1
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Zhou L, Wang T, Yu Y, Li M, Sun X, Song W, Wang Y, Zhang C, Fu F. The etiology of poststroke-depression: a hypothesis involving HPA axis. Biomed Pharmacother 2022; 151:113146. [PMID: 35643064 DOI: 10.1016/j.biopha.2022.113146] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Approximately, one in three ischemic stroke survivors suffered from depression, namely, post-stroke depression (PSD). PSD affects functional rehabilitation and may lead to poor quality of life of patients. There are numerous explanations about the etiologies of PSD. Here, we speculated that PSD are likely to be the result of specific changes in brain pathology. We hypothesized that the stroke-induced hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis plays an important role in PSD. Stroke initiates a complex sequence of events in neuroendocrine system including HPA axis. The HPA axis is involved in the pathophysiology of depression, especially, the overactivity of the HPA axis occurs in major depressive disorder. This review summarizes the possible etiologies of PSD, focusing on the stroke-induced activation of HPA axis, mainly including the stress followed by severe brain damage and the proinflammatory cytokines release. The role of hyperactive of HPA axis in PSD was discussed in detail, which includes the role of high level corticotropin-releasing hormone in PSD, the effects of glucocorticoids on the alterations in specific brain structures, the expression of enzymes, excitotoxicity, the change in intestinal permeability, and the activation of microglia. The relationship between neuroendocrine regulation and inflammation was also described. Finally, the therapy of PSD by regulating HPA axis, neuroendocrine, and immunity was discussed briefly. Nevertheless, the change of HPA axis and the occurring of PSD maybe interact and promote on each other, and future investigations should explore this hypothesis in more depth.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Mingan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Wenhao Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
3
|
Park TJ, Smith ESJ, Reznick J, Bennett NC, Applegate DT, Larson J, Lewin GR. African Naked Mole-Rats Demonstrate Extreme Tolerance to Hypoxia and Hypercapnia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:255-269. [PMID: 34424519 DOI: 10.1007/978-3-030-65943-1_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Naked mole-rats are extremely tolerant to low concentrations of oxygen (hypoxia) and high concentrations of carbon dioxide (hypercapnia), which is consistent with the environment that they inhabit. Naked mole-rats combine subterranean living with living in very densely populated colonies where oxygen becomes depleted and carbon dioxide accumulates. In the laboratory, naked mole-rats fully recover from 5 h exposure to 5% O2 and 5 h exposure to 80% CO2, whereas both conditions are rapidly lethal to similarly sized laboratory mice. During anoxia (0% O2) naked mole-rats enter a suspended animation-like state and switch from aerobic metabolism of glucose to anaerobic metabolism of fructose. Additional fascinating characteristics include that naked mole-rats show intrinsic brain tolerance to anoxia; a complete lack of hypoxia-induced and CO2-induced pulmonary edema; and reduced aversion to high concentrations of CO2 and acidic fumes. Here we outline a constellation of physiological and molecular adaptations that correlate with the naked mole-rat's hypoxic/hypercapnic tolerance and which offer potential targets for ameliorating pathological conditions in humans, such as the damage caused during cerebral ischemia.
Collapse
Affiliation(s)
- Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Daniel T Applegate
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - John Larson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
4
|
Premratanachai A, Suwanjang W, Govitrapong P, Chetsawang J, Chetsawang B. Melatonin prevents calcineurin-activated the nuclear translocation of nuclear factor of activated T-cells in human neuroblastoma SH-SY5Y cells undergoing hydrogen peroxide-induced cell death. J Chem Neuroanat 2020; 106:101793. [PMID: 32348875 DOI: 10.1016/j.jchemneu.2020.101793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
The interaction between the activation of protein phosphatase, calcineurin (CaN), and the dephosphorylation and nuclear translocation of nuclear factor of activated T-cells (NFAT), a transcriptional factor in the immune system, has attracted interest as a key factor responsible for the cell death process. In this study, the effects of melatonin on the interaction between CaN and NFAT signaling during oxidative stress-induced cell death were investigated. Human neuroblastoma SH-SY5Y cells were treated with the non-radical reactive oxygen species hydrogen peroxide (H2O2). Cells were treated with 200 μM H2O2 for the indicated time. Some H2O2-treated cells were pretreated with melatonin for 1 h. Control cells were treated with the same concentration of ethanol used to dilute melatonin. H2O2-induced cell death promoted increases in reactive oxygen species (ROS) production and the nuclear translocation of NFAT, which were related to increased levels the active, cleaved form of CaN (32.5 kDa). In addition, pretreatment of H2O2-treated cells with melatonin decreased cell death, ROS production, the levels of the active-cleaved form of CaN and the nuclear translocation of NFAT. Based on these findings, melatonin may exert its neuroprotective effects on oxidative damage-induced cell death by inhibiting CaN-activated the nuclear translocation of NFAT.
Collapse
Affiliation(s)
- Asawin Premratanachai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Jirapa Chetsawang
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.
| |
Collapse
|
5
|
Pan J, Ma N, Yu B, Zhang W, Wan J. Transcriptomic profiling of microglia and astrocytes throughout aging. J Neuroinflammation 2020; 17:97. [PMID: 32238175 PMCID: PMC7115095 DOI: 10.1186/s12974-020-01774-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Activation of microglia and astrocytes, a prominent hallmark of both aging and Alzheimer’s disease (AD), has been suggested to contribute to aging and AD progression, but the underlying cellular and molecular mechanisms are largely unknown. Methods We performed RNA-seq analyses on microglia and astrocytes freshly isolated from wild-type and APP-PS1 (AD) mouse brains at five time points to elucidate their age-related gene-expression profiles. Results Our results showed that from 4 months onward, a set of age-related genes in microglia and astrocytes exhibited consistent upregulation or downregulation (termed “age-up”/“age-down” genes) relative to their expression at the young-adult stage (2 months). And most age-up genes were more highly expressed in AD mice at the same time points. Bioinformatic analyses revealed that the age-up genes in microglia were associated with the inflammatory response, whereas these genes in astrocytes included widely recognized AD risk genes, genes associated with synaptic transmission or elimination, and peptidase-inhibitor genes. Conclusions Overall, our RNA-seq data provide a valuable resource for future investigations into the roles of microglia and astrocytes in aging- and amyloid-β-induced AD pathologies.
Collapse
Affiliation(s)
- Jie Pan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Nana Ma
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Bo Yu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China.,Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China.
