1
|
Gao X, Gao G, Zheng W, Liu H, Pan W, Xia X, Zhang D, Lin W, Wang Z, Feng B. PARylation of 14-3-3 proteins controls the virulence of Magnaporthe oryzae. Nat Commun 2024; 15:8047. [PMID: 39277621 PMCID: PMC11401899 DOI: 10.1038/s41467-024-51955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gaigai Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weifeng Zheng
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibing Liu
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenbo Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Xia
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongmei Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenwei Lin
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Baomin Feng
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Chen Y, Wu X, Chen C, Huang Q, Li C, Zhang X, Tan X, Zhang D, Liu Y. Proteomics Analysis Reveals the Molecular Mechanism of MoPer1 Regulating the Development and Pathogenicity of Magnaporthe oryzae. Front Cell Infect Microbiol 2022; 12:926771. [PMID: 35811686 PMCID: PMC9269092 DOI: 10.3389/fcimb.2022.926771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring the protein GPI modification post-transcriptionally is commonly seen. In our previous study, MoPer1, a GPI anchoring essential factor, has a critical effect on Magnaporthe oryzae growth, pathogenicity, and conidiogenesis, but its molecular mechanism is not clear. Here, we extracted the glycoproteins from the ΔMoper1 mutant and wild-type Guy11 to analyze their differential levels by quantitative proteomic analysis of TMT markers. After background subtraction, a total of 431 proteins, with significant changes in expression, were successfully identified, and these differential proteins were involved in biological regulation, as well as cellular process and metabolic process, binding, catalytic activity, and other aspects. Moreover, we found that MoPer1 regulates the expression of 14 proteins involved in growth, development, and pathogenicity of M. oryzae. The above findings shed light on MoPer1’s underlying mechanism in regulating growth, development, and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Xiyang Wu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Chunyan Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qiang Huang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Chenggang Li
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xin Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
- *Correspondence: Yong Liu, ; Deyong Zhang,
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
- *Correspondence: Yong Liu, ; Deyong Zhang,
| |
Collapse
|
3
|
The deubiquitinating enzyme MoUbp8 is required for infection-related development, pathogenicity, and carbon catabolite repression in Magnaporthe oryzae. Appl Microbiol Biotechnol 2020; 104:5081-5094. [PMID: 32274561 DOI: 10.1007/s00253-020-10572-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022]
Abstract
Deubiquitination is an essential regulatory step in the Ub-dependent pathway. Deubiquitinating enzymes (DUBs) mediate the removal of ubiquitin moieties from substrate proteins, which are involved in many regulatory mechanisms. As a component of the DUB module (Ubp8/Sgf11/Sus1/Sgf73) in the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex, Ubp8 plays a crucial role in both Saccharomyces cerevisiae and humans. In S. cerevisiae, Ubp8-mediated deubiquitination regulates transcriptional activation processes. To investigate the contributions of Ubp8 to physiological and pathological development of filamentous fungi, we generated the deletion mutant of ortholog MoUBP8 (MGG-03527) in Magnaporthe oryzae (syn. Pyricularia oryzae). The ΔMoubp8 strain showed reduced sporulation, pathogenicity, and resistance to distinct stresses. Even though the conidia of the ΔMoubp8 mutant were delayed in appressorium formation, the normal and abnormal (none-septum or one-septum) conidia could finally form appressoria. Reduced melanin in the ΔMoubp8 mutant is highly responsible for the attenuated pathogenicity since the appressoria of the ΔMoubp8 mutant was much more fragile than those of the wild type, due to the defective turgidity. The weakened ability to detoxify or scavenge host-derived reactive oxygen species (ROS) further restricted the invasion of the pathogen. We also showed that carbon derepression, on the one hand, rendered the ΔMoubp8 strain highly sensitive to allyl alcohol, on the other hand, it enhances the resistance of the MoUBP8 defective strain to deoxyglucose. Overall, we suggest that MoUbp8 is not only required for sporulation, melanin formation, appressoria development, and pathogenicity but also involved in carbon catabolite repression of M. oryzae.
Collapse
|
4
|
Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae. Genetics 2018; 211:151-167. [PMID: 30446520 PMCID: PMC6325701 DOI: 10.1534/genetics.118.301490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified > 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection-related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants. SMO1 is necessary for the organization of microtubules and for septin-dependent remodeling of the F-actin cytoskeleton at the appressorium pore. Smo1 physically interacts with components of the Ras2 signaling complex, and a range of other signaling and cytoskeletal components, including the four core septins. SMO1 is therefore necessary for the regulation of RAS activation required for conidial morphogenesis and septin-mediated plant infection.
Collapse
|
5
|
Castanera R, Borgognone A, Pisabarro AG, Ramírez L. Biology, dynamics, and applications of transposable elements in basidiomycete fungi. Appl Microbiol Biotechnol 2017; 101:1337-1350. [PMID: 28074220 DOI: 10.1007/s00253-017-8097-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 01/02/2017] [Indexed: 11/25/2022]
Abstract
The phylum Basidiomycota includes filamentous fungi and yeast species with different ecological and genomic characteristics. Transposable elements (TEs) are abundant components of most eukaryotic genomes, and their transition from being genomic parasites to key drivers of genomic architecture, functionality, and evolution is a subject receiving much attention. In light of the abundant genomic information released during the last decade, the aims of this mini-review are to discuss the dynamics and impact of TEs in basidiomycete fungi. To do this, we surveyed and explored data from 75 genomes, which encompass the phylogenetic diversity of the phylum Basidiomycota. We describe annotation approaches and analyze TE distribution in the context of species phylogeny and genome size. Further, we review the most relevant literature about the role of TEs in species lifestyle, their impact on genome architecture and functionality, and the defense mechanisms evolved to control their proliferation. Finally, we discuss potential applications of TEs that can drive future innovations in fungal research.
