1
|
|
2
|
Mignon C, Mariano N, Stadthagen G, Lugari A, Lagoutte P, Donnat S, Chenavas S, Perot C, Sodoyer R, Werle B. Codon harmonization - going beyond the speed limit for protein expression. FEBS Lett 2018; 592:1554-1564. [PMID: 29624661 DOI: 10.1002/1873-3468.13046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Codon usage distribution has been soundly used by nature to fine tune protein biogenesis. Alteration of the mRNA structure or sequential scheduling of codons can profoundly affect translation, thus altering protein yield, functionality, solubility, and proper folding. Building on these observations, here, we present an evaluation of different recently designed algorithms of sequence adaptation based on Codon Adaptation Index (CAI) profiling. The first algorithm globally harmonizes synonymous codons in the original sequence in full respect to the heterologous expression host codon usage. The second recodes the sequence in accordance with the native sequence CAI profile. Our data, generated on three model proteins, highlights the importance to consider gene recoding as a parameter itself for recombinant protein expression improvement.
Collapse
Affiliation(s)
- Charlotte Mignon
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | - Natacha Mariano
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | - Adrien Lugari
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | - Stéphanie Donnat
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| | | | | | | | - Bettina Werle
- Protein and Expression System Engineering Unit, BIOASTER, Lyon, France
| |
Collapse
|
3
|
Synonymous Codons: Choose Wisely for Expression. Trends Genet 2017; 33:283-297. [PMID: 28292534 DOI: 10.1016/j.tig.2017.02.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
The genetic code, which defines the amino acid sequence of a protein, also contains information that influences the rate and efficiency of translation. Neither the mechanisms nor functions of codon-mediated regulation were well understood. The prevailing model was that the slow translation of codons decoded by rare tRNAs reduces efficiency. Recent genome-wide analyses have clarified several issues. Specific codons and codon combinations modulate ribosome speed and facilitate protein folding. However, tRNA availability is not the sole determinant of rate; rather, interactions between adjacent codons and wobble base pairing are key. One mechanism linking translation efficiency and codon use is that slower decoding is coupled to reduced mRNA stability. Changes in tRNA supply mediate biological regulationfor instance,, changes in tRNA amounts facilitate cancer metastasis.
Collapse
|
4
|
Ehrenberg M, Bremer H, Dennis PP. Medium-dependent control of the bacterial growth rate. Biochimie 2012; 95:643-58. [PMID: 23228516 DOI: 10.1016/j.biochi.2012.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/22/2012] [Indexed: 11/26/2022]
Abstract
By combining results from previous studies of nutritional up-shifts we here re-investigate how bacteria adapt to different nutritional environments by adjusting their macromolecular composition for optimal growth. We demonstrate that, in contrast to a commonly held view the macromolecular composition of bacteria does not depend on the growth rate as an independent variable, but on three factors: (i) the genetic background (i.e. the strain used), (ii) the physiological history of the bacteria used for inoculation of a given growth medium, and (iii) the kind of nutrients in the growth medium. These factors determine the ribosome concentration and the average rate of protein synthesis per ribosome, and thus the growth rate. Immediately after a nutritional up-shift, the average number of ribosomes in the bacterial population increases exponentially with time at a rate which eventually is attained as the final post-shift growth rate of all cell components. After a nutritional up-shift from one minimal medium to another minimal medium of higher nutritional quality, ribosome and RNA polymerase syntheses are co-regulated and immediately increase by the same factor equal to the increase in the final growth rate. However, after an up-shift from a minimal medium to a medium containing all 20 amino acids, RNA polymerase and ribosome syntheses are no longer coregulated; a smaller rate of synthesis of RNA polymerase is compensated by a gradual increase in the fraction of free RNA polymerase, possibly due to a gradual saturation of mRNA promoters. We have also analyzed data from a recent publication, in which it was concluded that the macromolecular composition in terms of RNA/protein and RNA/DNA ratios is solely determined by the effector molecule ppGpp. Our analysis indicates that this is true only in special cases and that, in general, medium adaptation also depends on factors other than ppGpp.