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China. .,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Zhang T, Wu C, Yang X, Liu Y, Yang H, Yuan L, Liu Y, Sun S, Yang J. Pseudoginsenoside-F11 Protects against Transient Cerebral Ischemia Injury in Rats Involving Repressing Calcium Overload. Neuroscience 2019; 411:86-104. [DOI: 10.1016/j.neuroscience.2019.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023]
|
7
|
Browe BM, Vice EN, Park TJ. Naked Mole‐Rats: Blind, Naked, and Feeling No Pain. Anat Rec (Hoboken) 2018; 303:77-88. [PMID: 30365235 DOI: 10.1002/ar.23996] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Brigitte M. Browe
- Department of Biological Sciences University of Illinois at Chicago, Laboratory of Integrative Neuroscience 840 West Taylor St, Chicago Illinois
| | - Emily N. Vice
- Department of Biological Sciences University of Illinois at Chicago, Laboratory of Integrative Neuroscience 840 West Taylor St, Chicago Illinois
| | - Thomas J. Park
- Department of Biological Sciences University of Illinois at Chicago, Laboratory of Integrative Neuroscience 840 West Taylor St, Chicago Illinois
| |
Collapse
|
8
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 771] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
9
|
Can 'calpain-cathepsin hypothesis' explain Alzheimer neuronal death? Ageing Res Rev 2016; 32:169-179. [PMID: 27306474 DOI: 10.1016/j.arr.2016.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
Neurons are highly specialized post-mitotic cells, so their homeostasis and survival depend on the tightly-regulated, continuous protein degradation, synthesis, and turnover. In neurons, autophagy is indispensable to facilitate recycling of long-lived, damaged proteins and organelles in a lysosome-dependent manner. Since lysosomal proteolysis under basal conditions performs an essential housekeeping function, inhibition of the proteolysis exacerbates level of neurodegeneration. The latter is characterized by an accumulation of abnormal proteins or organelles within autophagic vacuoles which reveal as 'granulo-vacuolar degenerations' on microscopy. Heat-shock protein70.1 (Hsp70.1), as a means of molecular chaperone and lysosomal stabilizer, is a potent survival protein that confers neuroprotection against diverse stimuli, but its depletion induces neurodegeneration via autophagy failure. In response to hydroxynonenal generated from linoleic or arachidonic acids by the reactive oxygen species, a specific oxidative injury 'carbonylation' occurs at the key site Arg469 of Hsp70.1. Oxidative stress-induced carbonylation of Hsp70.1, in coordination with the calpain-mediated cleavage, leads to lysosomal destabilization/rupture and release of cathepsins with the resultant neuronal death. Hsp70.1 carbonylation which occurs anywhere in the brain is indispensable for neuronal death, but extent of calpain activation should be more crucial for determining the cell death fate. Importantly, not only acute ischemia during stroke but also chronic ischemia due to ageing may cause calpain activation. Here, role of Hsp70.1-mediated lysosomal rupture is discussed by comparing ischemic and Alzheimer neuronal death. A common neuronal death cascade may exist between cerebral ischemia and Alzheimer's disease.
Collapse
|
10
|
Abstract
Ischemic brain injury produced by stroke or cardiac arrest is a major cause of human neurological disability. Steady advances in the neurosciences have elucidated the pathophysiological mechanisms of brain ischemia and have suggested many therapeutic approaches to achieve neuroprotection of the acutely ischemic brain that are directed at specific injury mechanisms. In the second portion of this two-part review, the following potential therapeutic approaches to acute ischemic injury are considered: 1) modulation of nonglutamatergic neurotransmission, including monoaminergic systems (dopamine, norepinephrine, serotonin), γ-aminobutyric acid, and adenosine; 2) mild-to-moderate therapeutic hypothermia; 3) calcium channel antagonism; 4) an tagonism of oxygen free radicals; 5) modulation of the nitric oxide system; 6) antagonism of cytoskeletal proteolysis; 7) growth factor administration; 8) therapy directed at cellular mediators of injury; and 9) the rationale for combination pharmacotherapy. The Neuroscientist 1:164-175, 1995
Collapse
Affiliation(s)
- Myron D. Ginsberg
- Cerebral Vascular Disease Research Center Department
of Neurology University of Miami School of Medicine Miami, Florida
| |
Collapse
|
11
|
Jaeger HM, Pehlke JR, Kaltwasser B, Kilic E, Bähr M, Hermann DM, Doeppner TR. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis. Oncotarget 2016; 6:14033-44. [PMID: 26050199 PMCID: PMC4546449 DOI: 10.18632/oncotarget.4226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling. Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84. Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished. In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy.
Collapse
Affiliation(s)
- Hanna M Jaeger
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Jens R Pehlke
- LWL-Klinik Muenster, Department of Addiction Disorders, Muenster, Germany
| | - Britta Kaltwasser
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| | - Mathias Bähr
- University of Goettingen Medical School, Department of Neurology, Goettingen, Germany
| | - Dirk M Hermann
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany
| | - Thorsten R Doeppner
- University of Duisburg-Essen Medical School, Department of Neurology, Essen, Germany.,Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Istanbul, Turkey
| |
Collapse
|
12
|
Domin H, Przykaza Ł, Jantas D, Kozniewska E, Boguszewski PM, Śmiałowska M. Neuroprotective potential of the group III mGlu receptor agonist ACPT-I in animal models of ischemic stroke: In vitro and in vivo studies. Neuropharmacology 2016; 102:276-94. [DOI: 10.1016/j.neuropharm.2015.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/07/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
|
13
|
Doeppner TR, Pehlke JR, Kaltwasser B, Schlechter J, Kilic E, Bähr M, Hermann DM. The indirect NMDAR antagonist acamprosate induces postischemic neurologic recovery associated with sustained neuroprotection and neuroregeneration. J Cereb Blood Flow Metab 2015; 35. [PMID: 26219600 PMCID: PMC4671132 DOI: 10.1038/jcbfm.2015.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebral ischemia stimulates N-methyl-d-aspartate receptors (NMDARs) resulting in increased calcium concentration and excitotoxicity. Yet, deactivation of NMDAR failed in clinical studies due to poor preclinical study designs or toxicity of NMDAR antagonists. Acamprosate is an indirect NMDAR antagonist used for patients with chronic alcohol dependence. We herein analyzed the therapeutic potential of acamprosate on brain injury, neurologic recovery and their underlying mechanisms. Mice were exposed to cerebral ischemia, treated with intraperitoneal injections of acamprosate or saline (controls), and allowed to survive until 3 months. Acamprosate yielded sustained neuroprotection and increased neurologic recovery when given no later than 12 hours after stroke. The latter was associated with increased postischemic angioneurogenesis, albeit acamprosate did not stimulate angioneurogenesis itself. Rather, increased angioneurogenesis was due to inhibition of calpain-mediated pro-injurious signaling cascades. As such, acamprosate-mediated reduction of calpain activity resulted in decreased degradation of p35, increased abundance of the pro-survival factor STAT6, and reduced N-terminal-Jun-kinase activation. Inhibition of calpain was associated with enhanced stability of the blood-brain barrier, reduction of oxidative stress and cerebral leukocyte infiltration. Taken into account its excellent tolerability, its sustained effects on neurologic recovery, brain tissue survival, and neural remodeling, acamprosate is an intriguing candidate for adjuvant future stroke treatment.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany.,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Jens R Pehlke
- Department of Addiction Disorders, LWL-Klinik Muenster, Muenster, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Jana Schlechter
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Mathias Bähr
- Department of Neurology, University of Goettingen Medical School, Goettingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
14
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
15
|
Activation of NMDA receptors thickens the postsynaptic density via proteolysis. Neurosci Res 2015; 101:6-14. [PMID: 26188126 DOI: 10.1016/j.neures.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 01/25/2023]
Abstract
The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation. Oxygen-glucose deprivation-induced PSD thickening in hippocampal slice cultures was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist MK801. To gain more insight into the mechanisms underlying NMDA receptor-mediated PSD thickening, we assessed the area, length, and thickness of the PSD after NMDA treatment. The PSDs thickened with just 2 min of NMDA receptor stimulation, and this treatment was considered sublethal. When N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, cathepsins, and the proteasome, was applied, NMDA-induced PSD thickening was abolished. Furthermore, the calcium-induced calcium release inhibitor, ryanodine, reduced NMDA receptor-mediated PSD thickening. These results suggest that NMDA receptor activation induces PSD thickening by proteolysis through intracellular calcium increase, including that induced by calcium.
