1
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
2
|
Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites. Proc Natl Acad Sci U S A 2016; 113:4717-22. [PMID: 27071116 DOI: 10.1073/pnas.1600476113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.
Collapse
|
3
|
Shanmugam R, Fierer J, Kaiser S, Helm M, Jurkowski TP, Jeltsch A. Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discov 2015; 1:15010. [PMID: 27462411 PMCID: PMC4860778 DOI: 10.1038/celldisc.2015.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
The Dnmt2 RNA methyltransferase catalyses the methylation of C38 in the anticodon loop of tRNA-Asp, but the molecular role of this methylation is unknown. Here, we report that mouse aspartyl-tRNA synthetase shows a four to fivefold preference for C38-methylated tRNA-Asp. Consistently, a 30% reduced charging level of tRNA-Asp was observed in Dnmt2 knockout (KO) murine embryonic fibroblast cells. Gene expression analysis with fluorescent reporter proteins fused to an N-terminal poly-Asp sequence showed that protein synthesis of poly-Asp-tagged reporter proteins was reduced in Dnmt2 KO cells as well. The same effect was observed with endogenous proteins containing poly-Asp sequences, indicating that Dnmt2-mediated C38 methylation of tRNA-Asp regulates the translation of proteins containing poly-Asp sequences. Gene ontology searches for proteins containing poly-Asp sequences in the human proteome showed that a significant number of these proteins have roles in transcriptional regulation and gene expression. Hence, the Dnmt2-mediated methylation of tRNA-Asp exhibits a post-transcriptional regulatory role by controlling the synthesis of a group of target proteins containing poly-Asp sequences.
Collapse
Affiliation(s)
- Raghuvaran Shanmugam
- Institute of Biochemistry, Stuttgart University, Faculty of Chemistry , Stuttgart, Germany
| | - Jacob Fierer
- MoLife Program, School of Engineering and Science, Jacobs University Bremen , Bremen, Germany
| | - Steffen Kaiser
- Institute of Pharmacy and Biochemistry, Faculty of Chemistry, Pharmaceutical Sciences and Geoscience, Johannes Gutenberg-Universität Mainz , Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Faculty of Chemistry, Pharmaceutical Sciences and Geoscience, Johannes Gutenberg-Universität Mainz , Mainz, Germany
| | - Tomasz P Jurkowski
- Institute of Biochemistry, Stuttgart University, Faculty of Chemistry , Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Faculty of Chemistry , Stuttgart, Germany
| |
Collapse
|
4
|
Seligmann H. Pocketknife tRNA hypothesis: Anticodons in mammal mitochondrial tRNA side-arm loops translate proteins? Biosystems 2013; 113:165-76. [DOI: 10.1016/j.biosystems.2013.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
|
5
|
Dalby AB, Goodrich KJ, Pfingsten JS, Cech TR. RNA recognition by the DNA end-binding Ku heterodimer. RNA (NEW YORK, N.Y.) 2013; 19:841-51. [PMID: 23610127 PMCID: PMC3683917 DOI: 10.1261/rna.038703.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most nucleic acid-binding proteins selectively bind either DNA or RNA, but not both nucleic acids. The Saccharomyces cerevisiae Ku heterodimer is unusual in that it has two very different biologically relevant binding modes: (1) Ku is a sequence-nonspecific double-stranded DNA end-binding protein with prominent roles in nonhomologous end-joining and telomeric capping, and (2) Ku associates with a specific stem-loop of TLC1, the RNA subunit of budding yeast telomerase, and is necessary for proper nuclear localization of this ribonucleoprotein enzyme. TLC1 RNA-binding and dsDNA-binding are mutually exclusive, so they may be mediated by the same site on Ku. Although dsDNA binding by Ku is well studied, much less is known about what features of an RNA hairpin enable specific recognition by Ku. To address this question, we localized the Ku-binding site of the TLC1 hairpin with single-nucleotide resolution using phosphorothioate footprinting, used chemical modification to identify an unpredicted motif within the hairpin secondary structure, and carried out mutagenesis of the stem-loop to ascertain the critical elements within the RNA that permit Ku binding. Finally, we provide evidence that the Ku-binding site is present in additional budding yeast telomerase RNAs and discuss the possibility that RNA binding is a conserved function of the Ku heterodimer.
Collapse
|
6
|
Abstract
Polyacrylamide gel electrophoresis is a widely used technique for RNA analysis and purification. The polyacrylamide matrix is highly versatile for chemical derivitization, enabling facile exploitation of thio-mercury chemistry without the need of tedious manipulations and/or expensive coupling reagents, which often give low yields and side products. Here, we describe the use of [(N-acryloylamino)phenyl]mercuric chloride in three-layered polyacrylamide gels to detect, separate, quantify, and analyze sulfur-containing RNAs.