Collapse
Affiliation(s)
- Måns Ehrenberg
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
5
|
Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M. Engineering genes for predictable protein expression. Protein Expr Purif 2012; 83:37-46. [PMID: 22425659 DOI: 10.1016/j.pep.2012.02.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.
Collapse
|
6
|
Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C. Design parameters to control synthetic gene expression in Escherichia coli. PLoS One 2009; 4:e7002. [PMID: 19759823 PMCID: PMC2736378 DOI: 10.1371/journal.pone.0007002] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/17/2009] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Production of proteins as therapeutic agents, research reagents and molecular tools frequently depends on expression in heterologous hosts. Synthetic genes are increasingly used for protein production because sequence information is easier to obtain than the corresponding physical DNA. Protein-coding sequences are commonly re-designed to enhance expression, but there are no experimentally supported design principles. PRINCIPAL FINDINGS To identify sequence features that affect protein expression we synthesized and expressed in E. coli two sets of 40 genes encoding two commercially valuable proteins, a DNA polymerase and a single chain antibody. Genes differing only in synonymous codon usage expressed protein at levels ranging from undetectable to 30% of cellular protein. Using partial least squares regression we tested the correlation of protein production levels with parameters that have been reported to affect expression. We found that the amount of protein produced in E. coli was strongly dependent on the codons used to encode a subset of amino acids. Favorable codons were predominantly those read by tRNAs that are most highly charged during amino acid starvation, not codons that are most abundant in highly expressed E. coli proteins. Finally we confirmed the validity of our models by designing, synthesizing and testing new genes using codon biases predicted to perform well. CONCLUSION The systematic analysis of gene design parameters shown in this study has allowed us to identify codon usage within a gene as a critical determinant of achievable protein expression levels in E. coli. We propose a biochemical basis for this, as well as design algorithms to ensure high protein production from synthetic genes. Replication of this methodology should allow similar design algorithms to be empirically derived for any expression system.
Collapse
|
7
|
Thamthiankul Chankhamhaengdecha S, Tantichodok A, Panbangred W. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. J Biotechnol 2008; 136:122-8. [PMID: 18602953 DOI: 10.1016/j.jbiotec.2008.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 05/13/2008] [Accepted: 05/28/2008] [Indexed: 11/26/2022]
Abstract
To enhance the toxicity of the Bacillus thuringiensis subsp. aizawai strain SP41 (SP41), the vegetative insecticidal protein (Vip) gene vip3A from SP41 was redirected to the sporulation stage by replacing its native promoter with the strong promoter P19 of the cry11Aa operon. Compared to the wild type, SP41 with PVIP (vip3A with its native promoter and ter) had the relative expression ratios of 457, 548, and 290 at 8, 14, and 20 h of cultivation, respectively, as measured by quantitative reverse transcription polymerase chain reaction (PCR). SP41 transformed by P19VIP (vip3A controlled by P19 promoter with vip3A ter) showed higher expressions (23, 2055, 1831) at the same time points. SP41 with P19VIP20 (vip3A controlled by P19 promoter and containing P20 and operon ter) had the lowest expression levels (3, 11, 9) at any time point. SDS-PAGE analysis of proteins in the culture supernatant of the P19VIP at 8, 14, and 20 h demonstrated a significant increase in Vip3A at the sporulation stage. Using the surface contamination bioassay, the 50% lethal concentration (LC(50)) of whole culture of PVIP, P19VIP, and P19VIP20 at 20 and 48 h of cultivation against Spodoptera exigua larvae were (68.3, 21.2, and 60.2 microg cm(-2)) and (69.8, 41.8, and 74.6 microg cm(-2)), respectively, compared with 86.6 and 104.4 microg cm(-2) for SP41. The results showed that Vip from P19VIP, expressed at spore stage at 20 and 48 h, can increase the toxicity of SP41 for 4.1- and 2.5-fold, respectively.
