1
|
Spencer DM, Svenungsson E, Gunnarsson I, Caricchio R, Pisetsky DS. The expression of antibodies to Z-DNA in the blood of patients with systemic lupus erythematosus: Relationship to autoantibodies to B-DNA. Clin Immunol 2023; 255:109763. [PMID: 37673226 DOI: 10.1016/j.clim.2023.109763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
To explore the antibody response to Z-DNA, a DNA conformation with a zig-zag structure, blood of patients with systemic lupus erythematosus (SLE) and otherwise healthy individuals (NHS) were assayed by ELISA using brominated poly(dGdC), a synthetic Z-DNA antigen. These studies showed that SLE patients commonly express antibodies to Z-DNA; NHS also had binding in this assay. In SLE blood, levels of antibodies to Z-DNA were related to those to B-DNA using calf thymus DNA as a source of B-DNA; cross-reactivity was demonstrated by adsorption experiments using DNA cellulose. As shown by dissociation assays, antibody binding of SLE anti-Z-DNA is sensitive to the effects of ionic strength, suggesting electrostatic binding. Since Z-DNA structure can be found in bacterial DNA as well as bacterial biofilms, these findings suggest that, in SLE, anti-DNA antibody responses can result from stimulation by DNA of bacterial origin, with cross-reactivity leading to autoreactivity.
Collapse
Affiliation(s)
- Diane M Spencer
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Roberto Caricchio
- Division of Rheumatology, University of Massachusetts Memorial Medical Center, Worcester, MA 01605, USA
| | - David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC 27705, USA; Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|
3
|
Zavarykina TM, Atkarskaya MV, Zhizhina GP. The Structural and Functional Properties of Z-DNA. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Linking Temperature, Cation Concentration and Water Activity for the B to Z Conformational Transition in DNA. Molecules 2018; 23:molecules23071806. [PMID: 30037061 PMCID: PMC6099936 DOI: 10.3390/molecules23071806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/05/2022] Open
Abstract
High concentrations of Na+ or [Co(NH3)6]3+ can induce the B to Z conformational transition in alternating (dC-dG) oligo and polynucleotides. The use of short DNA oligomers (dC-dG)4 and (dm5C-dG)4 as models can allow a thermodynamic characterization of the transition. Both form right handed double helical structures (B-DNA) in standard phosphate buffer with 115 mM Na+ at 25 °C. However, at 2.0 M Na+ or 200 μM [Co(NH3)6]3+, (dm5C-dG)4 assumes a left handed double helical structure (Z-DNA) while the unmethylated (dC-dG)4 analogue remains right handed under those conditions. We have previously demonstrated that the enthalpy of the transition at 25 °C for either inducer can be determined using isothermal titration calorimetry (ITC). Here, ITC is used to investigate the linkages between temperature, water activity and DNA conformation. We found that the determined enthalpy for each titration varied linearly with temperature allowing determination of the heat capacity change (ΔCp) between the initial and final states. As expected, the ΔCp values were dependent upon the cation (i.e., Na+ vs. [Co(NH3)6]3+) as well as the sequence of the DNA oligomer (i.e., methylated vs. unmethylated). Osmotic stress experiments were carried out to determine the gain or loss of water by the oligomer induced by the titration. The results are discussed in terms of solvent accessible surface areas, electrostatic interactions and the role of water.
Collapse
|
5
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
6
|
Lu P, Deng S, Zhu Y, Yan Y, Liu Y, Hu C. The Zα domain of fish PKZ facilitates the B-Z conformational transition of oligonucleotide DNAs with d(GC)(n) inserts. Acta Biochim Biophys Sin (Shanghai) 2012; 44:957-63. [PMID: 23034482 DOI: 10.1093/abbs/gms081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PKZ (PKR-like) was discovered as a member of elF2α kinase family in fish, which possesses a conserved catalytic domain of an eIF2α kinase in C-terminal and also two Z-DNA-binding domains (Zα1 and Zα2) in N-terminal. PKZ can be activated through binding of Zα to Z-DNA. However, the regulatory function of PKZ Zα still remains unclear. To investigate a molecular mechanism of how PKZ Zα interacts with Z-DNA, we expressed Zα polypeptide Zα1α2 in Escherichia coli Rosetta strain and purified by affinity chromatography on Ni-NTA resin. Different lengths of oligonucleotide DNAs with various inserts, namely d(GC)(n) (n = 6, 8, 10, 13), d(TA)(n) (n = 6, 10), non-d(GC), and non-d(TA), were designed and synthesized. Circular dichroism spectrum and gel mobility shift assays were used to investigate the effects of Zα1α2 on the conformational transition of different oligonucleotide DNAs. Results showed that oligonucleotide DNAs retained a conventional B-DNA conformation in the absence of Zα1α2. With the increasing amount of Zα1α2 titration, d(GC)(n) were recognized and converted to Z-DNA conformation to some degree. With increasing the repeat number (from n = 6 to n = 13), the tendency of conformational transition became more obvious. However, the conformation of oligonucleotides with d(TA)(n) inserts changed a little in the presence of Zα1α2, and Zα1α2 had no effect on conformational transition of oligonucleotides with non-d(GC) or non-d(TA) inserts. Gel mobility shift assays further showed that Zα1α2 could bind to oligonucleotide with d(GC)(10). In other words, Zα1α2 can turn oligonucleotides with d(GC)(n) inserts into Z-DNA conformation and bind to it with high affinity.