Collapse
Affiliation(s)
- Elisa Biondi
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, University of Missouri-School of Medicine, Columbia, MO, USA.
| | | |
Collapse
|
7
|
An S, Barany G, Musier-Forsyth K. Evolution of acceptor stem tRNA recognition by class II prolyl-tRNA synthetase. Nucleic Acids Res 2008; 36:2514-21. [PMID: 18310681 PMCID: PMC2377447 DOI: 10.1093/nar/gkn063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) are an essential family of enzymes that catalyze the attachment of amino acids to specific tRNAs during translation. Previously, we showed that base-specific recognition of the tRNA(Pro) acceptor stem is critical for recognition by Escherichia coli prolyl-tRNA synthetase (ProRS), but not for human ProRS. To further delineate species-specific differences in acceptor stem recognition, atomic group mutagenesis was used to probe the role of sugar-phosphate backbone interactions in recognition of human tRNA(Pro). Incorporation of site-specific 2'-deoxynucleotides, as well as phosphorothioate and methylphosphonate modifications within the tRNA acceptor stem revealed an extensive network of interactions with specific functional groups proximal to the first base pair and the discriminator base. Backbone functional groups located at the base of the acceptor stem, especially the 2'-hydroxyl of A66, are also critical for aminoacylation catalytic efficiency by human ProRS. Therefore, in contrast to the bacterial system, backbone-specific interactions contribute significantly more to tRNA recognition by the human enzyme than base-specific interactions. Taken together with previous studies, these data show that ProRS-tRNA acceptor stem interactions have co-adapted through evolution from a mechanism involving 'direct readout' of nucleotide bases to one relying primarily on backbone-specific 'indirect readout'.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
8
|
Li PTX, Gollnick P. Characterization of a trp RNA-binding Attenuation Protein (TRAP) Mutant with Tryptophan Independent RNA Binding Activity. J Mol Biol 2004; 335:707-22. [PMID: 14687568 DOI: 10.1016/j.jmb.2003.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
TRAP (trp RNA-binding attenuation protein) is an 11 subunit RNA-binding protein that regulates expression of genes involved in tryptophan metabolism (trp) in Bacillus subtilis in response to changes in intracellular tryptophan concentration. When activated by binding up to 11 tryptophan residues, TRAP binds to the mRNAs of several trp genes and down-regulates their expression. Recently, a TRAP mutant was found that binds RNA in the absence of tryptophan. In this mutant protein, Thr30, which is part of the tryptophan-binding site, is replaced with Val (T30V). We have compared the RNA-binding properties of T30V and wild-type (WT) TRAP, as well as of a series of hetero-11-mers containing mixtures of WT and T30V TRAP subunits. The most significant difference between the interaction of T30V and WT TRAP with RNA is that the affinity of T30V TRAP is more dependent on ionic strength. Analysis of the hetero-11-mers allowed us to examine how subunits interact within an 11-mer with regard to binding to tryptophan or RNA. Our data suggest that individual subunits retain properties similar to those observed when they are in homo-11-mers and that individual G/UAG triplets within the RNA can bind to TRAP differently.
Collapse
Affiliation(s)
- Pan T X Li
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
9
|
Ryckelynck M, Giegé R, Frugier M. Yeast tRNA(Asp) charging accuracy is threatened by the N-terminal extension of aspartyl-tRNA synthetase. J Biol Chem 2003; 278:9683-90. [PMID: 12486031 DOI: 10.1074/jbc.m211035200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluates the role of the N-terminal extension from yeast aspartyl-tRNA synthetase in tRNA aspartylation. The presence of an RNA-binding motif in this extension, conserved in eukaryotic class IIb aminoacyl-tRNA synthetases, provides nonspecific tRNA binding properties to this enzyme. Here, it is assumed that the additional contacts the 70 amino acid-long appendix of aspartyl-tRNA synthetase makes with tRNA could be important in expression of aspartate identity in yeast. Using in vitro transcripts mutated at identity positions, it is demonstrated that the extension grants better aminoacylation efficiency but reduced specificity to the synthetase, increasing considerably the risk of noncognate tRNA mischarging. Yeast tRNA(Glu(UUC)) and tRNA(Asn(GUU)) were identified as the most easily mischarged tRNA species. Both have a G at the discriminator position, and their anticodon differs only by one change from the GUC aspartate anticodon.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
10
|
Ming X, Smith K, Suga H, Hou YM. Recognition of tRNA backbone for aminoacylation with cysteine: evolution from Escherichia coli to human. J Mol Biol 2002; 318:1207-20. [PMID: 12083512 DOI: 10.1016/s0022-2836(02)00232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The underlying basis of the genetic code is specific aminoacylation of tRNAs by aminoacyl-tRNA synthetases. Although the code is conserved, bases in tRNA that establish aminoacylation are not necessarily conserved. Even when the bases are conserved, positions of backbone groups that contribute to aminoacylation may vary. We show here that, although the Escherichia coli and human cysteinyl-tRNA synthetases both recognize the same bases (U73 and the GCA anticodon) of tRNA for aminoacylation, they have different emphasis on the tRNA backbone. The E. coli enzyme recognizes two clusters of phosphate groups. One is at A36 in the anticodon and the other is in the core of the tRNA structure and includes phosphate groups at positions 9, 12, 14, and 60. Metal-ion rescue experiments show that those at positions 9, 12, and 60 are involved with binding divalent metal ions that are important for aminoacylation. The E. coli enzyme also recognizes 2'-hydroxyl groups within the same two clusters: at positions 33, 35, and 36 in the anticodon loop, and at positions 49, 55, and 61 in the core. The human enzyme, by contrast, recognizes few phosphate or 2'-hydroxy groups for aminoacylation. The evolution from the backbone-dependent recognition by the E. coli enzyme to the backbone-independent recognition by the human enzyme demonstrates a previously unrecognized shift that nonetheless has preserved the specificity for aminoacylation with cysteine.
