1
|
Sinha M, Peterson CL. A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol Cell 2008; 30:803-10. [PMID: 18570881 DOI: 10.1016/j.molcel.2008.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 03/05/2008] [Accepted: 04/24/2008] [Indexed: 01/17/2023]
Abstract
Repair of chromosomal DNA double-strand breaks by homologous recombination is essential for cell survival and genome stability. Within eukaryotic cells, this repair pathway requires a search for a homologous donor sequence and a subsequent strand invasion event on chromatin fibers. We employ a biotin-streptavidin minichromosome capture assay to show that yRad51 or hRad51 presynaptic filaments are sufficient to locate a homologous sequence and form initial joints, even on the surface of a nucleosome. Furthermore, we present evidence that the Rad54 chromatin-remodeling enzyme functions to convert these initial metastable products of the homology search to a stable joint molecule that is competent for subsequent steps of the repair process. Thus, contrary to popular belief, nucleosomes do not pose a potent barrier for successful recognition and capture of homology by an invading presynaptic filament.
Collapse
Affiliation(s)
- Manisha Sinha
- Program in Molecular Medicine, Interdisciplinary Graduate Program, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
2
|
Anuradha S, Muniyappa K. Molecular aspects of meiotic chromosome synapsis and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:49-132. [PMID: 16096027 DOI: 10.1016/s0079-6603(04)79002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- S Anuradha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
3
|
Ganesh N, Muniyappa K. Mycobacterium smegmatis RecA protein is structurally similar to but functionally distinct from Mycobacterium tuberculosis RecA. Proteins 2003; 53:6-17. [PMID: 12945045 DOI: 10.1002/prot.10433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In eubacteria, RecA proteins belong to a large superfamily of evolutionarily conserved, filament-forming, functional homologs of DNA strand exchange proteins. Here, we report the functional characterization of Mycobacterium smegmatis (Ms) and Mycobacterium tuberculosis (Mt) RecA proteins. Although in some respects Ms and Mt RecA proteins are structural and functional homologs of Escherichia coli (Ec) RecA, there are significant differences as well. The single-stranded DNA-binding property of RecA proteins was analyzed by electrophoretic mobility shift assays. We observed that Ms or Mt RecA proteins bound single-stranded DNA in a manner distinct from that of Ec RecA: The former two were able to form protein-DNA complexes in the presence of high salt. Further experiments indicated that Ms or Mt RecA proteins catalyzed adenosine triphosphate hydrolysis at approximately comparable rates across a wide range of pHs. Significantly, DNA strand invasion promoted by Ms or Mt RecA proteins displayed similar kinetics but distinctly different pH profiles. In contrast to MtRecA, MsRecA by itself was unable to form joint molecules across a wide range of pHs. However, regardless of the order in which SSB was added, it was able to stimulate MsRecA to form joint molecules within a narrow pH range, indicating that SSB is a required accessory factor. Together, these results provide a source of sharp contrast between EcRecA and mycobacterial RecAs on the one hand and Mt and Ms RecA proteins on the other.
Collapse
Affiliation(s)
- N Ganesh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
4
|
Cui Z, Yang Y, Kaufman CD, Agalliu D, Hackett PB. RecA-mediated, targeted mutagenesis in zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2003; 5:174-184. [PMID: 12876654 DOI: 10.1007/s10126-002-0059-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 04/29/2002] [Indexed: 05/24/2023]
Abstract
We have evaluated the efficacy of RecA, a prokaryotic protein involved with homologous recombination, to direct site-specific mutagenesis in zebrafish embryos. For this we coinjected a vector containing a mutated enhanced green fluorescent protein (EGFP) gene plus 236-nucleotide corrective single-stranded DNAs coated with RecA into 1-cell zebrafish embryos. Twenty-hours after fertilization, about 5% to 20% of injected embryos showed EGFP expression in 1 or more cells when RecA-coated corrective DNAs were used, but not when RecA was omitted. Mutated EGFP genes with 1-bp insertions or deletions were inefficiently activated, whereas those with 7-bp insertions were activated about 4-fold more efficiently. RecA-coated template strand had a higher efficiency than its complementary strand in activation of EGFP expression. Prior irradiation of the embryos with UV light enhanced RecA-mediated restoration of gene activity, suggesting that the effects we observed were augmented by one or more factors of zebrafish DNA repair systems.