Collapse
|
16
|
Domin H, Jantas D, Śmiałowska M. Neuroprotective effects of the allosteric agonist of metabotropic glutamate receptor 7 AMN082 on oxygen-glucose deprivation- and kainate-induced neuronal cell death. Neurochem Int 2015; 88:110-23. [PMID: 25576184 DOI: 10.1016/j.neuint.2014.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/07/2014] [Accepted: 12/17/2014] [Indexed: 12/24/2022]
Abstract
Although numerous studies demonstrated a neuroprotective potency of unspecific group III mGluR agonists in in vitro and in vivo models of excitotoxicity, little is known about the protective role of group III mGlu receptor activation against neuronal cell injury evoked by ischemic conditions. The aim of the present study was to assess neuroprotective potential of the allosteric agonist of mGlu7 receptor, N,N'-Bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082) against oxygen-glucose deprivation (OGD)- and kainate (KA)-evoked neuronal cell damage in primary neuronal cultures, with special focus on its efficacy after delayed application. We demonstrated that in cortical neuronal cultures exposed to a 180 min OGD, AMN082 (0.01-1 µM) in a concentration- and time-dependent way attenuated the OGD-induced changes in the LDH release and MTT reduction assays. AMN082 (0.5 and 1 µM) produced also neuroprotective effects against KA-evoked neurotoxicity both in cortical and hippocampal cultures. Of particular importance was the finding that AMN082 attenuated excitotoxic neuronal injury after delayed application (30 min after OGD, or 30 min-1 h after KA). In both models of neurotoxicity, namely OGD- and KA-induced injury, the neuroprotective effects of AMN082 (1 µM) were reversed by the selective mGlu7 antagonist, 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP, 1 µM), suggesting the mGlu7-dependent mechanism of neuroprotective effects of AMN082. Next, we showed that AMN082 (0.5 and 1 µM) attenuated the OGD-induced increase in the number of necrotic nuclei as well inhibited the OGD-evoked calpain activation, suggesting the participation of these processes in the mechanism of AMN082-mediated protection. Additionally, we showed that protection evoked by AMN082 (1 µM) in KA model was connected with the inhibition of toxin-induced caspase-3 activity, and this effect was abolished by the mGlu7 receptor antagonist. The obtained results indicated that the activation of mGlu7 receptors may be a promising target for neuroprotection against ischemic and excitotoxic insults.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Maria Śmiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
17
|
Mfuh AM, Larionov OV. Heterocyclic N-Oxides - An Emerging Class of Therapeutic Agents. Curr Med Chem 2015; 22:2819-57. [PMID: 26087764 PMCID: PMC4711945 DOI: 10.2174/0929867322666150619104007] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022]
Abstract
Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents.
Collapse
Affiliation(s)
| | - O V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, United States.
| |
Collapse
|
18
|
Larson J, Drew KL, Folkow LP, Milton SL, Park TJ. No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. ACTA ACUST UNITED AC 2014; 217:1024-39. [PMID: 24671961 DOI: 10.1242/jeb.085381] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many vertebrates are challenged by either chronic or acute episodes of low oxygen availability in their natural environments. Brain function is especially vulnerable to the effects of hypoxia and can be irreversibly impaired by even brief periods of low oxygen supply. This review describes recent research on physiological mechanisms that have evolved in certain vertebrate species to cope with brain hypoxia. Four model systems are considered: freshwater turtles that can survive for months trapped in frozen-over lakes, arctic ground squirrels that respire at extremely low rates during winter hibernation, seals and whales that undertake breath-hold dives lasting minutes to hours, and naked mole-rats that live in crowded burrows completely underground for their entire lives. These species exhibit remarkable specializations of brain physiology that adapt them for acute or chronic episodes of hypoxia. These specializations may be reactive in nature, involving modifications to the catastrophic sequelae of oxygen deprivation that occur in non-tolerant species, or preparatory in nature, preventing the activation of those sequelae altogether. Better understanding of the mechanisms used by these hypoxia-tolerant vertebrates will increase appreciation of how nervous systems are adapted for life in specific ecological niches as well as inform advances in therapy for neurological conditions such as stroke and epilepsy.
Collapse
Affiliation(s)
- John Larson
- Psychiatric Institute, Department of Psychiatry and Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
19
|
Liu Y, Li J, Wang Z, Yu Z, Chen G. Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to Cystatin C: possible involvement of the autophagy pathway. Mol Neurobiol 2014; 49:1043-54. [PMID: 24203677 DOI: 10.1007/s12035-013-8579-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Cystatin C (CysC) is a cysteine protease inhibitor and previous studies have demonstrated that increasing endogenous CysC expression has therapeutic implications on brain ischemia, Alzheimer's disease, and other neurodegenerative disorders. Our previous reports have demonstrated that the autophagy pathway was activated in the brain after experimental subarachnoid hemorrhage (SAH), and it may play a beneficial role in early brain injury (EBI). This study investigated the effects of exogenous CysC on EBI, cognitive dysfunction, and the autophagy pathway following experimental SAH. All SAH animals were subjected to injections of 0.3 ml fresh arterial, nonheparinized blood into the prechiasmatic cistern in 20 s. As a result, treatment with CysC with low and medial concentrations significantly ameliorated the degree of EBI when compared with vehicle-treated SAH rats. Microtubule-associated protein light chain-3 (LC3), a biomarker of autophagosomes, and beclin-1, a Bcl-2-interacting protein required for autophagy, were significantly increased in the cortex 48 h after SAH and were further up-regulated after CysC therapy. By ultrastructural observation, there was a marked increase in autophagosomes and autolysosomes in neurons of CysC-treated rats. Learning deficits induced by SAH were markedly alleviated after CysC treatment with medial doses. In conclusion, pre-SAH CysC administration may attenuate EBI and neurobehavioral dysfunction in this SAH model, possibly through activating autophagy pathway.