Collapse
Affiliation(s)
- Xiaotian Ming
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
11
|
Stelzl U, Nierhaus KH. A short fragment of 23S rRNA containing the binding sites for two ribosomal proteins, L24 and L4, is a key element for rRNA folding during early assembly. RNA (NEW YORK, N.Y.) 2001; 7:598-609. [PMID: 11345438 PMCID: PMC1370113 DOI: 10.1017/s1355838201002059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Previously we described an in vitro selection variant abbreviated SERF (in vitro selection from random rRNA fragments) that identifies protein binding sites within large RNAs. With this method, a small rRNA fragment derived from the 23S rRNA was isolated that binds simultaneously and independently the ribosomal proteins L4 and L24 from Escherichia coli. Until now the rRNA structure within the ternary complex L24-rRNA-L4 could not be studied due to the lack of an appropriate experimental strategy. Here we tackle the issue by separating the various complexes via native gel-electrophoresis and analyzing the rRNA structure by in-gel iodine cleavage of phosphorothioated RNA. The results demonstrate that during the transition from either the L4 or L24 binary complex to the ternary complex the structure of the rRNA fragment changes significantly. The identified protein binding sites are in excellent agreement with the recently reported crystal structure of the 50S subunit. Because both proteins play a prominent role in early assembly of the large subunit, the results suggest that the identified rRNA fragment is a key element for the folding of the 23S RNA during early assembly. The introduced in-gel cleavage method should be useful when an RNA structure within mixed populations of different but related complexes should be studied.
Collapse
Affiliation(s)
- U Stelzl
- Max-Planck-Institut for Molekulare Genetik, AG Ribosomen, Berlin, Germany
| | | |
Collapse
|
12
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
13
|
Frugier M, Moulinier L, Giegé R. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J 2000; 19:2371-80. [PMID: 10811628 PMCID: PMC384352 DOI: 10.1093/emboj/19.10.2371] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic aspartyl-tRNA synthetase (AspRS) from Saccharomyces cerevisiae is a homodimer of 64 kDa subunits. Previous studies have emphasized the high sensitivity of the N-terminal region to proteolytic cleavage, leading to truncated species that have lost the first 20-70 residues but that retain enzymatic activity and dimeric structure. In this work, we demonstrate that the N-terminal extension in yeast AspRS participates in tRNA binding and we generalize this finding to eukaryotic class IIb aminoacyl-tRNA synthetases. By gel retardation studies and footprinting experiments on yeast tRNA(Asp), we show that the extension, connected to the anticodon-binding module of the synthetase, contacts tRNA on the minor groove side of its anticodon stem. Sequence comparison of eukaryotic class IIb synthetases identifies a lysine-rich 11 residue sequence ((29)LSKKALKKLQK(39) in yeast AspRS with the consensus xSKxxLKKxxK in class IIb synthetases) that is important for this binding. Direct proof of the role of this sequence comes from a mutagenesis analysis and from binding studies using the isolated peptide.
Collapse
Affiliation(s)
- M Frugier
- Département 'Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse', UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
14
|
Eriani G, Gangloff J. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs. J Mol Biol 1999; 291:761-73. [PMID: 10452887 DOI: 10.1006/jmbi.1999.3012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystallographic studies of the aspartyl-tRNA synthetase-tRNA(Asp)complex from yeast identified on the enzyme a number of residues potentially able to interact with tRNA(Asp). Alanine replacement of these residues (thought to disrupt the interactions) was used in the present study to evaluate their importance in tRNA(Asp)recognition and acylation. The results showed that contacts with the acceptor A of tRNA(Asp)by amino acid residues interacting through their side-chain occur only in the acylation transition state, whereas those located near the G73 discriminator base occur also during initial binding of tRNA(Asp). Interactions with the anticodon bases provide the largest free energy contribution to stability of the enzyme-tRNA complex in its ground state. These contacts also favour catalysis, by acting connectively with each other and with those of G73, as shown by multiple mutant analysis. This implies structural communication transmitting the anticodon recognition signal to the distally located acylation site. This signal might be conveyed via tRNA(Asp)as suggested by the observed conformational change of this molecule upon interaction with AspRS. From binding free energy values corresponding to the different AspRS-tRNA(Asp)interaction domains, it might be concluded that upon complex formation, the anticodon interacts first. Finally, acylation efficiencies of AspRS mutants in the presence of pure tRNA(Asp)and non-fractionated tRNAs indicate that residues involved in the binding of identity bases also discriminate against non-cognate tRNAs.