Collapse
Affiliation(s)
- Raúl Castanera
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Alessandra Borgognone
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain
| | - Lucía Ramírez
- Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, 31006, Pamplona, Spain.
| |
Collapse
|
6
|
Jeon J, Choi J, Lee GW, Dean RA, Lee YH. Experimental evolution reveals genome-wide spectrum and dynamics of mutations in the rice blast fungus, Magnaporthe oryzae. PLoS One 2013; 8:e65416. [PMID: 23741492 PMCID: PMC3669265 DOI: 10.1371/journal.pone.0065416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/24/2013] [Indexed: 01/19/2023] Open
Abstract
Knowledge on mutation processes is central to interpreting genetic analysis data as well as understanding the underlying nature of almost all evolutionary phenomena. However, studies on genome-wide mutational spectrum and dynamics in fungal pathogens are scarce, hindering our understanding of their evolution and biology. Here, we explored changes in the phenotypes and genome sequences of the rice blast fungus Magnaporthe oryzae during the forced in vitro evolution by weekly transfer of cultures on artificial media. Through combination of experimental evolution with high throughput sequencing technology, we found that mutations accumulate rapidly prior to visible phenotypic changes and that both genetic drift and selection seem to contribute to shaping mutational landscape, suggesting the buffering capacity of fungal genome against mutations. Inference of mutational effects on phenotypes through the use of T-DNA insertion mutants suggested that at least some of the DNA sequence mutations are likely associated with the observed phenotypic changes. Furthermore, our data suggest oxidative damages and UV as major sources of mutation during subcultures. Taken together, our work revealed important properties of original source of variation in the genome of the rice blast fungus. We believe that these results provide not only insights into stability of pathogenicity and genome evolution in plant pathogenic fungi but also a model in which evolution of fungal pathogens in natura can be comparatively investigated.
Collapse
Affiliation(s)
- Junhyun Jeon
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, Korea
- Functional Genomics Program, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, Korea
| | - Gir-Won Lee
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, Korea
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Ralph A. Dean
- Functional Genomics Program, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (Y-HL); (RAD)
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul, Korea
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul, Korea
- Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, Korea
- * E-mail: (Y-HL); (RAD)
| |
Collapse
|
7
|
Zhang Z, Jiang H, Wang YL, Sun GC. [Progress on avirulence genes of the rice blast fungus Magnaporthe grisea]. YI CHUAN = HEREDITAS 2011; 33:591-600. [PMID: 21684864 DOI: 10.3724/sp.j.1005.2011.00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe grisea, is one of the most devastating diseases of rice. The specific interaction between rice and M. grisea is an important model system for studying the host-pathogen interaction mechanisms. In this article, we summarized recent research progresses on avirulence genes, which are the most important effectors in M. grisea with the focus on chromosome mapping, cloning method, functional analysis, and evolution study of avirulence genes, and the possible hotspot of the research on avirulence genes in the future was also been discussed. This knowledge may shed a light on the molecular mechanism underlying avirulence genes function and the possible interaction relationship between the host and the pathogen.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Chemistry and Life Science, ZhejiangNormalUniversity, Jinhua 321004, China.
| | | | | | | |
Collapse
|
8
|
Talbot NJ, Salch YP, Ma M, Hamer JE. Karyotypic Variation within Clonal Lineages of the Rice Blast Fungus, Magnaporthe grisea. Appl Environ Microbiol 2010; 59:585-93. [PMID: 16348876 PMCID: PMC202148 DOI: 10.1128/aem.59.2.585-593.1993] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the karyotype of the rice blast fungus, Magnaporthe grisea, by using pulsed-filed gel electrophoresis. We tested whether the electrophoretic karyotype of an isolate was related to its pathotype, as determined by infection assays, or its genetic lineage, as determined by DNA fingerprinting. Highly reproducible electrophoretic karyotypes were obtained for a collection of U.S. and Chinese isolates representing a diverse collection of pathotypes and genetic lineages. Chromosomes ranged in size from 3 to 10 Mb. Although chromosome number was largely invariant, chromosome length polymorphisms were frequent. Minichromosomes were also found, although their presence was not ubiquitous. They ranged in number from 1 to 3 and in size from 470 kb to 2.2 Mb. Karyotypes were sufficiently variable as to obscure the obvious relatedness of isolates on the basis of pathogenicity assays or genetic lineage analysis by DNA fingerprinting. We documented that the electrophoretic karyotype of an isolate can change after prolonged serial transfer in culture and that this change did not alter the isolate's pathotype. The mechanisms bringing about karyotype variability involve deletions, translocations, and more complex rearrangements. We conclude that karyotypic variability in the rice blast fungus is a reflection of the lack of sexuality in wild populations which leads to the maintenance of neutral genomic rearrangements in clones of the fungus.