Collapse
Affiliation(s)
- Yizhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
20
|
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 2013; 115:157-88. [PMID: 24361499 DOI: 10.1016/j.pneurobio.2013.11.006] [Citation(s) in RCA: 830] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
Excitotoxicity, the specific type of neurotoxicity mediated by glutamate, may be the missing link between ischemia and neuronal death, and intervening the mechanistic steps that lead to excitotoxicity can prevent stroke damage. Interest in excitotoxicity began fifty years ago when monosodium glutamate was found to be neurotoxic. Evidence soon demonstrated that glutamate is not only the primary excitatory neurotransmitter in the adult brain, but also a critical transmitter for signaling neurons to degenerate following stroke. The finding led to a number of clinical trials that tested inhibitors of excitotoxicity in stroke patients. Glutamate exerts its function in large by activating the calcium-permeable ionotropic NMDA receptor (NMDAR), and different subpopulations of the NMDAR may generate different functional outputs, depending on the signaling proteins directly bound or indirectly coupled to its large cytoplasmic tail. Synaptic activity activates the GluN2A subunit-containing NMDAR, leading to activation of the pro-survival signaling proteins Akt, ERK, and CREB. During a brief episode of ischemia, the extracellular glutamate concentration rises abruptly, and stimulation of the GluN2B-containing NMDAR in the extrasynaptic sites triggers excitotoxic neuronal death via PTEN, cdk5, and DAPK1, which are directly bound to the NMDAR, nNOS, which is indirectly coupled to the NMDAR via PSD95, and calpain, p25, STEP, p38, JNK, and SREBP1, which are further downstream. This review aims to provide a comprehensive summary of the literature on excitotoxicity and our perspectives on how the new generation of excitotoxicity inhibitors may succeed despite the failure of the previous generation of drugs.
Collapse
Affiliation(s)
- Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, 40402 Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan.
| | - Shu Zhang
- Translational Medicine Research Center, China Medical University Hospital, 2 Yu-De Road, 40447 Taichung, Taiwan; Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Center, University of British Columbia, 2211 Wesbrook Mall, V6T 2B5 Vancouver, Canada.
| |
Collapse
|
21
|
Lipton P. Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a "lysosomocentric" hypothesis for ischemic brain damage. Transl Stroke Res 2013; 4:672-84. [PMID: 24323421 DOI: 10.1007/s12975-013-0301-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
This is a speculative review of the role of the lysosome in ischemic cell death in the mammalian brain. In particular, it focuses on the role of the permeabilization of the lysosomal membrane to proteins (LMP) as a major mechanism of cell death in mild, but lethal, ischemic insults. The first section of the review outlines the evidence that this is the case, using the relatively few extant studies of mammalian brain. In the second section of the review, the mechanism by which an ischemic insult might lead to LMP is discussed. A metabolic sequence including NMDA receptor activation, activation of phospholipase A2 and production of free radicals, and also the activation of calpain are shown to be critical. The remainder of the section speculates on the actual agent(s) which may be causing the lysosomal membrane change, based on extensive literature references. There is currently no knowledge of the actual mechanism. The third section considers potential targets of the released lysosomal proteases and other proteins that might mediate the lethal effects of LMP, focusing largely on the mitochondria as the target. Again, this is speculative as the targets are not known. Finally, the fourth section addresses the level of importance that LMP has in the process of ischemic cell death and concludes that it may well play the major role during mild but lethal ischemic insults. This novel, so-called "lysosomocentric," hypothesis is briefly critiqued. The therapeutic potential of this conclusion is then discussed.
Collapse
Affiliation(s)
- Peter Lipton
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA,
| |
Collapse
|
22
|
Psilodimitrakopoulos S, Petegnief V, de Vera N, Hernandez O, Artigas D, Planas AM, Loza-Alvarez P. Quantitative imaging of microtubule alteration as an early marker of axonal degeneration after ischemia in neurons. Biophys J 2013; 104:968-75. [PMID: 23473479 DOI: 10.1016/j.bpj.2013.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022] Open
Abstract
Neuronal death can be preceded by progressive dysfunction of axons. Several pathological conditions such as ischemia can disrupt the neuronal cytoskeleton. Microtubules are basic structural components of the neuronal cytoskeleton that regulate axonal transport and neuronal function. Up-to-date, high-resolution observation of microtubules in living neuronal cells is usually accomplished using fluorescent-based microscopy techniques. However, this needs exogenous fluorescence markers to produce the required contrast. This is an invasive procedure that may interfere with the microtubule dynamics. In this work, we show, for the first time to our knowledge, that by using the endogenous (label-free) contrast provided by second harmonic generation (SHG) microscopy, it is possible to identify early molecular changes occurring in the microtubules of living neurons under ischemic conditions. This is done by measuring the intensity modulation of the SHG signal as a function of the angular rotation of the incident linearly polarized excitation light (technique referred to as PSHG). Our experiments were performed in microtubules from healthy control cultured cortical neurons and were compared to those upon application of several periods of oxygen and glucose deprivation (up to 120 min) causing ischemia. After 120-min oxygen and glucose deprivation, a change in the SHG response to the polarization was measured. Then, by using a three-dimensional PSHG biophysical model, we correlated this finding with the structural changes occurring in the microtubules under oxygen and glucose deprivation. To our knowledge, this is the first study performed in living neuronal cells that is based on direct imaging of axons and that provides the means of identifying the early symptoms of ischemia. Live observation of this process might bring new insights into understanding the dynamics and the mechanisms underlying neuronal degeneration or mechanisms of protection or regeneration.
Collapse
|
23
|
Miki Y, Oguri E, Hirano K, Beppu M. Macrophage recognition of cells with elevated calcium is mediated by carbohydrate chains of CD43. Cell Struct Funct 2013; 38:43-54. [PMID: 23400223 DOI: 10.1247/csf.12024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Macrophages remove deteriorating cells (those undergoing apoptosis and oxidation) via poly-N-acetyllactosaminyl chains on CD43 caps, a major cell-surface glycoprotein. Unusually high intracellular calcium levels are also deteriorating for cells and tissue. Here we artificially elevated calcium levels in cells and examined the mechanism by which this elevation was resolved by macrophages. Results showed that treatment with the calcium ionophore A23187 and ionomycin induces capping of CD43 on Jurkat cells, which are subsequently recognized and phagocytosed by macrophages, indicating that macrophages regard cells with elevated calcium as targets for removal. Further tests showed that A23187- and ionomycin-treated Jurkat cells did not induce apoptotic changes such as DNA fragmentation or phosphatidylserine expression, indicating that these cells were removed despite still being viable. Jurkat cells pretreated with anti-CD43 antibody or those with poly-N-acetyllactosaminyl chains containing oligosaccharides inhibited macrophage binding, indicating that macrophages recognize the poly-N-acetyllactosaminyl chains on CD43. Binding was also inhibited by treating macrophages with anti-nucleolin antibody, indicating that recognition occurs through nucleolin, a cell-surface receptor. Further, nucleolin-transfected HEK293 cells bound A23187-treated cells, and this binding was inhibited by in the presence of oligosaccharides. Taken together, these results show that elevated calcium levels induce CD43 capping, and macrophages remove the cells if their nucleolin receptors can bind to the poly-N-acetyllactosaminyl chains of capped CD43.
Collapse
Affiliation(s)
- Yuichi Miki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | | | | | | |
Collapse
|
24
|
Schiefer IT, VandeVrede L, Fa' M, Arancio O, Thatcher GRJ. Furoxans (1,2,5-oxadiazole-N-oxides) as novel NO mimetic neuroprotective and procognitive agents. J Med Chem 2012; 55:3076-87. [PMID: 22429006 DOI: 10.1021/jm201504s] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Furoxans (1,2,5-oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity toward bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO(2)(-), but not with depletion of free thiol itself. Neuroprotection was abrogated upon cotreatment with a sGC inhibitor, ODQ, thus supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-β peptide (Aβ) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies.