Collapse
MESH Headings
- Acylation
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/metabolism
- Binding Sites
- Cell Division/genetics
- Crystallography, X-Ray
- Macromolecular Substances
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Phosphates/chemistry
- Protein Conformation
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- Ribose/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- G Eriani
- UPR 9002 SMBMR du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, Strasbourg, 67084, France
| | | |
Collapse
|
15
|
Rudinger-Thirion J, Giegé R. The peculiar architectural framework of tRNASec is fully recognized by yeast AspRS. RNA (NEW YORK, N.Y.) 1999; 5:495-502. [PMID: 10199566 PMCID: PMC1369776 DOI: 10.1017/s1355838299981955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The wild-type transcript of Escherichia coli tRNASec, characterized by a peculiar core architecture and a large variable region, was shown to be aspartylatable by yeast AspRS. Similar activities were found for tRNASec mutants with methionine, leucine, and tryptophan anticodons. The charging efficiency of these molecules was found comparable to that of a minihelix derived from tRNAAsp and is accounted for by the presence of the discriminator residue G73, which is a major aspartate identity determinant. Introducing the aspartate identity elements from the anticodon loop (G34, U35, C36, C38) into tRNASec transforms this molecule into an aspartate acceptor with kinetic properties identical to tRNAAsp. Expression of the aspartate identity set in tRNASec is independent of the size of its variable region. The functional study was completed by footprinting experiments with four different nucleases as structural probes. Protection patterns by AspRS of transplanted tRNASec and tRNAAsp were found similar. They are modified, particularly in the anticodon loop, upon changing the aspartate anticodon into that of methionine. Altogether, it appears that recognition of a tRNA by AspRS is more governed by the presence of the aspartate identity set than by the structural framework that carries this set.
Collapse
Affiliation(s)
- J Rudinger-Thirion
- Unité Propre de Recherche 9002 Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | |
Collapse
|
16
|
Dabrowski M, Spahn CM, Schäfer MA, Patzke S, Nierhaus KH. Protection patterns of tRNAs do not change during ribosomal translocation. J Biol Chem 1998; 273:32793-800. [PMID: 9830024 DOI: 10.1074/jbc.273.49.32793] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation reaction of two tRNAs on the ribosome during elongation of the nascent peptide chain is one of the most puzzling reactions of protein biosynthesis. We show here that the ribosomal contact patterns of the two tRNAs at A and P sites, although strikingly different from each other, hardly change during the translocation reaction to the P and E sites, respectively. The results imply that the ribosomal micro-environment of the tRNAs remains the same before and after translocation and thus suggest that a movable ribosomal domain exists that tightly binds two tRNAs and carries them together with the mRNA during the translocation reaction from the A-P region to the P-E region. These findings lead to a new explanation for the translocation reaction.
Collapse
Affiliation(s)
- M Dabrowski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998; 26:5017-35. [PMID: 9801296 PMCID: PMC147952 DOI: 10.1093/nar/26.22.5017] [Citation(s) in RCA: 611] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Evolution, Molecular
- Genetic Code
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
Collapse
Affiliation(s)
- R Giegé
- Unité Propre de Recherche 9002, 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Scientifique, 15 rue René Descartes, F-67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
18
|
Vörtler CS, Fedorova O, Persson T, Kutzke U, Eckstein F. Determination of 2'-hydroxyl and phosphate groups important for aminoacylation of Escherichia coli tRNAAsp: a nucleotide analogue interference study. RNA (NEW YORK, N.Y.) 1998; 4:1444-1454. [PMID: 9814764 PMCID: PMC1369716 DOI: 10.1017/s1355838298980967] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
2'-Deoxynucleoside 5'-a-thiotriphosphates have been incorporated randomly, replacing any of the four nucleotides separately and at a low level in Escherichia colitRNA(AsP)transcripts. After some tRNAs were charged with the cognate aminoacyl-tRNA synthetase and biotinylated, charged and uncharged tRNAs were separated by binding to Streptavidin. A comparison of the iodine cleavage pattern of charged and uncharged tRNAs indicated positions of 2'-deoxyphosphorothioate interference with charging. To separate the 2'-deoxy from the phosphorothioate effect, the same sequence of reactions was performed with the corresponding NTPalphaS. Several positions were identified with a 2'-deoxy or a phosphorothioate effect. tRNAs with single deoxy substitutions at the identified positions were prepared by enzymatic ligation of chemically synthesized halves. The kinetics of charging these tRNAs were determined. The 2'-deoxy effects identified by the interference assay were confirmed, showing a reduction in charging efficiency of between 2.5-6-fold, except for the terminal A76 with a 25-fold reduction. Inspection of the X-ray structure of the tRNA-synthetase complex showed consistency of most of these findings. Critical 2'-deoxy groups are localized mainly on the proposed contact surface with the synthetase or at the interface of the two tRNA domains. The same overall picture emerged for critical phosphorothioates. With the exception of 2'-deoxy-adenosine-containing tRNAs, multiple 2'-deoxy-substituted tRNAs, prepared by ligation of halves, showed a much larger reduction in charging efficiency than the mono-substituted tRNAs, indicating an additive effect.