Collapse
Affiliation(s)
- N J Talbot
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
9
|
Kito H, Fujikawa T, Moriwaki A, Tomono A, Izawa M, Kamakura T, Ohashi M, Sato H, Abe K, Nishimura M. MgLig4, a homolog of Neurospora crassa Mus-53 (DNA ligase IV), is involved in, but not essential for, non-homologous end-joining events in Magnaporthe grisea. Fungal Genet Biol 2008; 45:1543-51. [DOI: 10.1016/j.fgb.2008.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
|
10
|
Zheng Y, Zhang G, Lin F, Wang Z, Jin G, Yang L, Wang Y, Chen X, Xu Z, Zhao X, Wang H, Lu J, Lu G, Wu W. Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genet Biol 2008; 45:1340-7. [PMID: 18694839 DOI: 10.1016/j.fgb.2008.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 06/22/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Magnaporthe grisea is the most destructive fungal pathogen of rice and a model organism for studying plant-pathogen interaction. Molecular markers and genetic maps are useful tools for genetic studies. In this study, based on the released genome sequence data of M. grisea, we investigated 446 simple sequence repeat (SSR) loci and developed 313 SSR markers, which showed polymorphisms among nine isolates from rice (including a laboratory strain 2539). The number of alleles of each marker ranged 2-9 with an average of 3.3. The polymorphic information content (PIC) of each marker ranged 0.20-0.89 with an average of 0.53. Using a population derived from a cross between isolates Guy11 and 2539, we constructed a genetic map of M. grisea consisting of 176 SSR markers. The map covers a total length of 1247 cM, equivalent to a physical length of about 35.0 Mb or 93% of the genome, with an average distance of 7.1cM between adjacent markers. A web-based database of the SSR markers and the genetic map was established (http://ibi.zju.edu.cn/pgl/MGM/index.html).
Collapse
Affiliation(s)
- Yan Zheng
- Department of Agronomy, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Construction of an electronic physical map of Magnaporthe oryzae using genomic position-ready SSR markers. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Kaye C, Milazzo J, Rozenfeld S, Lebrun MH, Tharreau D. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet Biol 2003; 40:207-14. [PMID: 14599888 DOI: 10.1016/j.fgb.2003.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although microsatellite or simple sequence repeat (SSR) markers have several advantages, few have been developed in fungi. The goal of this study was to identify and characterize SSR-containing loci in the filamentous ascomycete Magnaporthe grisea, the causal agent of rice blast disease, and to add these markers to an integrated genetic map of this species [Theor. Appl. Genet. 95 (1997) 20]. We have constructed and screened a microsatellite-enriched small-insert genomic library as well as exploited both publicly available and one proprietary databases for identification of M. grisea SSR containing sequences. Twenty-four out of 49 primer pairs designed to amplify SSR, produced unambiguous polymorphic products in our test population of six isolates. The number of alleles at each locus ranged from two to six when assayed on 3% agarose gels. Twenty-three of the primer pairs amplified polymorphic products between Guy11 and 2539, the parents of a cross from which a genetic map for M. grisea has been established. Genetic analysis showed that all the markers segregated in the expected 1:1 ratio and map positions were determined for all 23 loci.
Collapse
Affiliation(s)
- Claudia Kaye
- UMR BGPI, INRA-ENSAM-CIRAD, 34398 Montpellier Cedex 05, France.
| | | | | | | | | |
Collapse
|
13
|
Pedersen C, Rasmussen SW, Giese H. A genetic map of Blumeria graminis based on functional genes, avirulence genes, and molecular markers. Fungal Genet Biol 2002; 35:235-46. [PMID: 11929213 DOI: 10.1006/fgbi.2001.1326] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.
Collapse
Affiliation(s)
- Carsten Pedersen
- Plant Research Department, Risø National Laboratory, Roskilde, DK-4000, Denmark.
| | | | | |
Collapse
|
14
|
Park G, Xue C, Zheng L, Lam S, Xu JR. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:183-92. [PMID: 11952120 DOI: 10.1094/mpmi.2002.15.3.183] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the rice blast fungus Magnaporthe grisea, a mitogen-activated protein kinase gene, PMK1, is known to regulate appressorium formation and infectious hyphae growth. Since PMK1 is homologous to the FUS3 and KSS1 genes that regulate the transcription factor STE12 in yeast, we functionally characterized the STE12 homologue in M. grisea (MST12). A polymerase chain reaction-based approach was used to isolate the MST12 gene that is homologous to yeast STE12. Four mst12 deletion mutants were isolated by gene replacement. No obvious defect in vegetative growth, conidiation, or conidia germination was observed in mst12 mutants. However, mst12 mutants were nonpathogenic on rice and barley leaves. In contrast to pmk1 mutants that did not form appressoria, mst12 mutants produced typical dome-shaped and melanized appressoria. However, the appressoria formed by mst12 mutants failed to penetrate onion epidermal cells. When inoculated through wound sites, mst12 mutants failed to cause spreading lesions and appeared to be defective in infectious growth. These data indicate that MST12 may function downstream of PMK1 to regulate genes involved in infectious hyphae growth. A transcription factor or factors other than MST12 must exist in M. grisea and function downstream from PMK1 for appressorium formation.
Collapse
Affiliation(s)
- Gyungsoon Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | | | | | | | | |
Collapse
|
15
|
Farman ML. Meiotic deletion at the BUF1 locus of the fungus Magnaporthe grisea is controlled by interaction with the homologous chromosome. Genetics 2002; 160:137-48. [PMID: 11805051 PMCID: PMC1461934 DOI: 10.1093/genetics/160.1.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Magnaporthe grisea BUF1 gene suffers high-frequency mutation in certain genetic crosses, resulting in buff-colored progeny. Analysis of 16 buf1 mutants arising from a cross with a mutation frequency of 25% revealed that, in every case, the BUF1 gene was deleted. The deletions occurred in only one of the parental chromosomes and were due to intrachromosomal recombination. Tetrad analysis revealed that deletions occurred in 44% of meioses and usually affected both chromatids of the mutable chromosome. This suggests that they happen before the premeiotic round of DNA synthesis. However, they were also almost entirely restricted to heteroallelic crosses. This, together with the discovery of numerous repetitive elements that were present only in the mutable BUF1 locus, suggests that the deletion process is sensitive to pairing interactions between homologous chromosomes, such that only unpaired loci are subject to deletion. Given that karyogamy is not supposed to occur until after premeiotic DNA replication in Pyrenomycetous fungi such as M. grisea, this latter observation would place the time of deletion during, or after, DNA synthesis. These conflicting results suggest that karyogamy might actually precede DNA replication in Pyrenomycetous fungi or that parts of the genome remain unreplicated until after karyogamy and subsequent chromosome pairing have taken place.