Collapse
Affiliation(s)
- Isaac T Schiefer
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, (MC 781), 833 South Wood Street, Chicago, Illinois 60612-7231, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.
Collapse
|
26
|
Peterson BL, Larson J, Buffenstein R, Park TJ, Fall CP. Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus. PLoS One 2012; 7:e31568. [PMID: 22363676 PMCID: PMC3283646 DOI: 10.1371/journal.pone.0031568] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 01/13/2012] [Indexed: 01/09/2023] Open
Abstract
Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.
Collapse
Affiliation(s)
- Bethany L. Peterson
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - John Larson
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rochelle Buffenstein
- Barshop Institute and Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Thomas J. Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Christopher P. Fall
- Department of BioEngineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Computer Science, Georgetown University, Washington, D. C., United States of America
| |
Collapse
|
27
|
Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals. Neurosci Lett 2011; 506:342-5. [PMID: 22155615 DOI: 10.1016/j.neulet.2011.11.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/03/2011] [Accepted: 11/23/2011] [Indexed: 11/20/2022]
Abstract
Adult naked mole-rats show a number of systemic adaptations to a crowded underground habitat that is low in oxygen and high in carbon dioxide. Remarkably, brain slice tissue from adult naked mole-rats also is extremely tolerant to oxygen deprivation as indicated by maintenance of synaptic transmission under hypoxic conditions as well as by a delayed neuronal depolarization during anoxia. These characteristics resemble hypoxia tolerance in brain slices from neonates in a variety of mammal species. An important component of neonatal tolerance to hypoxia involves the subunit composition of NMDA receptors. Neonates have a high proportion of NMDA receptors with GluN2D subunits which are protective because they retard calcium entry into neurons during hypoxic episodes. Therefore, we hypothesized that adult naked mole-rats retain a protective, neonatal-like, NMDA receptor subunit profile. We used immunoblotting to assess age-related changes in NMDA receptor subunits in naked mole-rats and mice. The results show that adult naked mole-rat brain retains a much greater proportion of the hypoxia-protective GluN2D subunit compared to adult mice. However, age-related changes in other subunits (GluN2A and GluN2B) from the neonatal period to adulthood were comparable in mice and naked mole-rats. Hence, adult naked mole-rat brain only retains the neonatal NMDA receptor subunit that is associated with hypoxia tolerance.
Collapse
|
28
|
Activation of NOX2 by the Stimulation of Ionotropic and Metabotropic Glutamate Receptors Contributes to Glutamate Neurotoxicity In Vivo Through the Production of Reactive Oxygen Species and Calpain Activation. J Neuropathol Exp Neurol 2011; 70:1020-35. [DOI: 10.1097/nen.0b013e3182358e4e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Yoon JS, Lee JH, Son TG, Mughal MR, Greig NH, Mattson MP. Pregabalin suppresses calcium-mediated proteolysis and improves stroke outcome. Neurobiol Dis 2011; 41:624-9. [PMID: 21111818 PMCID: PMC3031782 DOI: 10.1016/j.nbd.2010.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/21/2010] [Accepted: 11/16/2010] [Indexed: 01/01/2023] Open
Abstract
Pregabalin, a Ca(2+) channel α(2)δ-subunit antagonist with analgesic and antiepileptic activity, reduced neuronal loss and improved functional outcome in a mouse model of focal ischemic stroke. Pregabalin administration (5-10mg/kg, i.p.) 30-90 min after transient middle cerebral artery occlusion/reperfusion reduced infarct volume, neuronal death in the ischemic penumbra and neurological deficits at 24h post-stroke. Pregabalin significantly decreased the amount of Ca(2+)/calpain-mediated α-spectrin proteolysis in the cerebral cortex measured at 6h post-stroke. Together with the extensive clinical experience with pregabalin for other neurological indications, our findings suggest the potential for a therapeutic benefit of pregabalin in stroke patients.
Collapse
Affiliation(s)
- Jeong Seon Yoon
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Jong-Hwan Lee
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Tae Gen Son
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Mohamed R. Mughal
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Nigel H. Greig
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Gauthier S, Kaur G, Mi W, Tizon B, Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front Biosci (Schol Ed) 2011; 3:541-54. [PMID: 21196395 PMCID: PMC3038625 DOI: 10.2741/s170] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegeneration occurs in acute pathological conditions such as stroke, ischemia, and head trauma and in chronic disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. While the cause of neuronal death is different and not always known in these varied conditions, hindrance of cell death would be beneficial in the prevention of, slowing of, or halting disease progression. Enhanced cystatin C (CysC) expression in these conditions caused a debate as to whether CysC up-regulation facilitates neurodegeneration or it is an endogenous neuroprotective attempt to prevent the progression of the pathology. However, recent in vitro and in vivo data have demonstrated that CysC plays protective roles via pathways that are dependent on inhibition of cysteine proteases, such as cathepsin B, or by induction of autophagy, induction of proliferation, and inhibition of amyloid-beta aggregation. Here we review the data demonstrating the protective roles of CysC under conditions of neuronal challenge and the protective pathways induced under various conditions. These data suggest that CysC is a therapeutic candidate that can potentially prevent brain damage and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Weiqian Mi
- Nathan S. Kline Institute, Orangeburg, NY, 10962, U.S.A
| | - Belen Tizon
- Nathan S. Kline Institute, Orangeburg, NY, 10962, U.S.A
| | - Efrat Levy
- Nathan S. Kline Institute, Orangeburg, NY, 10962, U.S.A
- Departments of Psychiatry and Pharmacology, New York University School of Medicine, New York, NY, 10016, U.S.A
| |
Collapse
|
31
|
SHIODA N, FUKUNAGA K. The Functional Roles of Constitutively Active Calcineurin in Delayed Neuronal Death after Brain Ischemia. YAKUGAKU ZASSHI 2011; 131:13-20. [DOI: 10.1248/yakushi.131.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Norifumi SHIODA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kohji FUKUNAGA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
32
|
Nakajima T, Ochi S, Oda C, Ishii M, Ogawa K. Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau: implications for ischemic tolerance. Neurol Sci 2010; 32:229-39. [DOI: 10.1007/s10072-010-0359-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
|
33
|
Bevers MB, Ingleton LP, Che D, Cole JT, Li L, Da T, Kopil CM, Cohen AS, Neumar RW. RNAi targeting micro-calpain increases neuron survival and preserves hippocampal function after global brain ischemia. Exp Neurol 2010; 224:170-7. [PMID: 20298691 PMCID: PMC2885584 DOI: 10.1016/j.expneurol.2010.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 12/24/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms has not been determined in in vivo models. Identification of the calpain isoform responsible for neuronal injury is particularly important given the differential role of calpain isoforms in normal physiology. This study evaluates the role of m-calpain and micro-calpain in an in vivo model of global brain ischemia. Adeno-associated viral vectors expressing short hairpin RNAs targeting the catalytic subunits of micro- or m-calpain were used to knockdown expression of the targeted isoforms in adult rat hippocampal CA1 pyramidal neurons. Knockdown of micro-calpain, but not m-calpain, prevented calpain activity 72 h after 6-min transient forebrain ischemia, increased long-term survival and protected hippocampal electrophysiological function. These findings represent the first in vivo evidence that reducing expression of an individual calpain isoform can decrease post-ischemic neuronal death and preserve hippocampal function.