Collapse
Affiliation(s)
- C S Vörtler
- Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Abstract
Synthetic oligonucleotide analogs have greatly aided our understanding of several biochemical processes. Efficient solid-phase and enzyme-assisted synthetic methods and the availability of modified base analogs have added to the utility of such oligonucleotides. In this review, we discuss the applications of synthetic oligonucleotides that contain backbone, base, and sugar modifications to investigate the mechanism and stereochemical aspects of biochemical reactions. We also discuss interference mapping of nucleic acid-protein interactions; spectroscopic analysis of biochemical reactions and nucleic acid structures; and nucleic acid cross-linking studies. The automation of oligonucleotide synthesis, the development of versatile phosphoramidite reagents, and efficient scale-up have expanded the application of modified oligonucleotides to diverse areas of fundamental and applied biological research. Numerous reports have covered oligonucleotides for which modifications have been made of the phosphodiester backbone, of the purine and pyrimidine heterocyclic bases, and of the sugar moiety; these modifications serve as structural and mechanistic probes. In this chapter, we review the range, scope, and practical utility of such chemically modified oligonucleotides. Because of space limitations, we discuss only those oligonucleotides that contain phosphate and phosphate analogs as internucleotidic linkages.
Collapse
Affiliation(s)
- S Verma
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
20
|
Sood VD, Beattie TL, Collins RA. Identification of phosphate groups involved in metal binding and tertiary interactions in the core of the Neurospora VS ribozyme. J Mol Biol 1998; 282:741-50. [PMID: 9743623 DOI: 10.1006/jmbi.1998.2049] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used ethylation protection experiments and modification interference using phosphorothioate nucleosides to identify phosphate groups involved in the magnesium-dependent tertiary structure and function of the VS ribozyme, a small, self-cleaving RNA. Phosphorothioate interference-rescue experiments in the presence of the thiophilic manganese ion implicate four phosphate groups in direct metal ion binding. Phosphorothioate substitution also creates a new manganese binding site that increases the cis cleavage rate of the ribozyme, possibly by disrupting an inhibitory structure. Interpreting these data in the context of a recently developed structural model shows that almost all of the important phosphate groups are located in the central core of the ribozyme. The model suggests roles for certain phosphate groups in particular steps of RNA folding and identifies a candidate region for the active site of the ribozyme.
Collapse
Affiliation(s)
- V D Sood
- Department of Molecular and Medical Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | | | | |
Collapse
|
21
|
Shpanchenko OV, Dontsova OA, Bogdanov AA, Nierhaus KH. Structure of 5S rRNA within the Escherichia coli ribosome: iodine-induced cleavage patterns of phosphorothioate derivatives. RNA (NEW YORK, N.Y.) 1998; 4:1154-1164. [PMID: 9740132 PMCID: PMC1369689 DOI: 10.1017/s1355838298980359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The protection patterns of 5S rRNA in solution, within the ribosomal 50S subunit, 70S ribosomes, and functional complexes, were assessed with the phosphorothioate method. About 20% of the analyzed positions (G9-G107) showed strong assembly defects: A phosphorothioate at one of these positions significantly impaired the incorporation of 5S rRNA into 50S particles. The reverse has also been observed: A phosphorothioate is preferred over a phosphate residue in the assembly process at a few positions. The results further demonstrate that 5S rRNA undergoes conformational changes during the assembly in the central protuberance of the 50S subunit and upon association with the small ribosomal subunit forming a 70S ribosome. In striking contrast, when the 70S ribosomes are once formed, the contact pattern of the 5S rRNA is the same in various functional states such as initiation-like complexes and pre- and posttranslocational states.
Collapse
Affiliation(s)
- O V Shpanchenko
- Department of Chemistry, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
22
|
Nierhaus KH, Stuhrmann HB, Svergun D. The ribosomal elongation cycle and the movement of tRNAs across the ribosome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 59:177-204. [PMID: 9427843 DOI: 10.1016/s0079-6603(08)61032-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ribosome research has reached an exciting state, where two lines of experimental research have considerably improved our understanding of the ribosomal functions. On one hand, functional analysis has elucidated principles of both the decoding process and the tRNA movement on the ribosome during translocation. Experimental data leading to current competing models of the ribosomal elongation cycle can be reconciled by a new model, the alpha-epsilon model, according to which both tRNAs are tightly bound to a movable ribosomal domain. This alpha-epsilon domain carries the tRNA2.mRNA complex from the A and P sites to the P and E sites in the course of translocation maintaining the binding of both tRNAs. On the other hand, the location of tRNAs within the elongating ribosome can be directly determined for the first time by neutron scattering and electron microscopy. Both lines of evidence complement each other and define a frame for the first experimentally sound functional model of the elongating ribosome.