Collapse
Affiliation(s)
- Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
16
|
Goodwin SB, Cavaletto JR, Waalwijk C, Kema GH. DNA Fingerprint Probe from Mycosphaerella graminicola Identifies an Active Transposable Element. PHYTOPATHOLOGY 2001; 91:1181-1188. [PMID: 18943333 DOI: 10.1094/phyto.2001.91.12.1181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT DNA fingerprinting has been used extensively to characterize populations of Mycosphaerella graminicola, the Septoria tritici blotch pathogen of wheat. The highly polymorphic DNA fingerprints of Mycosphaerella graminicola were assumed to reflect the action of transposable elements. However, there was no direct evidence to support that conclusion. To test the transposable element hypothesis, the DNA fingerprint probe pSTL70 was sequenced, along with three other clones from a subgenomic library that hybridized with pSTL70. Analysis of these sequences revealed that pSTL70 contains the 3' end of a reverse transcriptase sequence plus 29- and 79-bp direct repeats. These are characteristics of transposable elements identified in other organisms. Southern analyses indicated that either the direct-repeat or reverse-transcriptase sequences by themselves essentially duplicated the original DNA fingerprint pattern, but other portions of pSTL70 contained single-copy DNA. Analysis of 60 progeny from a sexual cross between two Dutch isolates of Mycosphaerella graminicola identified several new bands that were not present in the parents. Thus, the putative transposable element probably is active during meiosis. Tests of single-spore isolates revealed gains or losses of one or more DNA fingerprint bands in 4 out of 10 asexual lines derived from isolate IPO94269. Therefore, DNA fingerprint patterns produced by the putative transposable element were capable of changes during asexual reproduction of this isolate. Probe pSTL70 did not hybridize at high stringency to genomic DNAs from other fungi related to Septoria and Mycosphaerella. These results indicate that the DNA fingerprint probe pSTL70 most likely identifies a transposable element in Mycosphaerella graminicola that may have been acquired recently, and appears to be active during both sexual and asexual reproduction.
Collapse
|
17
|
Nakayashiki H, Matsuo H, Chuma I, Ikeda K, Betsuyaku S, Kusaba M, Tosa Y, Mayama S. Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res 2001; 29:4106-13. [PMID: 11600699 PMCID: PMC60222 DOI: 10.1093/nar/29.20.4106] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel Ty3/Gypsy retrotransposon, named Pyret, was identified in the plant pathogenic fungus Magnaporthe grisea (anamorph Pyricularia oryzae). Pyret-related elements were distributed in a wide range of Pyricularia isolates from various gramineous plants. The Pyret element is 7250 bp in length with a 475 bp LTR and one conceptual ORF. The ORF contains seven nonsense mutations in the reading frame, indicating that the Pyret clone is lightly degenerate. Comparative domain analysis among retroelements revealed that Pyret exhibits an extra domain (WCCH domain) beyond the basic components of LTR retrotransposons. The WCCH domain consists of approximately 300 amino acids and is located downstream of the nucleocapsid domain. The WCCH domain is so named because it contains two repeats of a characteristic amino acid sequence, W-X(2)-C-X(4)-C-X(2)-H-X(3)-K. A WCCH motif-like sequence is found in the precoat protein of some geminiviruses, viral RNA-dependent RNA polymerase and also in an Arabidopsis protein of unknown function. Interestingly, detailed sequence analysis of the gag protein revealed that Pyret, as well as some other chromodomain-containing LTR retrotransposons, displays significant sequence homology with members of the gammaretroviruses (MLV-related retroviruses) in the capsid and nucleocapsid domains. This suggests that chromodomain-containing LTR retrotransposons and gammaretroviruses may share a common ancestor with the gag protein.
Collapse
Affiliation(s)
- H Nakayashiki
- Laboratory of Plant Pathology, Faculty of Agriculture, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dufresne M, Osbourn AE. Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:300-307. [PMID: 11277427 DOI: 10.1094/mpmi.2001.14.3.300] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although plant diseases are usually characterized by the part of the plant that is affected (e.g., leaf spots, root rots, wilts), surprisingly little is known about the factors that condition the ability of pathogens to colonize different plant tissues. Here we demonstrate that the leaf blast pathogen Magnaporthe grisea also can infect plant roots, and we exploit this finding to distinguish tissue-specific and general requirements for plant infection. Tests of a M. grisea mutant collection identified some mutants that were defective specifically in infection of either leaves or roots, and others such as the map kinase mutant pmk1 that were generally defective in pathogenicity. Conservation of a functional PMK1-related MAP kinase in the root pathogen Gaeumannomyces graminis was also demonstrated. Exploitation of the ability of M. grisea to infect distinct plant tissues thus represents a powerful tool for the comprehensive dissection of genetic determinants of tissue specificity and global requirements for plant infection.