Collapse
Affiliation(s)
- Matthew B Bevers
- Center for Resuscitation Science, Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Ravdin, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
ZHANG J, DU LX, WEI CH, LI HB. [Cloning and characterization of CAST transcript 2 and 4 in sheep]. YI CHUAN = HEREDITAS 2009; 31:1107-1112. [PMID: 19933091 DOI: 10.3724/sp.j.1005.2009.01107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As an endogenous inhibitor of the calpain system activated by Ca2+, calpastatin (CAST) plays a regulatory role in muscle proteolysis. Based on the bovine mRNA sequences, part of cDNA fragments of sheep CAST transcript 2 and 4 were obtained by RT-PCR. Bioinformatic analysis showed that sheep CAST transcript 2 was 4 358 bp in length with an open reading frame (ORF) 2 361 bp long and encoded 786 amino acids, while sheep CAST transcript 4 was 1 467 bp in length with 1 317 bp ORF encoding 438 amino acids. It was predicted that CAST type II contained four conserved domains and CAST type IV contained three conserved domains, and their secondary structures were rich in both hydrophobic regions and helical regions, with certain conserved phosphorylation sites and phosphorylation sites of protein kinase C (PKC). RT-PCR was conducted to analyze the expression patterns of CAST transcript 2 and transcript 4. CAST transcript 2 was ex-pressed in ten tissues detected while CAST transcript 4 only in testis.
Collapse
Affiliation(s)
- Ju ZHANG
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | |
Collapse
|
35
|
Bevers MB, Lawrence E, Maronski M, Starr N, Amesquita M, Neumar RW. Knockdown of m-calpain increases survival of primary hippocampal neurons following NMDA excitotoxicity. J Neurochem 2009; 108:1237-50. [PMID: 19141074 PMCID: PMC2676331 DOI: 10.1111/j.1471-4159.2008.05860.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The calpain family of cysteine proteases has a well-established causal role in neuronal cell death following acute brain injury. However, the relative contribution of calpain isoforms to the various forms of injury has not been determined as available calpain inhibitors are not isoform-specific. In this study, we evaluated the relative role of m-calpain and mu-calpain in a primary hippocampal neuron model of NMDA-mediated excitotoxicity. Baseline mRNA expression for the catalytic subunit of m-calpain (capn2 ) was found to be 50-fold higher than for the mu-calpain catalytic subunit (capn1) based on quantitative real-time PCR. Adeno-associated viral vectors designed to deliver short hairpin RNAs targeting capn1 or capn2 resulted in 60% and 90% knockdown of message respectively. Knockdown of capn2 but not capn1 increased neuronal survival after NMDA exposure at 21 days in vitro. Nuclear translocation of calpain substrates apoptosis inducing factor, p35/p25 and collapsin response mediator protein (CRMP) 2-4 was not detected after NMDA exposure in this model. However, nuclear translocation of CRMP-1 was observed and was prevented by capn2 knockdown. These findings provide insight into potential mechanisms of calpain-mediated neurodegeneration and have important implications for the development of isoform-specific calpain inhibitor therapy.
Collapse
Affiliation(s)
- Matthew B. Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Floor, Ravdin Building, 3400 Spruce Street, Philadelphia, PA 19104, Phone: (215) 573-8143, Fax: (215) 573-5140
| | - Eric Lawrence
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Floor, Ravdin Building, 3400 Spruce Street, Philadelphia, PA 19104, Phone: (215) 573-8143, Fax: (215) 573-5140
| | - Margaret Maronski
- Department of Neurology, University of Pennsylvania School of Medicine, 467 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3130, Fax: (215) 573-2107
| | - Neasa Starr
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Floor, Ravdin Building, 3400 Spruce Street, Philadelphia, PA 19104, Phone: (215) 573-8143, Fax: (215) 573-5140
| | - Michael Amesquita
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Floor, Ravdin Building, 3400 Spruce Street, Philadelphia, PA 19104, Phone: (215) 573-8143, Fax: (215) 573-5140
| | - Robert W. Neumar
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Ground Floor, Ravdin Building, 3400 Spruce Street, Philadelphia, PA 19104, Phone: (215) 573-8143, Fax: (215) 573-5140
| |
Collapse
|
36
|
Crespo-Biel N, Camins A, Pallàs M, Canudas A. Evidence of calpain/cdk5 pathway inhibition by lithium in 3-nitropropionic acid toxicity in vivo and in vitro. Neuropharmacology 2009; 56:422-8. [DOI: 10.1016/j.neuropharm.2008.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 01/27/2023]
|
37
|
Frederick JR, Chen Z, Bevers MB, Ingleton LP, Ma M, Neumar RW. Neuroprotection with delayed calpain inhibition after transient forebrain ischemia. Crit Care Med 2008; 36:S481-5. [PMID: 20449914 PMCID: PMC2867247 DOI: 10.1097/ccm.0b013e31818a8ec8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Delayed neurodegeneration after transient global brain ischemia offers a therapeutic window for inhibiting molecular injury mechanisms. One such mechanism is calpain-mediated proteolysis, which peaks 24 to 48 hrs after transient forebrain ischemia in rats. This study tests the hypothesis that delayed calpain inhibitor therapy can reduce brain calpain activity and neurodegeneration after transient forebrain ischemia. DESIGN Prospective randomized placebo-controlled animal trial. SETTING University research laboratory. SUBJECTS Adult male Long-Evans rats. INTERVENTIONS Rats subjected to 10-min transient forebrain ischemia were randomized to intravenous infusion of calpain inhibitor CEP-3453 or vehicle beginning 22 hrs after injury. MEASUREMENTS AND MAIN RESULTS In a dose-response study, a 60 mg/kg bolus followed by 30 mg/kg infusion was required to reduce postischemic brain calpain activity measured by Western blot of hippocampal homogenates at 48 hrs after injury. The same dosing protocol decreased degeneration of CA1 pyramidal neurons measured at 72 hrs after injury. CONCLUSIONS These results suggest a causal role for calpains in delayed postischemic neurodegeneration, and demonstrate a broad therapeutic window for calpain inhibition in this model.