Collapse
Affiliation(s)
- K H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
23
|
Sissler M, Eriani G, Martin F, Giegé R, Florentz C. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase. Nucleic Acids Res 1997; 25:4899-906. [PMID: 9396794 PMCID: PMC147145 DOI: 10.1093/nar/25.24.4899] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene cloning, overproduction and an efficient purification protocol of yeast arginyl-tRNA synthetase (ArgRS) as well as the interaction patterns of this protein with cognate tRNAArgand non-cognate tRNAAspare described. This work was motivated by the fact that the in vitro transcript of tRNAAspis of dual aminoacylation specificity and is not only aspartylated but also efficiently arginylated. The crystal structure of the complex between class II aspartyl-tRNA synthetase (AspRS) and tRNAAsp, as well as early biochemical data, have shown that tRNAAspis recognized by its variable region side. Here we show by footprinting with enzymatic and chemical probes that transcribed tRNAAspis contacted by class I ArgRS along the opposite D arm side, as is homologous tRNAArg, but with idiosyncratic interaction patterns. Besides protection, footprints also show enhanced accessibility of the tRNAs to the structural probes, indicative of conformational changes in the complexed tRNAs. These different patterns are interpreted in relation to the alternative arginine identity sets found in the anticodon loops of tRNAArgand tRNAAsp. The mirror image alternative interaction patterns of unmodified tRNAAspwith either class I ArgRS or class II AspRS, accounting for the dual identity of this tRNA, are discussed in relation to the class defining features of the synthetases. This study indicates that complex formation between unmodified tRNAAspand either ArgRS and AspRS is solely governed by the proteins.
Collapse
MESH Headings
- Anticodon/chemistry
- Arginine-tRNA Ligase/classification
- Arginine-tRNA Ligase/metabolism
- Aspartate-tRNA Ligase/classification
- Aspartate-tRNA Ligase/metabolism
- Base Sequence
- DNA Footprinting
- Escherichia coli
- Fungal Proteins/classification
- Fungal Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/metabolism
- Stereoisomerism
- Substrate Specificity
Collapse
Affiliation(s)
- M Sissler
- Unité Propre de Recherche 9002 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
24
|
Shpanchenko OV, Zvereva MI, Dontsova OA, Nierhaus KH, Bogdanov AA. 5S rRNA sugar-phosphate backbone protection in complexes with specific ribosomal proteins. FEBS Lett 1996; 394:71-5. [PMID: 8925931 DOI: 10.1016/0014-5793(96)00872-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
5S ribosomal RNA forms stable specific complexes with ribosomal proteins L18, L25 and L5. In this work, interaction of phosphate residues of E. coli 5S rRNA within 5S rRNA-protein complexes has been studied. For this purpose 5S rRNA with statistically distributed phosphorothioate residues has been used for complex formation and the accessibility of phosphorothioates to iodine cleavage in the complex and in the free state has been studied. In free 5S rRNA, the phosphate residue at A73 was partially protected, probably due to being involved in the organization of the spatial structure of 5S rRNA. This protection is stronger in the complex with three proteins when the 5S rRNA structure is stabilized. In the 5S rRNA-L18 complex only two phosphate groups, G7 and A34, were protected. L25 in a complex with 5S rRNA protects large numbers of phosphorothioate groups concentrating in two clusters, indicating the possibility of two binding sites for this protein on 5S rRNA. The protection pattern differs from that for individual proteins because of the possible rearrangement of the structure.
Collapse
Affiliation(s)
- O V Shpanchenko
- Department of Chemistry, Moscow State University, Russian Federation
| | | | | | | | | |
Collapse
|
25
|
Holmes CE, Abraham AT, Hecht SM, Florentz C, Giegé R. Fe.bleomycin as a probe of RNA conformation. Nucleic Acids Res 1996; 24:3399-406. [PMID: 8811095 PMCID: PMC146117 DOI: 10.1093/nar/24.17.3399] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Two crystallographically defined tRNAs, yeast tRNAAsp and tRNAPhe, were used as substrates for oxidative cleavage by Fe.bleomycin to facilitate definition at high resolution of the structural elements in RNAs conducive to bleomycin binding and cleavage. Yeast tRNAAsp underwent cleavage at G45 and U66; yeast tRNAPhe was cleaved at four sites, namely G19, A31, U52 and A66. Only two of these six sites involved oxidative cleavage of a 5'-G.Pyr-3' sequence, but three sites were at the junction between single- and double-stranded regions of the RNA, consistent with a binding model in which the bithiazole + C-terminal substituent of bleomycin bind to minor groove structures on the RNA. Also studied were four tRNA transcripts believed on the basis of biochemical and chemical mapping experiments to share structural elements in common with the mature tRNAs. Cleavage of these tRNAs by Fe.bleomycin gave patterns of cleavage very different from each other and than those of the mature tRNAs. This observation suggests strongly that Fe.bleomycin cannot be used for chemical mapping in the same fashion as more classical reagents, such as Pb2+ or dimethyl sulfate. However, the great sensitivity of Fe.bleomycin to changes in nucleic acid structure argues that those species which do show similar patterns of cleavage must be very close in structure.