Collapse
Affiliation(s)
- M Dufresne
- Sainsbury Laboratory, John Innes Centre, Norwich, UK
| | | |
Collapse
|
19
|
Kang S. Organization and distribution pattern of MGLR-3, a novel retrotransposon in the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 2001; 32:11-9. [PMID: 11277622 DOI: 10.1006/fgbi.2000.1246] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A specific telomere was deleted in spontaneous, gain-of-virulence mutants derived from a rice pathogen of Magnaporthe grisea. Three different types of transposons, including Pot2, Mg-SINE, and a novel, 6-kb-long LTR (long terminal repeat)-type retrotransposon designated MGLR-3, were identified on this chromosomal end. The 114-bp-long telomeric repeat is immediately followed by the 3' LTR of MGLR-3. A truncated copy of Pot2 immediately flanks the 5' LTR, suggesting that this telomere was generated by a transposition event of MGLR-3 into this Pot2 element, causing the breakage of a chromosome. The subsequent addition of a telomeric repeat to the 3' LTR of MGLR-3 most probably repaired the broken end of the chromosome. Mg-SINE is located 25 bp away from the truncated Pot2 element. MGLR-3 exhibited strong homology to various gypsy-class retrotransposons, including grh and MAGGY in M. grisea. MGLR-3 is ubiquitous regardless of the host of origin.
Collapse
Affiliation(s)
- S Kang
- Department of Plant Pathology, The Pennsylvania State University, 311 Buckhout Laboratory, University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Zhu H, Blackmon BP, Sasinowski M, Dean RA. Physical map and organization of chromosome 7 in the rice blast fungus, Magnaporthe grisea. Genome Res 1999; 9:739-50. [PMID: 10447509 PMCID: PMC310806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The rice blast fungus Magnaporthe grisea is a highly destructive plant pathogen and one of the most important for studying various aspects of host-plant interactions. It has been widely adopted as a model organism because it is ideally suited for genetic and biological studies. To facilitate map-based cloning, chromosome walking, and genome organization studies of M. grisea, a complete physical map of chromosome 7 was constructed using a large-insert (130 kb) bacterial artificial chromosome (BAC) library. Using 147 chromosome 7-specific single-copy BAC clones and 20 RFLP markers on chromosome 7, 625 BAC clones were identified by hybridization. BAC clones were digested with HindIII, and fragments were size separated on analytical agarose gels to create DNA fingerprints. Hybridization contigs were constructed using a random cost algorithm, whereas fingerprinting contigs were constructed using the software package FPC. Results from both methods were generally in agreement, but numerous anomalies were observed. The combined data produced five robust anchored contigs after gap closure by chromosomal walking. The genetic and physical maps agreed closely. The final physical map was estimated to cover >95% of the 4.2 Mb of chromosome 7. Based on the contig maps, a minimum BAC tile containing 42 BAC clones was created, and organization of repetitive elements and expressed genes of the chromosome was investigated.
Collapse
Affiliation(s)
- H Zhu
- Department of Plant Pathology and Physiology, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | |
Collapse
|
21
|
Zhu H, Blackmon BP, Sasinowski M, Dean RA. Physical Map and Organization of Chromosome 7 in the Rice Blast Fungus, Magnaporthe grisea. Genome Res 1999. [DOI: 10.1101/gr.9.8.739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rice blast fungus Magnaporthe grisea is a highly destructive plant pathogen and one of the most important for studying various aspects of host-plant interactions. It has been widely adopted as a model organism because it is ideally suited for genetic and biological studies. To facilitate map-based cloning, chromosome walking, and genome organization studies of M. grisea, a complete physical map of chromosome 7 was constructed using a large-insert (130 kb) bacterial artificial chromosome (BAC) library. Using 147 chromosome 7-specific single-copy BAC clones and 20 RFLP markers on chromosome 7, 625 BAC clones were identified by hybridization. BAC clones were digested with HindIII, and fragments were size separated on analytical agarose gels to create DNA fingerprints. Hybridization contigs were constructed using a random cost algorithm, whereas fingerprinting contigs were constructed using the software package FPC. Results from both methods were generally in agreement, but numerous anomalies were observed. The combined data produced five robust anchored contigs after gap closure by chromosomal walking. The genetic and physical maps agreed closely. The final physical map was estimated to cover >95% of the 4.2 Mb of chromosome 7. Based on the contig maps, a minimum BAC tile containing 42 BAC clones was created, and organization of repetitive elements and expressed genes of the chromosome was investigated.
Collapse
|
22
|
Farman ML, Leong SA. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics 1998; 150:1049-58. [PMID: 9799257 PMCID: PMC1460382 DOI: 10.1093/genetics/150.3.1049] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The avrCO39 gene conferring avirulence toward rice cultivar CO39 was previously mapped to chromosome 1 of Magnaporthe grisea between cosegregating markers CH5-120H and 1.2H and marker 5-10-F. In the present study, this region of the chromosome was physically mapped using RecA-mediated Achilles' cleavage. Cleavage of genomic DNA sequences within CH5-120H and 5-10-F liberated a 610-kb restriction fragment, representing the physical distance between these markers. Chromosome walking was initiated from both markers but was curtailed due to the presence of repetitive DNA sequences and the absence of overlapping clones in cosmid libraries representing several genome equivalents. These obstacles were overcome by directly subcloning the target region after release by Achilles' cleavage and a contig spanning avrCO39 was thus assembled. Transformation of two cosmids into a virulent recipient strain conferred a cultivar-specific avirulence phenotype thus confirming the cloning of avrCO39. Meiotic crossover points were unevenly distributed across this chromosomal region and were clustered around the avrCO39 locus. A 14-fold variation in the relationship between genetic and physical distance was measured over the avrCO39 chromosomal region. Thus the poor correlation of physical to genetic distance previously observed in M. grisea appears to be manifested over relatively short distances.
