophicum, which do not encode a CysRS. Deviating from the accepted concept of one aminoacyl-tRNA synthetase per amino acid, these organisms employ prolyl-tRNA synthetase as the enzyme that carries out Cys-tRNA formation. To date this dual-specificity prolyl-cysteinyl-tRNA synthetase (ProCysRS) is only known to exist in archaea. Analysis of the preliminary genomic sequence of the primitive eukaryote Giardia lamblia indicated the presence of an archaeal prolyl-tRNA synthetase (ProRS). Its proS gene was cloned and the gene product overexpressed in Escherichia coli. By using G. lamblia, M. jannaschii, or E. coli tRNA as substrate, this ProRS was able to form Cys-tRNA and Pro-tRNA in vitro. Cys-AMP formation, but not Pro-AMP synthesis, was tRNA-dependent. The in vitro data were confirmed in vivo, as the cloned G. lamblia proS gene was able to complement a temperature-sensitive E. coli cysS strain. Inhibition studies of CysRS activity with proline analogs (thiaproline and 5'-O-[N-(l-prolyl)-sulfamoyl]adenosine) in a Giardia S-100 extract predicted that the organism also contains a canonical CysRS. This prediction was confirmed by cloning and analysis of the corresponding cysS gene. Like a number of archaea, Giardia contains two enzymes, ProCysRS and CysRS, for Cys-tRNA formation. In contrast, the purified Saccharomyces cerevisiae and E. coli ProRS enzymes were unable to form Cys-tRNA under these conditions. Thus, the dual specificity is restricted to the archaeal genre of ProRS. G. lamblia's archaeal-type prolyl- and alanyl-tRNA synthetases refine our understanding of the evolution and interaction of archaeal and eukaryal translation systems.
Collapse
Affiliation(s)
- S Bunjun
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McArthur AG, Morrison HG, Nixon JE, Passamaneck NQ, Kim U, Hinkle G, Crocker MK, Holder ME, Farr R, Reich CI, Olsen GE, Aley SB, Adam RD, Gillin FD, Sogin ML. The Giardia genome project database. FEMS Microbiol Lett 2000; 189:271-3. [PMID: 10930750 DOI: 10.1111/j.1574-6968.2000.tb09242.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Giardia genome project database provides an online resource for Giardia lamblia (WB strain, clone C6) genome sequence information. The database includes edited single-pass reads, the results of BLASTX searches, and details of progress towards sequencing the entire 12 million-bp Giardia genome. Pre-sorted BLASTX results can be retrieved based on keyword searches and BLAST searches of the high throughput Giardia data can be initiated from the web site or through NCBI. Descriptions of the genomic DNA libraries, project protocols and summary statistics are also available. Although the Giardia genome project is ongoing, new sequences are made available on a bi-monthly basis to ensure that researchers have access to information that may assist them in the search for genes and their biological function. The current URL of the Giardia genome project database is www.mbl.edu/Giardia.
Collapse
Affiliation(s)
- A G McArthur
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu G, McArthur AG, Fiser A, Sali A, Sogin ML, Mllerm M. Core histones of the amitochondriate protist, Giardia lamblia. Mol Biol Evol 2000; 17:1156-63. [PMID: 10908635 DOI: 10.1093/oxfordjournals.molbev.a026398] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genes coding for the core histones H2a, H2b, H3, and H4 of Giardia lamblia were sequenced. A conserved organism- and gene-specific element, GRGCGCAGATTTVGG, was found upstream of the coding region in all core histone genes. The derived amino acid sequences of all four histones were similar to their homologs in other eukaryotes, although they were among the most divergent members of this protein family. Comparative protein structure modeling combined with energy evaluation of the resulting models indicated that the G. lamblia core histones individually and together can assume the same three-dimensional structures that were established by X-ray crystallography for Xenopus laevis histones and the nucleosome core particle. Since G. lamblia represents one of the earliest-diverging eukaryotes in many different molecular trees, the structure of its histones is potentially of relevance to understanding histone evolution. The G. lamblia proteins do not represent an intermediate stage between archaeal and eukaryotic histones.
Collapse
Affiliation(s)
- G Wu
- Laboratory of Biochemical Parasitology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
47
|
Hiltpold A, Frey M, Hülsmeier A, Köhler P. Glycosylation and palmitoylation are common modifications of giardia variant surface proteins. Mol Biochem Parasitol 2000; 109:61-5. [PMID: 10924757 DOI: 10.1016/s0166-6851(00)00229-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- A Hiltpold
- Institute of Parasitology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
48
|
Abstract
Giardia lamblia is a protozoan parasite of humans and other mammals that is thought to be one of the most primitive extant eukaryotic organisms. Although distinctly eukaryotic, it is notable for its lack of mitochondria, nucleoli, and perixosomes. It has been suggested that Giardia spp. are pre-mitochondriate organisms, but the identification of genes in G. lamblia thought to be of mitochondrial origin has generated controversy regarding that designation. Giardi lamblia trophozoites have two nuclei that are identical in all ways that have been studied. They are polyploid with at least four, and perhaps eight or more, copies of each of five chromosomes per organism and have an estimated genome complexity of 1.2x10(7)bp of DNA, and GC content of 46%. There is evidence for recombination at the telomeres of some of the chromosomes, and multiple size variants of single chromosomes have been identified within cloned isolates. However, the internal regions of the chromosomes demonstrate no evidence of recombination. For example, there is no evidence for control of vsp gene expression by DNA recombination, and no evidence for rapid mutation in the vsp genes. Single pass sequences of approximately 9% of the G. lamblia genome have already been obtained. An ongoing genome project plans to obtain approximately 95% of the genome by a random approach, as well as a complete physical map using a bacterial artificial chromosome library. The results will facilitate a better understanding of the biology of Giardia spp. as well as their phylogenetic relationship to other primitive organisms.
Collapse
Affiliation(s)
- R D Adam
- Department of Microbiology/Immunology and Medicine, University of Arizona College of Medicine, 1501 N. Campbell, Tucson 85724, USA.
| |
Collapse
|
49
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
|
50
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
Affiliation(s)
- G Faubert
- Institute of Parasitology, Macdonald Campus of McGill University, Ste. Anne-de-Bellevue, Qu¿ebec, Canada H9X 3V9.
| |
Collapse
|