Collapse
Affiliation(s)
- C E Holmes
- Department of Chemistry, University of Virginia, Charlottesville 22901, USA
| | | | | | | | | |
Collapse
|
26
|
Alexeeva EV, Shpanchenko OV, Dontsova OA, Bogdanov AA, Nierhaus KH. Interaction of mRNA with the Escherichia coli ribosome: accessibility of phosphorothioate-containing mRNA bound to ribosomes for iodine cleavage. Nucleic Acids Res 1996; 24:2228-35. [PMID: 8710490 PMCID: PMC145942 DOI: 10.1093/nar/24.12.2228] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The contacts of phosphate groups in mRNAs with ribosomes were studied. Two mRNAs were used: one mRNA contained in the middle two defined codons to construct the pre- and the post-translocational states, the other was a sequence around the initiation site of the natural cro-mRNA. Phosphorothioate nucleotides were randomly incorporated at a few A, G, U or C positions during in vitro transcription. Iodine can cleave the thioated positions if they are not shielded by ribosomal components. Only a few minor differences in iodine cleavage of ribosome bound and non-bound mRNA were observed: the nucleotide two positions upstream of the decoding codons (i.e. those codons involved in codon-anticodon interactions) showed a reduced accessibility for iodine and the nucleotide immediately following the decoding codons an enhanced accessibility in both elongating states. In initiating ribosomes where the mRNA contained a strong Shine-Dalgarno sequence, at least five phosphates were additionally slightly protected covering the Shine-Dalgarno sequence and nucleotides downstream including the initiator AUG in the P site (Al, G3, G-2, G-5 and A-7). The low contact levels of the phosphates in the mRNA with the elongating ribosome strikingly contrast with the pronounced contact patterns previously described for tRNAs. The data obtained in this study, as well as results of previous studies, suggest that mRNA regions downstream and upstream of decoding codons form only weak contacts with ribosomal components and that the mRNA thus is mainly fixed by codon-anticodon interaction on the elongating ribosome.
Collapse
Affiliation(s)
- E V Alexeeva
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|
27
|
Rees B, Cavarelli J, Moras D. Conformational flexibility of tRNA: structural changes in yeast tRNA(Asp) upon binding to aspartyl-tRNA synthetase. Biochimie 1996; 78:624-31. [PMID: 8955905 DOI: 10.1016/s0300-9084(96)80008-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The availability of several X-ray structures at atomic resolution of tRNA(Asp) from yeast, both in its free state and complexed with its cognate tRNA-synthetase, enables a detailed examination of the conformational changes due to interaction with the enzyme. Although the molecule conserves its general L shape, its conformation undergoes important modifications. They may be described as a bending of the two arms which brings the 3' acceptor end and the anticodon part closer together, completed by a drastic change of the anticodon loop, which puts the anticodon bases in a more exposed position, facilitating their interaction with the synthetase. The packing interactions in the crystals are also discussed. Finally, the results of protection studies by chemical probes in solution are discussed in view of the RNA-protein contacts observed in the crystals.
Collapse
Affiliation(s)
- B Rees
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | |
Collapse
|
28
|
Abstract
Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.
Collapse
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologioues et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
29
|
Kreutzer R, Kern D, Giegé R, Rudinger J. Footprinting of tRNA(Phe) transcripts from Thermus thermophilus HB8 with the homologous phenylalanyl-tRNA synthetase reveals a novel mode of interaction. Nucleic Acids Res 1995; 23:4598-602. [PMID: 8524648 PMCID: PMC307431 DOI: 10.1093/nar/23.22.4598] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphates of the tRNA(Phe) transcript from Thermus thermophilus interacting with the cognate synthetase were determined by footprinting. Backbone bond protection against cleavage by iodine of the phosphorothioate-containing transcripts was found in the anticodon stem-loop, the D stem-loop and the acceptor stem and weak protection was also seen in the variable loop. Most of the protected phosphates correspond to regions around known identity elements of tRNA(Phe). Enhancement of cleavage at certain positions indicates bending of tRNAPhe upon binding to the enzyme. When applied to the three-dimensional model of tRNA(Phe) from yeast the majority of the protections occur on the D loop side of the molecule, revealing that phenylalanyl-tRNA synthetase has a rather complex and novel pattern of interaction with tRNAPhe, differing from that of other known class II aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- R Kreutzer
- Lehrstuhl für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
30
|
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994; 33:9912-21. [PMID: 8060999 DOI: 10.1021/bi00199a013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-resolution X-ray structures for the tRNA/aminoacyl-tRNA synthetase complexes between Escherichia coli tRNAGln/GlnRS and yeast tRNAAsp/AspRS have been determined. Positive identity nucleotides that direct aminoacylation specificity have been defined in both cases; E. coli tRNAGln identity is governed by 10 elements scattered in the tRNA structure, while specific aminoacylation of yeast tRNAAsp is dependent on 5 positions. Both identity sets are partially overlapping and share 3 nucleotides. Interestingly, the two enzymes belong to two different classes described for aminoacyl-tRNA synthetases. The class I glutaminyl-tRNA synthetase and the class II aspartyl-tRNA synthetase recognize their cognate tRNA from opposite sides. Mutants derived from glutamine and aspartate tRNAs have been created by progressively introducing identity elements from one tRNA into the other one. Glutaminylation and aspartylation assays of the transplanted tRNAs show that identity nucleotides from a tRNA originally aminoacylated by a synthetase from one class are still recognized if they are presented to the enzyme in a structural framework corresponding to a tRNA aminoacylated by a synthetase belonging to the other class. The simple transplantation of the glutamine identity set into tRNAAsp is sufficient to obtain glutaminylatable tRNA, but additional subtle features seem to be important for the complete conversion of tRNAGln in an aspartylatable substrate. This study defines C38 in yeast tRNAAsp as a new identity nucleotide for aspartylation. We show also in this paper that, during the complex formation, aminoacyl-tRNA synthetases are at least partially responsible for conformational changes which involve structural constraints in tRNA molecules.