Collapse
|
8
|
Lee SW, Cho BH, Park SG, Kim S. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 2005; 117:3725-34. [PMID: 15286174 DOI: 10.1242/jcs.01342] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although aminoacyl-tRNA synthetases (ARSs) are housekeeping enzymes essential for protein synthesis, they can play non-catalytic roles in diverse biological processes. Some ARSs are capable of forming complexes with each other and additional proteins. This characteristic is most pronounced in mammals, which produce a macromolecular complex comprising nine different ARSs and three additional factors: p43, p38 and p18. We have been aware of the existence of this complex for a long time, but its structure and function have not been well understood. The only apparent distinction between the complex-forming ARSs and those that do not form complexes is their ability to interact with the three non-enzymatic factors. These factors are required not only for the catalytic activity and stability of the associated ARSs, such as isoleucyl-, methionyl-, and arginyl-tRNA synthetase, but also for diverse signal transduction pathways. They may thus have joined the ARS community to coordinate protein synthesis with other biological processes.
Collapse
Affiliation(s)
- Sang Won Lee
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
9
|
Gu W, Li M, Zhao WM, Fang NX, Bu S, Frazer IH, Zhao KN. tRNASer(CGA) differentially regulates expression of wild-type and codon-modified papillomavirus L1 genes. Nucleic Acids Res 2004; 32:4448-61. [PMID: 15319446 PMCID: PMC516046 DOI: 10.1093/nar/gkh748] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972-4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNA(Ser)(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNA(Ser)(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNA(Ser)(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2alpha in the tRNA(Ser)(CGA) transfected L1 cell lines. The tRNA(Ser)(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.
Collapse
Affiliation(s)
- Wenyi Gu
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Ramachandiran V, Kramer G, Horowitz PM, Hardesty B. Single synonymous codon substitution eliminates pausing during chloramphenicol acetyl transferase synthesis on Escherichia coli ribosomes in vitro. FEBS Lett 2002; 512:209-12. [PMID: 11852081 DOI: 10.1016/s0014-5793(02)02261-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coding sequence for chloramphenicol acetyl transferase (CAT) contains several rare codons; three of them are ATA encoding isoleucine in positions 13, 84 and 119 of the amino acid sequence. Expression of CAT on Escherichia coli ribosomes in vitro results in mostly full-length product but also distinct smaller polypeptides from less than 3 kDa to over 20 kDa. As reported earlier, the smaller polypeptides are the predominant products, if translation is initiated with fluorophore-Met-tRNA(f). All this translational pausing is eliminated when the first ATA codon is mutated to ATC, a frequently used codon for isoleucine in E. coli. Addition of large amounts of E. coli tRNA to the coupled transcription/translation reaction does not reduce the number of pause-site peptides seen in the expression of wild-type CAT. Thus we hypothesize that the mRNA structure may be an important determinant for translational pausing.
Collapse
|
11
|
Zdanovsky AG, Zdanovskaia MV. Simple and efficient method for heterologous expression of clostridial proteins. Appl Environ Microbiol 2000; 66:3166-73. [PMID: 10919765 PMCID: PMC92129 DOI: 10.1128/aem.66.8.3166-3173.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many clostridial proteins are poorly produced in Escherichia coli. It has been suggested that this phenomena is due to the fact that several types of codons common in clostridial coding sequences are rarely used in E. coli and the quantities of the corresponding tRNAs in E. coli are not sufficient to ensure efficient translation of the corresponding clostridial sequences. To address this issue, we amplified three E. coli genes, ileX, argU, and leuW, in E. coli; these genes encode tRNAs that are rarely used in E. coli (the tRNAs for the ATA, AGA, and CTA codons, respectively). Our data demonstrate that amplification of ileX dramatically increased the level of production of most of the clostridial proteins tested, while amplification of argU had a moderate effect and amplification of leuW had no effect. Thus, amplification of certain tRNA genes for rare codons in E. coli improves the expression of clostridial genes in E. coli, while amplification of other tRNAs for rare codons might not be needed for improved expression. We also show that amplification of a particular tRNA gene might have different effects on the level of protein production depending on the prevalence and relative positions of the corresponding codons in the coding sequence. Finally, we describe a novel approach for improving expression of recombinant clostridial proteins that are usually expressed at a very low level in E. coli.