Collapse
Affiliation(s)
- Puzhong Lu
- Department of Bioscience, College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Annexin A2 (ANXA2) is a Ca(2+)-binding protein that is up-regulated in virally transformed cell lines and in human tumors. Here, we show that ANXA2 binds directly to both ribonucleotide homopolymers and human c-myc RNA. ANXA2 was shown to bind specifically to poly(G) with high affinity (K(d) = 60 nM) and not to poly(A), poly(C), or poly(U). The binding of ANXA2 to poly(G) required Ca(2+) (A(50%) = 10 microM). The presence of RNA in the immunoprecipitates of ANXA2 isolated from HeLa cells established that ANXA2 formed a ribonucleoprotein complex in vivo. Sucrose gradient analysis showed that ANXA2 associates with ribonucleoprotein complexes and not with polyribosomes. Reverse transcriptase-PCR identified c-myc mRNA as a component of the ribonucleoprotein complex formed by ANXA2 in vivo, and binding studies confirmed a direct interaction between ANXA2 and c-myc mRNA. Transfection of LNCaP cells with the ANXA2 gene resulted in the up-regulation of c-Myc protein. These findings identify ANXA2 as a Ca(2+)-dependent RNA-binding protein that interacts with the mRNA of the nuclear oncogene, c-myc.
Collapse
Affiliation(s)
- Nolan R Filipenko
- Cancer Biology Research Group, Departments of Biochemistry & Molecular Biology and Oncology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
Forty-nine years ago Watson and Crick proposed a double-stranded (ds-) model for DNA. This double helix has become an icon of molecular biology. Twenty-six years later, Rich accidently discovered Z-DNA, an exotic left-handed nucleic acid. For many years thereafter, this left-handed DNA was thought to be an artifact. DNA is no longer looked upon as a static molecule but rather an extremely dynamic structure in which different conformations are in equilibrium with each other. Many researchers have spent the last two decades characterizing this novel left-handed DNA structure. Now many investigators are beginning to accept the possibility that this novel ds-DNA conformation may play a significant in vivo role within eukaryotic and prokaryotic cells. However, more research needs to be performed before it is absolutely accepted by all in the scientific community.
Collapse
Affiliation(s)
- C E Gagna
- University of Medicine and Dentistry of New Jersey Medical-School, Newark, USA.