Collapse
Affiliation(s)
- James R. Frederick
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaoming Chen
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew B. Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Center for Resuscitation Science, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Lori P. Ingleton
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Center for Resuscitation Science, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Marek Ma
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Center for Resuscitation Science, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Robert W. Neumar
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
- Center for Resuscitation Science, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Abstract
The calpain family of proteases is causally linked to postischemic neurodegeneration. However, the precise mechanisms by which calpains contribute to postischemic neuronal death have not been fully elucidated. This review outlines the key features of the calpain system, and the evidence for its causal role in postischemic neuronal pathology. Furthermore, the consequences of specific calpain substrate cleavage at various subcellular locations are explored. Calpain substrates within synapses, plasma membrane, endoplasmic reticulum, lysosomes, mitochondria, and the nucleus, as well as the overall effect of postischemic calpain activity on calcium regulation and cell death signaling are considered. Finally, potential pathways for calpain-mediated neurodegeneration are outlined in an effort to guide future studies aimed at understanding the downstream pathology of postischemic calpain activity and identifying optimal therapeutic strategies.
Collapse
Affiliation(s)
- Matthew B Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | |
Collapse
|
39
|
Yuen PW, KW Wang K. Section Review: Central & Peripheral Nervous Systems: Therapeutic potential of calpain inhibitors in neurodegenerative disorders. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.10.1291] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Del Río P, Montiel T, Massieu L. Contribution of NMDA and Non-NMDA Receptors to In vivo Glutamate-Induced Calpain Activation in the Rat Striatum. Relation to Neuronal Damage. Neurochem Res 2008; 33:1475-83. [DOI: 10.1007/s11064-008-9612-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/28/2008] [Indexed: 11/29/2022]
|
41
|
Contribution of calpain activation to early stages of hippocampal damage during oxygen–glucose deprivation. Brain Res 2008; 1196:121-30. [DOI: 10.1016/j.brainres.2007.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 01/19/2023]
|
42
|
Okutsu S, Hatakeyama H, Kanazaki M, Tsubokawa H, Nagatomi R. Electric Pulse Stimulation Induces NMDA Glutamate Receptor mRNA in NIH3T3 Mouse Fibroblasts. TOHOKU J EXP MED 2008; 215:181-7. [DOI: 10.1620/tjem.215.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Saeko Okutsu
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine
| | | | - Makoto Kanazaki
- TUBERO/Tohoku University Biomedical Engineering Research Organization, School of Medicine
| | | | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine
| |
Collapse
|
43
|
Abstract
Calcium signalling system controls majority of cellular reactions. Calcium signals occurring within tightly regulated temporal and spatial domains, govern a host of Ca2(+)-dependent enzymes, which in turn determine specified cellular responses. Generation of Ca2+ signals is achieved through coordinated activity of several families of Ca2+ channels and transporters differentially distributed between intracellular compartments. Cell damage induced by environmental insults or by overstimulation of physiological pathways results in pathological Ca2+ signals, which trigger necrotic or apoptotic cellular death.
Collapse
|
44
|
Cao G, Xing J, Xiao X, Liou AKF, Gao Y, Yin XM, Clark RSB, Graham SH, Chen J. Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 2007; 27:9278-93. [PMID: 17728442 PMCID: PMC6673113 DOI: 10.1523/jneurosci.2826-07.2007] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of mitochondrial membrane integrity and release of apoptogenic factors are a key step in the signaling cascade leading to neuronal cell death in various neurological disorders, including ischemic injury. Emerging evidence has suggested that the intramitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and promotes caspase-independent cell death induced by glutamate toxicity, oxidative stress, hypoxia, or ischemia. However, the mechanism by which AIF is released from mitochondria after neuronal injury is not fully understood. In this study, we identified calpain I as a direct activator of AIF release in neuronal cultures challenged with oxygen-glucose deprivation and in the rat model of transient global ischemia. Normally residing in both neuronal cytosol and mitochondrial intermembrane space, calpain I was found to be activated in neurons after ischemia and to cleave intramitochondrial AIF near its N terminus. The truncation of AIF by calpain activity appeared to be essential for its translocation from mitochondria to the nucleus, because neuronal transfection of the mutant AIF resistant to calpain cleavage was not released after oxygen-glucose deprivation. Adeno-associated virus-mediated overexpression of calpastatin, a specific calpain-inhibitory protein, or small interfering RNA-mediated knockdown of calpain I expression in neurons prevented ischemia-induced AIF translocation. Moreover, overexpression of calpastatin or knockdown of AIF expression conferred neuroprotection against cell death in neuronal cultures and in hippocampal CA1 neurons after transient global ischemia. Together, these results define calpain I-dependent AIF release as a novel signaling pathway that mediates neuronal cell death after cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | | | - Yanqin Gao
- Departments of Neurology
- National Laboratory of Medical Neurobiology, Fudan University School of Medicine, Shanghai, China 200032, and
| | | | - Robert S. B. Clark
- Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Steven H. Graham
- Departments of Neurology
- Geriatric Research, Educational and Clinical Center, Veterans Affairs, Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261
| | - Jun Chen
- Departments of Neurology
- Geriatric Research, Educational and Clinical Center, Veterans Affairs, Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
45
|
Kosten TA, Karanian DA, Yeh J, Haile CN, Kim JJ, Kehoe P, Bahr BA. Memory impairments and hippocampal modifications in adult rats with neonatal isolation stress experience. Neurobiol Learn Mem 2007; 88:167-76. [PMID: 17543553 DOI: 10.1016/j.nlm.2007.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/25/2022]
Abstract
Early life events have profound consequences. Our research demonstrates that the early life stress of neonatal isolation (1-h individual isolation on postnatal days 2-9) in rats has immediate and enduring neural and behavioral effects. Recently, we showed neonatal isolation impaired hippocampal-dependent context conditioned fear in adult rats. We now expand upon this finding to test whether neonatal isolation impairs performance in inhibitory avoidance and in the non-aversive, hippocampal-dependent object recognition task. In addition to assessments of hippocampal-dependent memory, we examined if neonatal isolation results in cellular alterations in the adult hippocampus. This was measured with antibodies that selectively label calpain-mediated spectrin breakdown product (BDP), a marker of cytoskeletal modification that can have neuronal consequences. Neonatally isolated male and female rats showed impaired performance in both memory tasks as well as elevated BDP levels in hippocampal immunoblot samples. In tissue sections stained for BDP, the cytoskeletal fragmentation was localized to pyramidal neurons and their proximal dendrites. Interestingly, the hippocampal samples also exhibited reduced staining for the postsynaptic marker, GluR1. Neonatal isolation may render those neurons involved in memory encoding to be vulnerable to calpain deregulation and synaptic compromise as shown previously with brain injury. Together with our prior research showing enhanced striatal-dependent learning and neurochemical responsivity, these results indicate that the early experience of neonatal isolation causes enduring yet opposing region-specific neural and behavioral alterations.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine and the Michael E. DeBakey VA Medical Center, Research Service Line (151), 2002 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chicoine LM, Bahr BA. Excitotoxic protection by polyanionic polysaccharide: evidence of a cell survival pathway involving AMPA receptor-MAPK Interactions. J Neurosci Res 2007; 85:294-302. [PMID: 17131415 DOI: 10.1002/jnr.21117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growing numbers of studies indicate that polysaccharides influence signaling events important for brain function. It has been speculated that such polysaccharide modulation of neuronal signals can promote synaptogenesis and cell maintenance. Here, we tested whether dextran sulfate, a polyanion that mimics natural mucopolysaccharides, protects hippocampal neurons against excitotoxic insults. An excitotoxin was applied to primary hippocampal cultures in the absence or presence of a large 500-kDa dextran sulfate (DS-L), a smaller 5-8-kDa species (DS-S), or sulfate-free dextran of 500 kDa. Only DS-L prevented neuronal damage as determined by a membrane permeability assay and phase contrast morphology. The sulfate and size dependence is also characteristic of DS-L's modulatory action on the channel activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors. The extent of neuroprotection correlates with the level of modulation of AMPA responses, and DS-L exhibits comparable EC(50) values for the two effects (3-7 nM). DS-L also modulates the link between AMPA receptors and mitogen-activated protein kinase (MAPK) involving extracellular signal-regulated protein kinase (ERK), well known for its involvement in cell survival and repair. Correspondingly, protection against N-methyl-D-aspartate (NMDA) excitotoxicity was evident in hippocampal slice cultures when DS-L was applied 30 min postinsult. These findings suggest that polysaccharides elicit neuroprotection in the brain, including enhanced repair responses through the AMPA receptor-MAPK axis.