Collapse
Affiliation(s)
- Zongbin Cui
- Department of Genetics, Cell Biology and Development and The Arnold and Mabel Beckman Center for Transposon Research, University of Minnesota, St. Paul, MN 55108-1095, USA
| | | | | | | | | |
Collapse
|
5
|
Mazin AV, Bornarth CJ, Solinger JA, Heyer WD, Kowalczykowski SC. Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol Cell 2000; 6:583-92. [PMID: 11030338 DOI: 10.1016/s1097-2765(00)00057-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Rad51 and Rad54 proteins are important for the repair of double-stranded DNA (dsDNA) breaks by homologous recombination in eukaryotes. Rad51 assembles on single-stranded DNA (ssDNA) to form a helical nucleoprotein filament that performs homologous pairing with dsDNA; Rad54 stimulates this pairing substantially. Here, we demonstrate that Rad54 acts in concert with the mature Rad51-ssDNA filament. Enhancement of DNA pairing by Rad54 is greatest at an equimolar ratio relative to Rad51 within the filament. Reciprocally, the Rad51-ssDNA filament enhances both the dsDNA-dependent ATPase and the dsDNA unwinding activities of Rad54. We conclude that Rad54 participates in the DNA homology search as a component of the Rad51-nucleoprotein filament and that the filament delivers Rad54 to the dsDNA pairing locus, thereby linking the unwinding of potential target DNA with the homology search process.
Collapse
Affiliation(s)
- A V Mazin
- Division of Biological Sciences, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
6
|
Saxe D, Datta A, Jinks-Robertson S. Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol Cell Biol 2000; 20:5404-14. [PMID: 10891481 PMCID: PMC85992 DOI: 10.1128/mcb.20.15.5404-5414.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The impact of high levels of RNA polymerase II transcription on mitotic recombination was examined using lys2 recombination substrates positioned on nonhomologous chromosomes. Substrates were used that could produce Lys(+) recombinants by either a simple (noncrossover) gene conversion event or a crossover-associated recombination event, by only a simple gene conversion event, or by only a crossover event. Transcription of the lys2 substrates was regulated by the highly inducible GAL1-10 promoter or the low-level LYS2 promoter, with GAL1-10 promoter activity being controlled by the presence or absence of the Gal80p negative regulatory protein. Transcription was found to stimulate recombination in all assays used, but the level of stimulation varied depending on whether only one or both substrates were highly transcribed. In addition, there was an asymmetry in the types of recombination events observed when one substrate versus the other was highly transcribed. Finally, the lys2 substrates were positioned as direct repeats on the same chromosome and were found to exhibit a different recombinational response to high levels of transcription from that exhibited by the repeats on nonhomologous chromosomes. The relevance of these results to the mechanisms of transcription-associated recombination are discussed.
Collapse
Affiliation(s)
- D Saxe
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
7
|
Muniyappa K, Anuradha S, Byers B. Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 2000; 20:1361-9. [PMID: 10648621 PMCID: PMC85284 DOI: 10.1128/mcb.20.4.1361-1369.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA molecules containing stretches of contiguous guanine residues can assume a stable configuration in which planar quartets of guanine residues joined by Hoogsteen pairing appear in a stacked array. This conformation, called G4 DNA, has been implicated in several aspects of chromosome behavior including immunoglobulin gene rearrangements, promoter activation, and telomere maintenance. Moreover, the ability of the yeast SEP1 gene product to cleave DNA in a G4-DNA-dependent fashion, as well as that of the SGS1 gene product to unwind G4 DNA, has suggested a crucial role for this structure in meiotic synapsis and recombination. Here, we demonstrate that the HOP1 gene product, which plays a crucial role in the formation of synaptonemal complex in Saccharomyces cerevisiae, binds robustly to G4 DNA. The apparent dissociation constant for interaction with G4 DNA is 2 x 10(-10), indicative of binding that is about 1,000-fold stronger than to normal duplex DNA. Oligonucleotides of appropriate sequence bound Hop1 protein maximally if the DNA was first subjected to conditions favoring the formation of G4 DNA. Furthermore, incubation of unfolded oligonucleotides with Hop1 led to their transformation into G4 DNA. Methylation interference experiments confirmed that modifications blocking G4 DNA formation inhibit Hop1 binding. In contrast, neither bacterial RecA proteins that preferentially interact with GT-rich DNA nor histone H1 bound strongly to G4 DNA or induced its formation. These findings implicate specific interactions of Hop1 protein with G4 DNA in the pathway to chromosomal synapsis and recombination in meiosis.