| | | |
Collapse
|
9
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions. DNA Cell Biol 2003; 22:141-69. [PMID: 12804114 DOI: 10.1089/104454903321655783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selection of DNA fragments containing simple d(GT)(n) and composite d(GT)(m). d(GA)(n) microsatellites during affinity binding of mouse genomic DNA to type III cytoplasmic intermediate filaments (cIFs) in vitro, and the detection of such repeats, often as parts of nuclear matrix attachment region (MAR)-like DNA, in SDS-stable DNA-vimentin crosslinkage products isolated from intact fibroblasts, prompted a detailed study of the interaction of type III cIF proteins with left-handed Z-DNA formed from d(GT)(17) and d(CG)(17) repeats under the topological tension of negatively supercoiled plasmids. Although d(GT)(n) tracts possess a distinctly lower Z-DNA-forming potential than d(CG)(n) tracts, the filament proteins produced a stronger electrophoretic mobility shift with a plasmid carrying a d(GT)(17) insert than with plasmids containing different d(CG)(n) inserts, consistent with the facts that the B-Z transition of d(GT)(n) repeats requires a higher negative superhelical density than that of d(CG)(n) repeats and the affinity of cIF proteins for plasmid DNA increases with its superhelical tension. That both types of dinucleotide repeat had indeed undergone B-Z transition was confirmed by S1 nuclease and chemical footprinting analysis of the plasmids, which also demonstrated efficient protection by cIF proteins from nucleolytic and chemical attack of the Z-DNA helices as such, as well as of the flanking B-Z junctions. The analysis also revealed sensibilization of nucleotides in the center of one of the two strands of a perfect d(CG)(17) insert toward S1 nuclease, indicating cIF protein-induced bending of the repeat. In all these assays, vimentin and glial fibrillary acidic protein (GFAP) showed comparable activities, versus desmin, which was almost inactive. In addition, vimentin and GFAP exhibited much higher affinities for the Z-DNA conformation of brominated, linear d(CG)(25) repeats than for the B-DNA configuration of the unmodified oligonucleotides. While double-stranded DNA was incapable of chasing the Z-DNA from its protein complexes, and Holliday junction and single-stranded (ss)DNA were distinguished by reasonable competitiveness, phosphatidylinositol (PI) and, particularly, phosphatidylinositol 4,5-diphosphate (PIP(2)) turned out to be extremely potent competitors. Because PIP(2) is an important member of the nuclear PI signal transduction cascade, it might exert a regulatory influence on the binding of cIF proteins to Z- and other DNA conformations. From this interaction of cIF proteins with Z- and bent DNA and their previously detected affinities for MAR-like, ss, triple helical, and four-way junction DNA, it may be concluded that the filament proteins play a general role in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
10
|
|
11
|
Hirata A, Hirata F. Lipocortin (Annexin) I heterotetramer binds to purine RNA and pyrimidine DNA. Biochem Biophys Res Commun 1999; 265:200-4. [PMID: 10548514 DOI: 10.1006/bbrc.1999.1660] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipocortin I-like protein with a molecular weight of 94,000 Da as judged by Western analysis was found to bind to ssDNA rather than to dsDNA in a Ca(2+)-dependent manner. This protein was also bound to [(32)P]poly(rA) and [(32)P]poly(rG) as measured by EMSA. Poly(rG), poly(rA), poly(dC), and poly(dT) were competitive against binding of either [(32)P]poly(rA) or [(32)P]poly(rG), while poly(rC), poly(rU), and poly(dA) were less effective binding competitors. The binding of this protein to poly(rA) or poly(rG) was inhibited by immunoprecipitable anti-lipocortin I (calpactin II) and anti-S100 protein antibodies, but not by an anti-Ig antibody. Phospholipids such as phosphatidylserine and phosphatidylinositol enhanced the binding of lipocortin I to poly(rA). Taken together, our present observations suggest that the lipocortin I-S100 protein heterotetramer binds to either purine RNAs or pyrimidine ssDNAs in a Ca(2+)- and phospholipid-dependent manner.
Collapse
Affiliation(s)
- A Hirata
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, 48202, USA
| | | |
Collapse
|
12
|
Abstract
Phospholipids play multiple roles in cells by establishing the permeability barrier for cells and cell organelles, by providing the matrix for the assembly and function of a wide variety of catalytic processes, by acting as donors in the synthesis of macromolecules, and by actively influencing the functional properties of membrane-associated processes. The function, at the molecular level, of phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin in specific cellular processes is reviewed, with a focus on the results of combined molecular genetic and biochemical studies in Escherichia coli. These results are compared with primarily biochemical data supporting similar functions for these phospholipids in eukaryotic organisms. The wide range of processes in which specific involvement of phospholipids has been documented explains the need for diversity in phospholipid structure and why there are so many membrane lipids.
Collapse
Affiliation(s)
- W Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School 77225, USA.
| |
Collapse
|
13
|
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
14
|
Abstract
Extensive studies of DNA secondary structure during the past decade have shown that DNA is a dynamic molecule, whose structure depends on the underlying nucleotide sequence and is influenced by the environment and the overall DNA topology. Three major non-B-DNA structures have been described (Z-DNA, triplex DNA and cruciform DNA) which are stabilized by unconstrained negative supercoiling and can be formed under physiological conditions. In this essay we summarize the DNA primary structure features that are pertinent to the formation of these conformers and present data concerning the occurrence of these sequences in the eukaryotic genome. The evidence in favor of the existence of these unusual DNA structures in vivo is discussed. The effect of alternative non-B-DNA structures on the way DNA is organized in chromatin is considered, and this is followed by evaluation of the data relating these structures to eukaryotic transcription. Some possible mechanisms by which the effect of non-B structures on transcription might be exerted are proposed.