Collapse
Affiliation(s)
- M L Farman
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
23
|
George ML, Nelson RJ, Zeigler RS, Leung H. Rapid Population Analysis of Magnaporthe grisea by Using rep-PCR and Endogenous Repetitive DNA Sequences. PHYTOPATHOLOGY 1998; 88:223-229. [PMID: 18944968 DOI: 10.1094/phyto.1998.88.3.223] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT DNA samples from Magnaporthe grisea isolates were fingerprinted by using repetitive element-based polymerase chain reaction (rep-PCR) with two outwardly directed primer sequences from Pot2, an element found in approximately 100 copies in the fungal genome. Variable length fragments, defining the sequences lying between these elements, were generated, and fingerprint patterns specific for individual strains were established. "Long PCR" conditions, including higher pH (9.2) and increased extension time (10 min) were used to amplify DNA fragments ranging from 400 bp to longer than 23 kb. Polymorphisms specific to M. grisea strains were generated, allowing inference of their genetic relationships. Segregation analysis was used to confirm single-locus inheritance for the fragments amplified by rep-PCR. Cluster analysis revealed robust groupings that corresponded to previously determined MGR586 restriction fragment length polymorphism lineages of the rice-infecting strains of the pathogen. We have also demonstrated the utility of rep-PCR to differentiate isolates that infect rice from those that infect nonrice hosts. DNA fingerprinting by Pot2 rep-PCR provides an efficient means to monitor the population dynamics of the blast pathogen. Because of the method's low cost and ease in application, it is now feasible to conduct large-scale population studies to understand the impact of host genotypes on pathogen evolution.
Collapse
|
24
|
Abstract
The heterothallic ascomycete, Magnaporthe grisea, is the blast pathogen of rice and about 50 other grasses, and has potential for sexual and asexual reproduction. In most populations, data from mating type, fertility assays, and genotypic diversity strongly suggest that the pathogen is asexual. However, parasexual recombination cannot be ruled out. Chromosome length polymorphisms and translocations may prevent successful meiosis in most populations. Pathogens of millets and some grasses growing with rice appear to be largely genetically isolated, though some gene flow may occur. Sexual fertility has repeatedly been reported in rice pathogens from mountainous regions of South and East Asia. Several means by which sexual fertility may be lost in an agricultural setting are advanced.
Collapse
Affiliation(s)
- R S Zeigler
- Entomology and Plant Pathology Division, International Rice Research Institute, Manila, Philippines.
| |
Collapse
|
25
|
Zhu H, Choi S, Johnston AK, Wing RA, Dean RA. A large-insert (130 kbp) bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea: genome analysis, contig assembly, and gene cloning. Fungal Genet Biol 1997; 21:337-47. [PMID: 9290247 DOI: 10.1006/fgbi.1997.0996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Magnaporthe grisea (Hebert) Barr causes rice blast, one of the most devastating diseases of rice (Oryza sativa) worldwide. This fungus is an ideal organism for studying a number of aspects of plant-pathogen interactions, including infection-related morphogenesis, avirulence, and pathogen evolution. To facilitate M. grisea genome analysis, physical mapping, and positional cloning, we have constructed a bacterial artificial chromosome (BAC) library from the rice infecting strain 70-15. A new method was developed for separation of partially digested large-molecular-weight DNA fragments that facilitated library construction with large inserts. The library contains 9216 clones, with an average insert size of 130 kbp (> 25 genome equivalents) stored in 384-well microtiter plates that can be double spotted robotically on to a single nylon membrane. Several unlinked single-copy DNA probes were used to screen 4608 clones in the library and an average of 13 (minimum of 6) overlapping BAC clones was found in each case. Hybridization of total genomic DNA to the library and analysis of individual clones indicated that approximately 26% of the clones contain single-copy DNA. Approximately 35% of BAC clones contained the retrotransposon MAGGY. The library was used to identify BAC clones containing a adenylate cyclase gene (mac1). In addition, a 550-kbp contig composed of 6 BAC clones was constructed that encompassed two adjacent RFLP markers on chromosome 2. These data show that the BAC library is suitable for genome analysis of M. grisea. Copies of colony hybridization membranes are available upon request.
Collapse
Affiliation(s)
- H Zhu
- Department of Plant Pathology and Physiology, Clemson University, South Carolina 29634, USA
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Zeigler RS, Scott RP, Leung H, Bordeos AA, Kumar J, Nelson RJ. Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. PHYTOPATHOLOGY 1997; 87:284-294. [PMID: 18945171 DOI: 10.1094/phyto.1997.87.3.284] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT We applied DNA markers to determine whether parasexual recombination may contribute to the extreme genetic diversity and variability observed in Magnaporthe grisea, the causal agent of rice blast disease. Dispersed repetitive elements and mapped, low-copy restriction fragment length polymorphism (RFLP) probes were used to detect transfers of DNA between cultured isolates of M. grisea. Low-copy RFLP probes also were used to detect putative recombinants among isolates from well-characterized field populations of the pathogen. Microscopic examination of tufted mycelium between cocultured isolates revealed frequent hyphal fusions. Hyphal tips and conidia were recovered without selection from tufted zones in two separate vegetative pairings involving isolates with dissimilar haplotypes, based on the repetitive element MGR586. Haplotypic changes were observed at a higher frequency in tuft derivatives than in subcultures of each isolate alone. From 136 tuft derivatives analyzed, 5 putative recombinant haplotypes were identified. Introgression was demonstrated with two independent repetitive elements, fosbury and MGR586, as probes on DNA digested with several restriction enzymes. Introgressions were characterized by addition of 1 to 10 MGR586 bands, and 1 to 3 fosbury bands from one parent into the background of the other. Polymorphic single-copy probes were used to analyze putative recombinants. One probe detected an introgression event as predicted by analysis with MGR586. To assess the possible role of parasexual recombination in field populations of the pathogen, isolates in the Philippines previously grouped based on DNA fingerprinting were analyzed with low-copy RFLP markers. Polymorphism in single-copy loci typically was seen between, but not within, putative pathogen lineages. One lineage (designated lineage 4), however, was polymorphic for several probes. For some isolates, alleles at these loci comigrated with alleles characteristic of other lineages, suggesting the transfer of DNA fragments between lineages. One isolate was apparently a merodiploid, carrying an allele typical of lineage 4 plus another allele characteristic of a different lineage. In a survey of isolates from the Indian Himalayas, a merodiploid also was found with single- or low-copy probes. Examination of MGR586 profiles of the putative recombinant and its putative donor strains showed the expected introgression of MGR586 bands. The detection of parasexual DNA exchanges in wild-type strains under unselected conditions and the existence of merodiploids in nature suggest that parasexual recombination occurs in field populations of M. grisea. This raises questions concerning exclusive clonality in the blast fungus.