Collapse
Affiliation(s)
- A G Zdanovsky
- Promega Corporation, Madison, Wisconsin 53711-5399, USA.
| | | |
Collapse
|
12
|
Brandsma M, Janssen GM, Möller W. Termination of quiescence in crustacea. The role of transfer RNA aminoacylation in the brine shrimp Artemia. J Biol Chem 1997; 272:28912-7. [PMID: 9360961 DOI: 10.1074/jbc.272.46.28912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In quiescent embryos of the brine shrimp Artemia, the level of aminoacylation of transfer RNAs is low. During resumption of development the charging level of transfer RNAs increases, concomitant with the activation of protein synthesis. The total level of charging rises dramatically from an average of 4% to 50% within a period of 24 h of development. The restriction of in vitro translation of the quiescent embryo extract can be partially released by the addition of charged aminoacyl-tRNA, which apparently starts the flow of ribosomes into polyribosome structures. Complete reactivation of translation by aminoacyl-tRNA occurs when mRNA from preformed mRNA-ribosome complexes, like the polyribosomes extracted from developing embryos or poly(U)-programmed ribosomes, are offered to quiescent embryo extracts. With respect to the mechanism of in vivo recharging of tRNAs, we observed that the level of several aminoacyl-tRNA synthetases increase during development. Methionyl-tRNA synthetase rises more than 10-fold. In the case of valyl-tRNA synthetase, the activation is lower and shown to be due to the de novo synthesis of its mRNA and the corresponding protein product as well. We conclude that protein synthesis and thereby the gradual animation of cryptobiotic Artemia embryos is determined to a large extent by the rate by which aminoacyl-tRNAs are replenished during development at both the initiation and elongation level.
Collapse
Affiliation(s)
- M Brandsma
- Department of Medical Biochemistry, Leiden University, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|
13
|
Abstract
Single base substitutions of the mitochondrial genome are associated with a variety of metabolic disorders. The myopathy, encephalopathy, lactic acidosis, stroke-like episodes syndrome, most frequently associated with an A to G transition mutation at position 3243 of the mitochondrial tRNALeu(UUR) gene, is characterized by biochemical and structural alterations of mitochondria. To investigate the pathophysiology of the mutation, we established distinct Epstein-Barr virus-transformed B-cell lines for analyses that harbored 30-70% of the mutated genome. Interestingly, neither an alteration of the processing of primary transcripts nor a general impairment of individual mitochondrial protein subunit synthesis rates could be observed. Nevertheless a marked decrease of cytochrome-c oxidase activity and reduced content of mitochondrial encoded subunits in the assembled respiratory complex IV was recorded on the cell line harboring 70% mutated mtDNA. Quantitative analysis of incorporation rates of the amino acid leucine into newly synthesized mitochondrial proteins, representing the functionality of the tRNALeu(UUR) in protein biosynthesis, revealed a specific decrease of this amino acid in distinct mitochondrial translation products. This observation was supported by a variation in the proteolytic fingerprint pattern. Our results suggest that the malfunctioning mitochondrial tRNALeu(UUR) leads to an alteration of amino acid incorporation into the mitochondrially synthesized subunits of the oxidative phosphorylation system, thus altering it's structure and function.
Collapse
Affiliation(s)
- A Flierl
- Wissenschaftliche Nachwuchsgruppe, Theodor Boveri Institut, Biozentrum der Bayerischen-Julius-Maximillians-Universität, Am Hubland, 97074 Würzburg, Federal Republic of Germany
| | | | | |
Collapse
|
14
|
Mechold U, Malke H. Characterization of the stringent and relaxed responses of Streptococcus equisimilis. J Bacteriol 1997; 179:2658-67. [PMID: 9098065 PMCID: PMC179016 DOI: 10.1128/jb.179.8.2658-2667.1997] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 739-codon rel(Seq) gene of Streptococcus equisimilis H46A is bifunctional, encoding a strong guanosine 3',5'-bis(diphosphate) 3'-pyrophosphohydrolase (ppGppase) and a weaker ribosome-independent ATP:GTP 3'-pyrophosphoryltransferase [(p)ppGpp synthetase]. To analyze the function of this gene, (p)ppGpp accumulation patterns as well as protein and RNA synthesis were compared during amino acid deprivation and glucose exhaustion between the wild type and an insertion mutant carrying a rel(Seq) gene disrupted at codon 216. We found that under normal conditions, both strains contained basal levels of (p)ppGpp. Amino acid deprivation imposed by pseudomonic acid or isoleucine hydroxamate triggered a rel(Seq)-dependent stringent response characterized by rapid (p)ppGpp accumulation at the expense of GTP and abrupt cessation of net RNA accumulation in the wild type but not in the mutant. Tetracycline added to block (p)ppGpp synthesis caused the accumulated (p)ppGpp to degrade