Collapse
|
47
|
Wu HY, Lynch DR. Calpain and synaptic function. Mol Neurobiol 2007; 33:215-36. [PMID: 16954597 DOI: 10.1385/mn:33:3:215] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/30/1999] [Accepted: 02/20/2006] [Indexed: 01/13/2023]
Abstract
Proteolysis by calpain is a unique posttranslational modification that can change integrity, localization, and activity of endogenous proteins. Two ubiquitous calpains, mu-calpain and m-calpain, are highly expressed in the central nervous system, and calpain substrates such as membrane receptors, postsynaptic density proteins, kinases, and phosphatases are localized to the synaptic compartments of neurons. By selective cleavage of synaptically localized molecules, calpains may play pivotal roles in the regulation of synaptic processes not only in physiological states but also during various pathological conditions. Activation of calpains during sustained synaptic activity is crucial for Ca2+-dependent neuronal functions, such as neurotransmitter release, synaptic plasticity, vesicular trafficking, and structural stabilization. Overactivation of calpain following dysregulation of Ca2+ homeostasis can lead to neuronal damage in response to events such as epilepsy, stroke, and brain trauma. Calpain may also provide a neuroprotective effect from axotomy and some forms of glutamate receptor overactivation. This article focuses on recent findings on the role of calpain-mediated proteolytic processes in potentially regulating synaptic substrates in physiological and pathophysiological events in the nervous system.
Collapse
Affiliation(s)
- Hai-Yan Wu
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
48
|
Abstract
Although Ca(2+) signals are necessary for cell communication and survival, abnormal cellular Ca(2+) load can trigger different cell death programs. Ca(2+) mediates cell death by activating proteases (ie, calpains), by reinforcing signals leading to caspase activation or by triggering other catabolic processes mediated by lipases and nucleases. Failure in the clearance of excitatory amino acid is a critical determinant of neuronal loss in the ischemic brain. Glutamate activates glutamate-ionotropic receptors at synaptic and extra-synaptic sites, causing prolonged neuronal depolarization and triggering deregulation of cellular ion homeostasis, mainly intracellular calcium and sodium. The mechanisms leading to the sustained calcium deregulation in excitotoxic conditions are only in part elucidated. Recently, we have shown that calpains mediate the inhibition of calcium efflux in primary dissociated neurons challenged with excitotoxic glutamate concentrations. Calpains cleave the sodium-calcium exchanger (NCX) and inhibit its capability to remove calcium accumulated as a consequence of the excitotoxic stimulus. Our findings highlight the link between calcium-dependent proteases, calcium overload and neuronal degeneration after an excitotoxic insult.
Collapse
Affiliation(s)
- Daniele Bano
- Medical Research Council Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | | |
Collapse
|
49
|
Glantz SB, Cianci CD, Iyer R, Pradhan D, Wang KK, Morrow JS. Sequential degradation of alphaII and betaII spectrin by calpain in glutamate or maitotoxin-stimulated cells. Biochemistry 2007; 46:502-13. [PMID: 17209560 PMCID: PMC2825692 DOI: 10.1021/bi061504y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calpain-catalyzed proteolysis of II-spectrin is a regulated event associated with neuronal long-term potentiation, platelet and leukocyte activation, and other processes. Calpain proteolysis is also linked to apoptotic and nonapoptotic cell death following excessive glutamate exposure, hypoxia, HIV-gp120/160 exposure, or toxic injury. The molecular basis for these divergent consequences of calpain action, and their relationship to spectrin proteolysis, is unclear. Calpain preferentially cleaves II spectrin in vitro in repeat 11 between residues Y1176 and G1177. Unless stimulated by Ca++ and calmodulin (CaM), betaII spectrin proteolysis in vitro is much slower. We identify additional unrecognized sites in spectrin targeted by calpain in vitro and in vivo. Bound CaM induces a second II spectrin cleavage at G1230*S1231. BetaII spectrin is cleaved at four sites. One cleavage only occurs in the absence of CaM at high enzyme-to-substrate ratios near the betaII spectrin COOH-terminus. CaM promotes II spectrin cleavages at Q1440*S1441, S1447*Q1448, and L1482*A1483. These sites are also cleaved in the absence of CaM in recombinant II spectrin fusion peptides, indicating that they are probably shielded in the spectrin heterotetramer and become exposed only after CaM binds alphaII spectrin. Using epitope-specific antibodies prepared to the calpain cleavage sites in both alphaII and betaII spectrin, we find in cultured rat cortical neurons that brief glutamate exposure (a physiologic ligand) rapidly stimulates alphaII spectrin cleavage only at Y1176*G1177, while II spectrin remains intact. In cultured SH-SY5Y cells that lack an NMDA receptor, glutamate is without effect. Conversely, when stimulated by calcium influx (via maitotoxin), there is rapid and sequential cleavage of alphaII and then betaII spectrin, coinciding with the onset of nonapoptotic cell death. These results identify (i) novel calpain target sites in both alphaII and betaII spectrin; (ii) trans-regulation of proteolytic susceptibility between the spectrin subunits in vivo; and (iii) the preferential cleavage of alphaII spectrin vs betaII spectrin when responsive cells are stimulated by engagement of the NMDA receptor. We postulate that calpain proteolysis of spectrin can activate two physiologically distinct responses: one that enhances skeletal plasticity without destroying the spectrin-actin skeleton, characterized by preservation of betaII spectrin; or an alternative response closely correlated with nonapoptotic cell death and characterized by proteolysis of betaII spectrin and complete dissolution of the spectrin skeleton.
Collapse
Affiliation(s)
| | | | - Rathna Iyer
- CNS Biology, Pfizer Global Research and Development, 2800 Plymouth Road, Ann Arbor, MI 48105
| | | | - Kevin K.W. Wang
- Departments of Psychiatry and Neuroscience, McKnight Brain Institute of the University of Florida, (P.O.Box100256), Gainesville, FL 32610, USA
| | - Jon S. Morrow
- * To whom correspondence should be addressed. tel: 203-785-3624 Fax 203-785-7037 E-mail:
| |
Collapse
|
50
|
|