Collapse
Affiliation(s)
- K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
8
|
Grigoriev M, Hsieh P. Migration of a Holliday junction through a nucleosome directed by the E. coli RuvAB motor protein. Mol Cell 1998; 2:373-81. [PMID: 9774975 DOI: 10.1016/s1097-2765(00)80281-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromatin plays a critical role in regulating access to DNA by proteins that direct recombination and repair. The E. coli RuvAB protein complex promotes branch migration of the Holliday junction recombination intermediate. The ability of RuvAB to negotiate passage of the junction through nucleosomal DNA is examined. The model system involves the formation of a Holliday junction positioned upstream of a nucleosome. Unassisted, the junction is blocked by a histone octamer. In the presence of RuvAB and ATP, rapid branch migration through the nucleosome is observed. It results in disruption of the histone-DNA interactions leading to the removal of the octamer from the junction intermediate. These results suggest that eukaryotic DNA motor proteins analogous to RuvAB could function during recombination to promote branch migration through chromatin.
Collapse
Affiliation(s)
- M Grigoriev
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | |
Collapse
|
9
|
Abstract
The Holliday junction is a key intermediate in genetic recombination. Here, we examine the effect of a nucleosome core on movement of the Holliday junction in vitro by spontaneous branch migration. Histone octamers consisting of H2A, H2B, H3, and H4 are reconstituted onto DNA duplexes containing an artificial nucleosome-positioning sequence consisting of a tandem array of an alternating AT-GC sequence motif. Characterization of the reconstituted branch migration substrates by micrococcal nuclease mapping and exonuclease III and hydroxyl radical footprinting reveal that 70% of the reconstituted octamers are positioned near the center of the substrate and the remaining 30% are located at the distal end, although in both cases some translational degeneracy is observed. Branch migration assays with the octamer-containing substrates reveal that the Holliday junction cannot migrate spontaneously through DNA organized into a nucleosomal core unless DNA-histone interactions are completely disrupted. Similar results are obtained with branch migration substrates containing an octamer positioned on a naturally occurring sequence derived from the yeast GLN3 locus. Digestion of Holliday junctions with T7 endonuclease I establishes that the junction is not trapped by the octamer but can branch migrate in regions free of histone octamers. Our findings suggest that migration of Holliday junctions during recombination and the recombinational repair of DNA damage requires proteins not only to accelerate the intrinsic rate of branch migration but also to facilitate the passage of the Holliday junction through a nucleosome.
Collapse
Affiliation(s)
- M Grigoriev
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | |
Collapse
|
10
|
Ramdas J, Muniyappa K. Recognition and alignment of homologous DNA sequences between minichromosomes and single-stranded DNA promoted by RecA protein. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:336-48. [PMID: 7500959 DOI: 10.1007/bf00290535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The incorporation of DNA into nucleosomes and higher-order forms of chromatin in vivo creates difficulties with respect to its accessibility for cellular functions such as transcription, replication, repair and recombination. To understand the role of chromatin structure in the process of homologous recombination, we have studied the interaction of nucleoprotein filaments, comprised of RecA protein and ssDNA, with minichromosomes. Using this paradigm, we have addressed how chromatin structure affects the search for homologous DNA sequences, and attempted to distinguish between two mutually exclusive models of DNA-DNA pairing mechanisms. Paradoxically, we found that the search for homologous sequences, as monitored by unwinding of homologous or heterologous duplex DNA, was facilitated by nucleosomes, with no discernible effect on homologous pairing. More importantly, unwinding of minichromosomes required the interaction of nucleoprotein filaments and led to the accumulation of circular duplex DNA sensitive to nuclease P1. Competition experiments indicated that chromatin templates and naked DNA served as equally efficient targets for homologous pairing. These and other findings suggest that nucleosomes do not impede but rather facilitate the search for homologous sequences and establish, in accordance with one proposed model, that unwinding of duplex DNA precedes alignment of homologous sequences at the level of chromatin. The potential application of this model to investigate the role of chromosomal proteins in the alignment of homologous sequences in the context of cellular recombination is considered.