rapidly, with a concomitant increase of the GTP pool (decay constant of ppGpp, approximately 0.7 min(-1)). Simultaneous addition of pseudomonic acid and tetracycline to mimic a relaxed response caused wild-type RNA synthesis to proceed at rates approximating those seen under either condition in the mutant. Glucose exhaustion provoked the (p)ppGpp accumulation response in both the wild type and the rel(Seq) insertion mutant, consistent with the block of net RNA accumulation in both strains. Although the source of (p)ppGpp synthesis during glucose exhaustion remains to be determined, these findings reinforce the idea entertained previously that rel(Seq) fulfils functions that reside separately in the paralogous reL4 and spoT genes of Escherichia coli. Analysis of (p)ppGpp accumulation patterns was complicated by finding an unknown phosphorylated compound that comigrated with ppGpp under two standard thin-layer chromatography conditions. Unlike ppGpp, this compound did not adsorb to charcoal and did not accumulate appreciably during isoleucine deprivation. Like ppGpp, the unknown compound did accumulate during energy source starvation.
Collapse
Affiliation(s)
- U Mechold
- Institute for Molecular Biology, Jena University, Germany
| | | |
Collapse
|
15
|
Enríquez JA, Attardi G. Evidence for aminoacylation-induced conformational changes in human mitochondrial tRNAs. Proc Natl Acad Sci U S A 1996; 93:8300-5. [PMID: 8710865 PMCID: PMC38665 DOI: 10.1073/pnas.93.16.8300] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Analysis by acid polyacrylamide/urea gel electrophoresis of 14 individual mitochondrial tRNAs (mt-tRNAs) from human cells has revealed a variable decrease in mobility of the aminoacylated relative to the nonacylated form, with the degree of separation of the two forms not being correlated with the mass, polar character, or charge of the amino acid. Separation of the charged and uncharged species has been found to be independent of tRNA denaturation, being observed also in the absence of urea. In another approach, electrophoresis through a perpendicular denaturing gradient gel of several individual mt-tRNAs has shown a progressive unfolding of the tRNA with increasing denaturant concentration, which is consistent with an initial disruption of tertiary interactions, followed by the sequential melting of the four stems of the cloverleaf structure. A detailed analysis of the unfolding process of charged and uncharged tRNALys and tRNALeu(UUR) has revealed that the separation of the two forms of these tRNAs persisted throughout the almost entire range of denaturant concentrations used and was lost upon denaturation of the last helical domain(s), which most likely included the amino acid acceptor stem. These observations strongly suggest that the electrophoretic retardation of the charged species reflects an aminoacylation-induced conformational change of the 3'-end of these mt-tRNAs, with possible significant implications in connection with the known role of the acceptor end in tRNA interactions with the ribosomal peptidyl transferase center and the elongation factor Tu.
Collapse
Affiliation(s)
- J A Enríquez
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
16
|
Abstract
The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response.
Collapse
Affiliation(s)
- C Condon
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
17
|
Del Tito BJ, Ward JM, Hodgson J, Gershater CJ, Edwards H, Wysocki LA, Watson FA, Sathe G, Kane JF. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J Bacteriol 1995; 177:7086-91. [PMID: 8522513 PMCID: PMC177585 DOI: 10.1128/jb.177.24.7086-7091.1995] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Escherichia coli, the isoleucine codon AUA occurs at a frequency of about 0.4% and is the fifth rarest codon in E. coli mRNA. Since there is a correlation between the frequency of codon usage and the level of its cognate tRNA, translational problems might be expected when the mRNA contains high levels of AUA codons. When a hemagglutinin from the influenza virus, a 304-amino-acid protein with 12 (3.9%) AUA codons and 1 tandem codon, and a mupirocin-resistant isoleucyl tRNA synthetase, a 1,024-amino-acid protein, with 33 (3.2%) AUA codons and 2 tandem codons, were expressed in E. coli, product accumulation was highly variable and dependent to some degree on the growth medium. In rich medium, the flu antigen represented about 16% of total cell protein, whereas in minimal medium, it was only 2 to 3% of total cell protein. In the presence of the cloned ileX, which encodes the cognate tRNA for AUA, however, the antigen was 25 to 30% of total cell protein in cells grown in minimal medium. Alternatively, the isoleucyl tRNA synthetase did not accumulate to detectable levels in cells grown in Luria broth unless the ileX tRNA was coexpressed when it accounted for 7 to 9% of total cell protein. These results indicate that the rare isoleucine AUA codon, like the rare arginine codons AGG and AGA, can interfere with the efficient expression of cloned proteins.