Collapse
|
28
|
Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 1996; 10:2696-706. [PMID: 8946911 DOI: 10.1101/gad.10.21.2696] [Citation(s) in RCA: 524] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many fungal pathogens invade plants using specialized infection structures called appressoria that differentiate from the tips of fungal hyphae contacting the plant surface. We demonstrate a role for a MAP kinase that is essential for appressorium formation and infectious growth in Magnaporthe grisea, the fungal pathogen responsible for rice blast disease. The PMK1 gene of M. grisea is homologous to the Saccharomyces cerevisiae MAP kinases FUS3/KSS1, and a GST-Pmk1 fusion protein has kinase activity in vitro. pmk1 mutants of M. grisea fail to form appressoria and fail to grow invasively in rice plants. pmk1 mutants are still responsive to cAMP for early stages of appressorium formation, which suggests Pmk1 acts downstream of a cAMP signal for infection structure formation. PMK1 is nonessential for vegetative growth and sexual and asexual reproduction in culture. Surprisingly, when expressed behind the GAL1 promoter in yeast, PMK1 can rescue the mating defect in a fus3 kss1 double mutant. These results demonstrate that PMK1 is part of a highly conserved MAP kinase signal transduction pathway that acts cooperatively with a cAMP signaling pathway for fungal pathogenesis.
Collapse
Affiliation(s)
- J R Xu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
29
|
Farman ML, Taura S, Leong SA. The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 3' end of an inverted repeat transposon. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:675-81. [PMID: 8757398 DOI: 10.1007/bf02174116] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Magnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains of M. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon from M. grisea and Fot1 from Fusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains of M. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.
Collapse
Affiliation(s)
- M L Farman
- Department of Plant Pathology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
30
|
Xu JR, Leslie JF. A genetic map of Gibberella fujikuroi mating population A (Fusarium moniliforme). Genetics 1996; 143:175-89. [PMID: 8722773 PMCID: PMC1207252 DOI: 10.1017/s0016672300034066] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We constructed a recombination-based map of the fungal plant pathogen Gibberella fujikuroi mating population A (asexual stage Fusarium moniliforme). The map is based on the segregation of 142 restriction fragment length polymorphism (RFLP) markers, two auxotrophic genes (arg1, nic1), mating type (matA+/matA-), female sterility (ste1), spore-killer (Sk), and a gene governing the production of the mycotoxin fumonisin B1 (fum1) among 121 random ascospore progeny from a single cross. We identified 12 linkage groups corresponding to the 12 chromosome-sized DNAs previously observed in contour-clamped homogeneous electric field (CHEF) gels. Linkage groups and chromosomes were correlated via Southern blots between appropriate RFLP markers and the CHEF gels. Eleven of the 12 chromosomes are meiotically stable, but the 12th (and smallest) is subject to deletions in 3% (4/121) of the progeny. Positive chiasma interference occurred on five of the 12 chromosomes, and nine of the 12 chromosomes averaged more than one crossover per chromosome. The average kb/cM ratio in this cross is approximately 32.
Collapse
Affiliation(s)
- J R Xu
- Department of Plant Pathology, Kansas State University, Manhattan 66506-5502, USA
| | | |
Collapse
|
31
|
Anaya N, Roncero MI. Skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:637-47. [PMID: 8544829 DOI: 10.1007/bf00418033] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 bp in length, flanked by identical long terminal repeats (LTR) of 429 bp showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 bp in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transcriptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences.
Collapse
Affiliation(s)
- N Anaya
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | |
Collapse
|
32
|
Farman ML, Leong SA. Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. Genetics 1995; 140:479-92. [PMID: 7498730 PMCID: PMC1206628 DOI: 10.1093/genetics/140.2.479] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Telomeric restriction fragments were genetically mapped to a previously described linkage map of Magnaporthe grisea, using RFLPs identified by a synthetic probe. (TTAGGG)3. Frequent rearrangement of telomeric sequences was observed in progeny isolates creating a potential for misinterpretation of data. Therefore a consensus segregation data set used to minimize mapping errors. TWelve of the 14 telomeres were found to be genetically linked to existing RFLP markers. Second-dimensional electrophoresis of restricted chromosomes confirmed these linkage assignments and revealed the chromosomal location of the two unlinked telomeres. We were thus able to assign all 14 M. grisea telomeres to their respective chromosome ends. The Achilles' cleavage (AC) technique was employed to determine that chromosome 1 markers 11 and CH5-120H were approximately 1.8 Mb and 1.28 Mb, respectively, from their nearest telomeres. RecA-AC was also used to determine that unlinked telomere 6 was approximately 530 kb from marker CH5-176H in strain 2539 and 580 kb in Guy11. These experiments indicated that large portions of some chromosome ends are unrepresented by genetic markers and provided estimates of the relationship of genetic to physical distance in these regions of the genome.