Collapse
Affiliation(s)
- J Ramdas
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
11
|
Yancey-Wrona JE, Camerini-Otero RD. The search for DNA homology does not limit stable homologous pairing promoted by RecA protein. Curr Biol 1995; 5:1149-58. [PMID: 8548287 DOI: 10.1016/s0960-9822(95)00231-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The basic molecular mechanisms that govern the search for DNA homology and subsequent homologous pairing during genetic recombination are not understood. RecA is the central homologous recombination protein of Escherichia coli; because several RecA homologues have been identified in eukaryotic cells, it is likely that the mechanisms employed by RecA are conserved throughout evolution. Analysis of the kinetics of the homologous search and pairing reactions catalyzed by RecA should therefore provide insights of general relevance into the mechanisms by which macromolecules locate, and interact with, specific DNA targets. RESULTS RecA forms three-stranded synaptic complexes with a single-stranded oligonucleotide and a homologous region in duplex DNA. The kinetics of this initial pairing reaction were characterized using duplex DNA molecules of various concentrations and complexities containing a single target site, as well as various concentrations of homologous single-stranded oligonucleotides. The formation of the synaptic complex follows apparent second-order reaction kinetics with a rate proportional to the concentrations of both the homologous single-stranded oligonucleotide and the target sites within the duplex DNA. The reaction rate is independent of the complexity of duplex DNA in the reaction. We propose a kinetic scheme in which the RecA-single-stranded DNA filament interacts with duplex DNA and locates its target in a relatively fast reaction. We also suggest that complex conformational changes occur during the subsequent rate-limiting step. CONCLUSIONS We conclude that, during the formation of synaptic complexes by RecA, the search for homology is not rate-limiting, and that the iteration frequency of the search is around 10(2)-10(3) s-1. This value agrees well with what has been calculated as the minimum number for such a frequency in genome-wide searches, and limits the possible structures involved in the search for homology to those involving very soft (low energy) interactions. Furthermore, from the order of the reaction at the DNA concentrations found in eukaryotic nuclei, and the rate constant of the overall reaction, we predict that the search for homology is also not the rate-limiting step in the genome-wide searches implicated in meiosis and in gene targeting.
Collapse
Affiliation(s)
- J E Yancey-Wrona
- National Institutes of Health, NIDDK, Bethesda, Maryland 20892-1810, USA
| | | |
Collapse
|
12
|
Eggleston AK, O'Neill TE, Bradbury EM, Kowalczykowski SC. Unwinding of nucleosomal DNA by a DNA helicase. J Biol Chem 1995; 270:2024-31. [PMID: 7836428 DOI: 10.1074/jbc.270.5.2024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have asked whether a DNA helicase can unwind DNA contained within both isolated native chromatin and reconstituted chromatin containing regularly spaced arrays of nucleosome cores on a linear tandem repeat sequence. We find that Escherichia coli recBCD enzyme is capable of unwinding these DNA substrates and displacing the nucleosomes, although both the rate and the processivity of enzymatic unwinding are inhibited (a maximum of 3- and > 25-fold, respectively) as the nucleosome density on the template is increased. The observed rate of unwinding is not affected if the histone octamer is chemically cross-linked; thus, dissociation, or splitting, of the histone octamer is not required for unwinding to occur. The unwinding of native chromatin isolated from HeLa cell nuclei occurs both in the absence and in the presence of linker histone H1. These results suggest that as helicases unwind DNA, they facilitate nuclear processes by acting to clear DNA of histones or DNA-binding proteins in general.
Collapse
Affiliation(s)
- A K Eggleston
- Section of Microbiology, University of California, Davis 95616
| | | | | | | |
Collapse
|
13
|
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58:401-65. [PMID: 7968921 PMCID: PMC372975 DOI: 10.1128/mr.58.3.401-465.1994] [Citation(s) in RCA: 778] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Collapse
Affiliation(s)
- S C Kowalczykowski
- Division of Biological Sciences, University of California, Davis 95616-8665
| | | | | | | | | |
Collapse
|
14
|
Kotani H, Sekiguchi JM, Dutta S, Kmiec EB. Genetic recombination of nucleosomal templates is mediated by transcription. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:410-9. [PMID: 8078467 DOI: 10.1007/bf00286693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An in vitro system has been developed to examine the influence of transcription on genetic rearrangement. Using a homologous pairing assay, the transfer of one strand of a nucleosomal template onto a recipient DNA molecule was monitored as a function of RNA polymerase activity. Transcriptionally inactive nucleosomal DNA was refractory to homologous pairing. Homologous pairing was catalyzed, however, by the eukaryotic recombinase, rec1, when the nucleosomal template was being transcribed. The reaction was found to be dependent on the presence of rec1, RNA polymerase, NTPs and RNA synthesis. Heteroduplex formation between a short DNA duplex fragment assembled into a nucleosome and a single-stranded circle relied also on the presence of sequence homology between the duplex and the circle. The results of this study lend support to the notion that transcriptionally active regions within a chromosome are more apt to serve as sites of genetic recombination.