Collapse
Affiliation(s)
- K van Holde
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331-7305
| | | |
Collapse
|
15
|
Traub P, Shoeman RL. Intermediate filament proteins: cytoskeletal elements with gene-regulatory function? INTERNATIONAL REVIEW OF CYTOLOGY 1994; 154:1-103. [PMID: 8083030 DOI: 10.1016/s0074-7696(08)62198-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- P Traub
- Max-Planck-Institut für Zellbiologie, Ladenburg/Heidelberg, Germany
| | | |
Collapse
|
16
|
Takimoto Y, Kuramoto A. Presence of a regulatory element within the first intron of the human platelet-derived growth factor-A chain gene. Jpn J Cancer Res 1993; 84:1268-72. [PMID: 8294218 PMCID: PMC5919102 DOI: 10.1111/j.1349-7006.1993.tb02833.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We detected a suppressive element in the first intron of the human platelet-derived growth factor A chain (PDGF-A) gene. Two or more proteins, at least 110-kd and 90-kd proteins, were bound over a wide region of this fragment, and the fragment suppressed the expression of the PDGF-A chain via these proteins in vivo. Since the fragment also had suppressor activity on the promoter of the PDGF-B chain, it may be involved in a suppressive mechanism of gene expression common to PDGF-A and -B chains. Four tandem repeats of CCCCAT(CCCC) and three direct repeats of GGGGAG were observed in this region. The expression of the PDGF-A chain is considered to be regulated by a mechanism involving not only the 5' upstream region but also introns.
Collapse
Affiliation(s)
- Y Takimoto
- Department of Internal Medicine, Hiroshima University
| | | |
Collapse
|
17
|
Herbert AG, Rich A. A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide. Nucleic Acids Res 1993; 21:2669-72. [PMID: 8332463 PMCID: PMC309597 DOI: 10.1093/nar/21.11.2669] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An oligodeoxynucleotide that readily flips to the Z-DNA conformation in 10mM MgCl2 was produced by using Klenow enzyme to incorporate 5-bromodeoxycytosine and deoxyguanosine into a (dC-dG)22 template. During synthesis the oligomer can be labeled with 32P to high specific activity. The labeled oligodeoxynucleotide can be used in bandshift experiment to detect proteins that bind Z-DNA. This allows the binding specificity of such proteins to be determined with high reliability using unlabeled linear and supercoiled DNA competitors. In addition, because the radioactive oligodeoxynucleotide contains bromine atoms, DNA-protein complexes can be readily crosslinked using UV light. This allows an estimate to be made of the molecular weight of the proteins that bind to the radioactive probe. Both techniques are demonstrated using a goat polyclonal anti-Z-DNA antiserum.
Collapse
Affiliation(s)
- A G Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
18
|
Herbert AG, Spitzner JR, Lowenhaupt K, Rich A. Z-DNA binding protein from chicken blood nuclei. Proc Natl Acad Sci U S A 1993; 90:3339-42. [PMID: 8475077 PMCID: PMC46295 DOI: 10.1073/pnas.90.8.3339] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.
Collapse
Affiliation(s)
- A G Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
19
|
Abstract
Systemic lupus erythematosus (SLE) sera, two classes of serum lipoproteins, and IgG antibodies from SLE and normal sera were tested for their reactivity with a Z-DNA polymer, Br-poly (dG-dC). In all cases preferential binding to Z-DNA over B-DNA was observed. This interaction, for the most part, could be inhibited by the negatively charged phospholipid, cardiolipin, which suggests that most of the anti-Z-DNA activity associated with sera arises from relatively non-specific ionic interactions between proteins and polyanionic molecules. An assay has been described that can eliminate proteins cross-reactive with negatively charged phospholipids.