Collapse
Affiliation(s)
- M L Farman
- Department of Plant Pathology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
33
|
Sharma PC, Winter P, Bünger T, Hüttel B, Weigand F, Weising K, Kahl G. Abundance and polymorphism of di-, tri-and tetra-nucleotide tandem repeats in chickpea (Cicer arietinum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:90-96. [PMID: 24173788 DOI: 10.1007/bf00221000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/1993] [Accepted: 02/17/1994] [Indexed: 06/02/2023]
Abstract
The abundance and polymorphism of 38 different simple-sequence repeat motifs was studied in four accessions of cultivated chickpea (Cicer arietinum L.) by in-gel hybridization of synthetic oligonucleotides to genomic DNA digested with 14 different restriction enzymes. Among 38 probes tested, 35 yielded detectable hybridization signals. The abundance and level of polymorphism of the target sequences varied considerably. The probes fell into three broad categories: (1) probes yielding distinct, polymorphic banding patterns; (2) probes yielding distinct, monomorphic banding patterns, and (3) probes yielding blurred patterns, or diffused bands superimposed on a high in lane background. No obvious correlation existed between abundance, fingerprint quality, and the sequence characteristics of a particular motif. Digestion with methyl-sensitive enzymes revealed that simple-sequence motifs are enriched in highly methylated genomic regions. The high level of intraspecific polymorphism detected by oligonucleotide fingerprinting suggests the suitability of simple-sequence repeat probes as molecular markers for genome mapping.
Collapse
Affiliation(s)
- P C Sharma
- Department of Agricultural Botany, Meerut University, 250 004, Merrut, India
| | | | | | | | | | | | | |
Collapse
|
34
|
Diolez A, Marches F, Fortini D, Brygoo Y. Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Appl Environ Microbiol 1995; 61:103-8. [PMID: 7887592 PMCID: PMC167266 DOI: 10.1128/aem.61.1.103-108.1995] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phytopathogenic fungus Botrytis cinerea can infect an extremely wide range of host plants (tomato, grapevine, strawberry, and flax) without apparent specialization. While studying genetic diversity in this fungus, we found an element which is present in multiple copies and dispersed throughout the genome of some of its isolates. DNA sequence analysis revealed that the element contained direct, long-terminal repeats (LTRs) of 596 bp whose features were characteristic of retroviral and retrotransposon LTRs. Within the element, we identified an open reading frame with sequences homologous to the reverse transcriptase and RNase H domains of retroelement pol genes. We concluded that the element we had identified was a retroelement and named it Boty. By comparing its open reading frame with sequences from other retroelements, we found that Boty is related to the gypsy family of retrotransposons. Boty was present in numerous strains isolated from grapes and tomatoes but not in isolates from lentils. We propose that Boty-containing and Boty-deficient groups represent two lineages in the population of B. cinerea.
Collapse
Affiliation(s)
- A Diolez
- Institut National de la Recherche Agronomique, Versailles, France
| | | | | | | |
Collapse
|
35
|
Skinner DZ, Budde AD, Farman ML, Smith JR, Leung H, Leong SA. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 87:545-557. [PMID: 24190348 DOI: 10.1007/bf00221877] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/1993] [Accepted: 04/20/1993] [Indexed: 06/02/2023]
Abstract
A genetic map of Magnaporthe grisea (anamorph=Pyricularia oryzae and P. grisea), the causal agent of rice blast disease, was generated from segregation data utilizing 97 RFLP markers, two isoenzyme loci and the mating type locus among progeny of a cross between parental strains Guy 11 and 2539. Of the seven chromosomes of M. Grisea, three were resolved by contour-clamped homogeneous electric field (CHEF) electrophoresis, while the remaining four migrated as two doublet bands. By utilizing differences between CHEF mobilities of unresolved chromosomes from the parental strains, Southern analysis with selected markers allowed the chromosomal assignment of all linkage groups. A small translocation involving 1 marker was found in the parental strains used to produce the segregating population from which the map was constructed. Nine classes of repetitive DNA elements were found in the genome of a fungal isolate pathogenic to rice. These occurred only a few times or not at all in the genomes of isolates showing reduced virulence on rice. One repetitive DNA was shown to have structural similarity to the Alu sequences found in primates, a sequence similarity to the copia-like elements of Drosophila, and peptide similarity to transposable elements found in Drosophila, other fungi, and higher plants.
Collapse
Affiliation(s)
- D Z Skinner
- Department of Plant Pathology, University of Wisconsin, 1630 Linden Drive, 53706, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
36
|
Plummer KM, Howlett BJ. Major chromosomal length polymorphisms are evident after meiosis in the phytopathogenic fungus Leptosphaeria maculans. Curr Genet 1993; 24:107-13. [PMID: 8358816 DOI: 10.1007/bf00324673] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chromosomal DNA of Australian field-isolates of the phytopathogenic ascomycete Leptosphaeria maculans was resolved by pulsed-field gel electrophoresis. All isolates examined had highly variable karyotypes. Ascospores (sexual spores) derived from single pseudothecia (sexual fruiting bodies) isolated from Brassica napus (oilseed rape) stubble were analyzed. In two tetrads four distinct karyotypes were observed, with only one chromosomal DNA band in common to all the members of each tetrad. Although isolates had highly variable karyotypes, two overall patterns were present. In one pattern there were at least 12 chromosomal DNA bands, the largest being greater than 2.2 Mb in size; in the other there were more than 15 chromosomal DNA bands, the largest being about 2.0 Mb. The chromosomal DNA preparations included mitochondrial DNA which migrated as a diffuse band between 0.10 and 0.15 Mb in size, and DNA molecules of 8 and 9 kb in size.
Collapse
Affiliation(s)
- K M Plummer
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|