Collapse
Affiliation(s)
- B J Del Tito
- Department of Biopharmaceutical Quality Operations, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406-0939, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sipley J, Goldman E. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. Proc Natl Acad Sci U S A 1993; 90:2315-9. [PMID: 8460140 PMCID: PMC46077 DOI: 10.1073/pnas.90.6.2315] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have tested the effect of increased ribosomal fidelity on a modified version of the programmed release factor 2 (RF2) translational frameshift. In the constructs tested, the original UGA codon at the site of the shift was replaced by either of two sense codons, UGG (tryptophan), which allows a frameshift of approximately 13%, or CUG (leucine), which allows a frameshift of only approximately 2%. We confirmed the results of Curran and Yarus [Curran, J. F. & Yarus, M. (1989) J. Mol. Biol. 209, 65-77] in a wild-type ribosomal host, including a reduction of the UGG shift following induction of tRNA(Trp) from a plasmid copy of the tRNA gene. But to our surprise, in a hyperaccurate streptomycin pseudo-dependent host, the UGG frameshift increased to more than 50%. When we added a tRNA(Trp) plasmid to these cells, induction of the tRNA(Trp) gene reduced the shift back to approximately 7%. Messenger RNA levels did not vary greatly under these different induced conditions. Other increased accuracy alleles also showed increased frameshifting with UGG at the frameshift site. All increased accuracy alleles led to slower translation rates, and there appeared to be a proportionality between the extent of reduction of synthesis for the in-frame reporter and the extent of UGG frameshift for the out-of-frame reporter. There were little effects of increased accuracy on the lower level CUG frameshift. However, over-production of the cognate tRNA(1Leu) dramatically reduced even this lower level of shift, despite the fact that tRNA(1Leu) is already the most abundant isoacceptor in Escherichia coli. These results can be rationalized by following the hypothesis of Curran and Yarus as follows: with wild-type ribosomes, limited availability of tRNA(Trp) (about 1% of total tRNA) facilitates a pause at the UGG codon (due to the vacant A site), allowing increased opportunity for ribosome realignment. Excess tRNA(Trp) reduces the time the A site is vacant and thus reduces the frameshift. The slower hyperaccurate ribosomes increase the pause time and thus increase the opportunity for shifting, a process again reversed by increasing the in-frame cognate tRNA(Trp). These data provide strong support for a model in which the extent of ribosome pause time at a programmed frameshift site is a major determinant in the efficiency of the frameshift and in which tRNA availability can be a major influence on this process.