Collapse
Affiliation(s)
- H Kotani
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | |
Collapse
|
15
|
Kotani H, Kmiec EB. DNA cruciforms facilitate in vitro strand transfer on nucleosomal templates. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:681-90. [PMID: 8028585 DOI: 10.1007/bf00279578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A single, phased nucleosome assembled on a 240 bp DNA duplex molecule blocked Escherichia coli RecA protein-promoted strand transfer of the complementary strand of the duplex onto a homologous single-stranded circle. However, when a four-armed cruciform structure was coupled to either end of the duplex the barrier to strand transfer was overcome and joint molecules were efficiently formed. Micrococcal nuclease digestion indicated that the nucleosome was dissociated by the juxtaposition of the cruciform. We interpret these results to mean that cruciform structures can act over a distance to destabilize adjacent nucleosomes and suggest that, as a consequence, the chromatin structure surrounding a crossed strand recombination intermediate might be disrupted, enabling other recombination events to initiate or the process of branch migration to proceed.
Collapse
Affiliation(s)
- H Kotani
- Department of Molecular Pharmacology, Jefferson Cancer Institute, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107
| | | |
Collapse
|
16
|
Abstract
RecA protein catalyzes the homologous pairing of a single-stranded circular DNA and a linear duplex DNA molecule. When the duplex is packaged into chromatin, formation of homologously paired complexes is blocked. We have established a system for studying the RecA-promoted reaction by using a duplex fragment containing a single-phased nucleosome. Under these conditions there is no reaction leading to formation of joint molecule complexes. However, transcription on the chromatin template activates the formation of complexes. Reaction is dependent on RNA synthesis and DNA sequence homology and proceeds regardless of the direction of transcription.
Collapse
|
17
|
Abstract
RecA protein catalyzes the homologous pairing of a single-stranded circular DNA and a linear duplex DNA molecule. When the duplex is packaged into chromatin, formation of homologously paired complexes is blocked. We have established a system for studying the RecA-promoted reaction by using a duplex fragment containing a single-phased nucleosome. Under these conditions there is no reaction leading to formation of joint molecule complexes. However, transcription on the chromatin template activates the formation of complexes. Reaction is dependent on RNA synthesis and DNA sequence homology and proceeds regardless of the direction of transcription.
Collapse
Affiliation(s)
- H Kotani
- Department of Pharmacology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
18
|
Heyer WD, Kolodner RD. Enzymology of homologous recombination in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 46:221-71. [PMID: 8234785 DOI: 10.1016/s0079-6603(08)61023-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W D Heyer
- Institute of General Microbiology, Bern, Switzerland
| | | |
Collapse
|
19
|
Kumar K, Muniyappa K. Use of structure-directed DNA ligands to probe the binding of recA protein to narrow and wide grooves of DNA and on its ability to promote homologous pairing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35838-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Abstract
RecF protein is one of at least three single strand DNA (ssDNA) binding proteins which act in recombination and repair in Escherichia coli. In this paper we show that our RecF protein preparation complexes with ssDNA so as to retard its electrophoretic movement in an agarose gel. The apparent stoichiometry of RecF-ssDNA-binding measured in this way is one RecF molecule for every 15 nucleotides and the binding appears to be cooperative. Interaction of the other two ssDNA-binding proteins, RecA and Ssb proteins, has been studied extensively; so in this paper we begin the study of the interaction of RecF and RecA proteins. We found that the RecF protein preparation inhibits the activity of RecA protein in the formation of joint molecules whether added before or after addition of RecA protein to ssDNA. It, therefore, differs from Ssb protein which stimulates joint molecule formation when added to ssDNA after RecA protein. We found that our RecF protein preparation inhibits two steps prior to joint molecule formation: RecA protein binding to ssDNA and coaggregate formation between ssDNA-RecA complexes and dsDNA. We found that it required a much higher ratio of RecF to RecA protein than normally occurs in vivo to inhibit joint molecule formation. The insight that these data give to the normal functioning of RecF protein is discussed.
Collapse
Affiliation(s)
- M V Madiraju
- Department of Molecular and Cell Biology, Barker/GPBB ASU, University of California, Berkeley 94720
| | | |
Collapse
|