Collapse
Affiliation(s)
- P Krishna
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
20
|
Sthoeger ZM, Tartakovsky B, Bentwich Z, Mozes E. Monoclonal anticardiolipin antibodies derived from mice with experimental lupus erythematosus: characterization and the induction of a secondary antiphospholipid syndrome. J Clin Immunol 1993; 13:127-38. [PMID: 7686561 DOI: 10.1007/bf00919269] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The primary antiphospholipid syndrome and the antiphospholipid syndrome in systemic lupus erythematosus (SLE) patients (defined as secondary antiphospholipid syndrome) are characterized by the presence of anticardiolipin antibodies, thrombosis, thrombocytopenia, and recurrent fetal loss. To determine the role of anticardiolipin antibodies in the pathogenesis of antiphospholipid syndrome, monoclonal anticardiolipin antibodies were derived from mice in which experimental lupus was induced by a murine monoclonal anti-16/6 Id antibody. Two murine monoclonal anticardiolipin antibodies (2C4C2, 2C4D1) were generated and characterized. The 2C4C2, but not the 2C4D1, monoclonal antibody demonstrated remarkable lupus anticoagulant activity. Furthermore, these murine anticardiolipin monoclonal antibodies appear to recognize antigenic epitopes similar to those recognized by anticardiolipin antibodies found in sera of SLE patients. The monoclonal anticardiolipin antibody 2C4C2 was injected into naive female mice. Following immunization, the mice developed high titers of autoantibodies reacting with cardiolipin, DNA, nuclear extract, 16/6 and anti-16/6 Id, and anticardiolipin antibodies. As early as 8 weeks after immunization these mice exhibited significant leukopenia, thrombocytopenia, and proteinuria with immune complex glomerulonephritis. Moreover, mating of 2C4C2-injected mice with allogenic males resulted in low pregnancy rates and a low number of fetuses with a high percentage of fetal loss. These studies provide a new experimental model for secondary antiphospholipid syndrome demonstrating the role of anticardiolipin antibodies in the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Z M Sthoeger
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
21
|
Krishna P, Morgan AR, van de Sande JH. Interaction of recA protein with left-handed Z-DNA. Biochem J 1991; 275 ( Pt 3):711-9. [PMID: 2039448 PMCID: PMC1150112 DOI: 10.1042/bj2750711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of recA protein to interact with a Z-DNA polymer, Br-poly(dG-dC), or M13 bacteriophage single-stranded DNA was investigated. RecA protein binds more avidly to Z-DNA than to single-stranded DNA in the absence of a nucleotide cofactor. This binding pattern changes in the presence of adenosine 5'-(gamma-thio)triphosphate (ATP[S]), however, such that the binding to Z-DNA decreases while binding to single-stranded DNA increases roughly 2-fold. When present together, the two forms of DNA compete with each other in the presence of ATP[S]. Experiments involving recA protein binding to recombinant plasmids showed neither a preferential binding of recA protein to the plasmid containing Z-DNA nor a similar effect of ATP[S] to that observed with the Z-DNA polymer. In contrast, maximal binding was obtained with a plasmid (linear or supercoiled) containing a polypurine.polypyrimidine insert, thus suggesting that recA protein displays sequence preferences in its interaction with DNA. The results of the present study provide no evidence that recA protein specifically interacts with or stabilizes the Z-DNA insert of a recombinant plasmid in the left-handed conformation.
Collapse
Affiliation(s)
- P Krishna
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
22
|
Krishna P, van de Sande JH. Interaction of RecA protein with acidic phospholipids inhibits DNA-binding activity of RecA. J Bacteriol 1990; 172:6452-8. [PMID: 2228969 PMCID: PMC526833 DOI: 10.1128/jb.172.11.6452-6458.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The RecA protein of Escherichia coli binds specifically to acidic phospholipids such as cardiolipin and phosphatidylglycerol. This binding appears to be affected by the presence of divalent cations such as Ca2+ and Mg2+. The interaction leads to the inhibition of RecA binding to at least two different conformations of DNA, single-stranded DNA and left-handed Z-DNA, thus suggesting that the phospholipids interact at the DNA-binding site of the RecA protein. Inclusion of a nucleotide cofactor [adenosine 5'-O-(gamma-thiotriphosphate)] in the reactions did not prevent the inhibition of DNA-binding activities of RecA protein by the phospholipids. The interaction of RecA protein with cardiolipin and phosphatidylglycerol, which represent two of the three major phospholipids of the E. coli membrane, may be physiologically important, as it provides a possible mechanism for the RecA-membrane association during the SOS response. These observations raise the possibility that the Z-DNA-binding activity of RecA protein is merely a manifestation of its phospholipid-binding property.
Collapse
Affiliation(s)
- P Krishna
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | |
Collapse
|
23
|
Rohner K, Hobi R, Kuenzle C. Z-DNA-binding proteins. Identification critically depends on the proper choice of ligands. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30631-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|