Collapse
MESH Headings
- Base Sequence
- Codon/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Frameshift Mutation
- Genes, Bacterial
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Plasmids
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- Ribosomes/metabolism
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- J Sipley
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Newark
| | | |
Collapse
|
19
|
Svitil A, Cashel M, Zyskind J. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53775-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Abstract
Strains of Escherichia coli have been produced which express very high levels of the tRNA(1Leu) isoacceptor. This was accomplished by transforming cells with plasmids containing the leuV operon which encodes three copies of the tRNA(1Leu) gene. Most transformants grew very slowly and exhibited a 15-fold increase in cellular concentrations of tRNA(1Leu). As a result, total cellular tRNA concentration was approximately doubled and 56% of the total was tRNA(1Leu). We examined a number of parameters which might be expected to be affected by imbalances in tRNA concentration: in vivo tRNA charging levels, misreading, ribosome step time, and tRNA modification. Surprisingly, no increase in intracellular ppGpp levels was detected even though only about 40% of total leucyl tRNA was found to be charged in vivo. Gross ribosomal misreading was not detected, and it was shown that ribosomal step times were reduced between two- and threefold. Analyses of leucyl tRNA isolated from these slow-growing strains showed that at least 90% of the detectable tRNA(1Leu) was hypomodified as judged by altered mobility on RPC-5 reverse-phase columns, and by specific modification assays using tRNA(m1G)-methyltransferase and pseudo-uridylate synthetase. Analysis of fast-growing revertants demonstrated that tRNA concentration per se may not explain growth inhibition because selected revertants which grew at wild-type growth rates displayed levels of tRNA comparable to that of control strains bearing the leuV operon. A synthetic tRNA(1Leu) operon under the control of the T7 promoter was prepared which, when induced, produced six- to sevenfold increases in tRNA(1Leu) levels. This level of tRNA(1Leu) titrated the modification system as judged by RPC-5 column chromatography. Overall, our results suggest that hypomodified tRNA may explain, in part, the observed effects on growth, and that the protein-synthesizing system can tolerate an enormous increase in the concentration of a single tRNA.
Collapse
Affiliation(s)
- S Z Wahab
- Department of Microbiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0678
| | | | | |
Collapse
|
21
|
Jones PG, Cashel M, Glaser G, Neidhardt FC. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J Bacteriol 1992; 174:3903-14. [PMID: 1597413 PMCID: PMC206098 DOI: 10.1128/jb.174.12.3903-3914.1992] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Temperature downshifts of Escherichia coli throughout its growth range resulted in transient growth inhibition and a cold shock response consisting of transient induction of several proteins, repression of heat shock proteins, and, despite the growth lag, continued synthesis of proteins involved in transcription and translation. The paradoxical synthesis of the latter proteins, which are normally repressed when growth is arrested, was explored further. First, by means of a nutritional downshift, a natural stringent response was induced in wild-type cells immediately prior to a shift from 37 to 10 degrees C. These cells displayed decreased synthesis of transcriptional and translational proteins and decreased induction of cold shock proteins; also, adaptation for growth at 10 degrees C was delayed, even after restoration of the nutrient supplementation. Next, the contribution of guanosine 5'-triphosphate-3'-diphosphate and guanosine 5'-diphosphate-3'-diphosphate, collectively abbreviated (p)ppGpp, to the alteration in cold shock response was studied with the aid of a mutant strain in which overproduction of these nucleotides can be artificially induced. Induction of (p)ppGpp synthesis immediately prior to shifting this strain from 37 to 10 degrees C produced results differing only in a few details from those described above for nutritional downshift of the wild-type strain. Finally, shifting a relA spoT mutant, which cannot synthesize (p)ppGpp, from 24 to 10 degrees C resulted in a greater induction of the cold shock proteins, increased synthesis of transcriptional and translational proteins, decreased synthesis of a major heat shock protein, and faster adaptation to growth than for the wild-type strain. Our results indicate that the previously reported decrease in the (p)ppGpp level following temperature downshift plays a physiological role in the regulation of gene expression and adaptation for growth at low temperature.
Collapse
Affiliation(s)
- P G Jones
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | | | |
Collapse
|
22
|
Abstract
Uncharged tRNA has been shown in vivo to have an active role both in the stringent response, and in modulating the rate of translational elongation. Both of these effects appear to be mediated by codon-anticodon interactions on the ribosome. Although the involvement of uncharged tRNA in the stringent response was expected from in vitro experiments, it has only recently been confirmed in vivo. Inhibition of translation by cognate uncharged tRNA was not expected, and a model is proposed in which excess uncharged tRNA competes with charged tRNA (in ternary complex) for the 30S component of the ribosomal A site. When uncharged tRNA is in sufficient excess over charged tRNA, interaction of uncharged tRNA with the 50S component of the A site occurs as well, leading to a stringent response. The cell has a continuum of responses to decreasing aminoacyl-tRNA levels: in moderately limited conditions, the proportion of uncharged tRNA increases, and the translation rate is slowed; under more severe limitations, uncharged tRNA provokes a stringent response, with pleiotropic consequences for the cell.
Collapse
Affiliation(s)
- E Goldman
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103
| | | |
Collapse
|