Collapse
Affiliation(s)
- M Frugier
- Unité Propre de Recherche Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
31
|
Abstract
The folding pathways of large, highly structured RNA molecules are largely unexplored. Insight into both the kinetics of folding and the presence of intermediates was provided in a study of the Mg(2+)-induced folding of the Tetrahymena ribozyme by hybridization of complementary oligodeoxynucleotide probes. This RNA folds via a complex mechanism involving both Mg(2+)-dependent and Mg(2+)-independent steps. A hierarchical model for the folding pathway is proposed in which formation of one helical domain (P4-P6) precedes that of a second helical domain (P3-P7). The overall rate-limiting step is formation of P3-P7, and takes place with an observed rate constant of 0.72 +/- 0.14 minute-1. The folding mechanism of large RNAs appears similar to that of many multidomain proteins in that formation of independently stable substructures precedes their association into the final conformation.
Collapse
Affiliation(s)
- P P Zarrinkar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
32
|
Laughrea M. Structural dynamics of translating ribosomes: 16S ribosomal RNA bases that may move twice during translocation. Mol Microbiol 1994; 11:999-1007. [PMID: 8022290 DOI: 10.1111/j.1365-2958.1994.tb00378.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent footprinting, sedimentation and neutron-scattering results obtained in vivo or on pre-translocation and post-translocation ribosomal complexes are integrated with cross-linking and immunoelectron microscopy information. It is proposed that the 30S subunit pulses during translocation and that its pre- and post-translocation structures are not necessarily identical. Accordingly, translocation is characterized by three consecutive conformational states of the 30S and 50S subunits. State 1 (the pre-translocation state) lasts until the elongation factor EF-G.GTP complex binds to the ribosome or adopts the GTPase conformation. State 2 (the translocation state, or the peak or plateau of the pulse) follows and lasts until EF-G adopts a subsequent conformation or is released from the ribosome. State 3 (the post-translocation state) ensues and lasts until A (aminoacyl) site binding of aminoacyl-tRNA. In state 2, 16S RNA hairpins 26 and 33-33A, located in the platform and the head of the 30S subunit, respectively, become kinked or twisted, and residue A1503, near the decoding site, becomes exposed. A platform twist is associated with P (peptide) to E (exit) site tRNA movements and a head twist with pivoting of the peptidyl-tRNA elbow from the A to the P site, around a (retractable?) S19 domain. These twists result in an unlocking of the platform and the head from the 50S subunit. Exposure of A1503 is tentatively associated with movements of mRNA or tRNA anticodon stem-loops. These twisted or otherwise-exposed residues readopt their previous setting upon completion of translocation, i.e. states 1 and 3 of 16S RNA differ more from state 2 than from each other.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Laughrea
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Kisselev LL, Wolfson AD. Aminoacyl-tRNA synthetases from higher eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:83-142. [PMID: 7938555 DOI: 10.1016/s0079-6603(08)60854-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L L Kisselev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
34
|
Frugier M, Florentz C, Schimmel P, Giegé R. Triple aminoacylation specificity of a chimerized transfer RNA. Biochemistry 1993; 32:14053-61. [PMID: 8268184 DOI: 10.1021/bi00213a039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report here the rational design and construction of a chimerized transfer RNA with tripartite aminoacylation specificity. A yeast aspartic acid specific tRNA was transformed into a highly efficient acceptor of alanine and phenylalanine and a moderate acceptor of valine. The transformation was guided by available knowledge of the requirements for aminoacylation by each of the three amino acids and was achieved by iterative changes in the local sequence context and the structural framework of the variable loop and the two variable regions of the dihydrouridine loop. The changes introduced to confer efficient acceptance of the three amino acids eliminate aminoacylation with aspartate. The interplay of determinants and antideterminants for different specific aminoacylations, and the constraints imposed by the structural framework, suggest that a tRNA with an appreciable capacity for more than three efficient aminoacylations may be inherently difficult to achieve.
Collapse
Affiliation(s)
- M Frugier
- Unité Propre de Recherche Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
35
|
Wöhrl B, Ehresmann B, Keith G, Le Grice S. Nuclease footprinting of human immunodeficiency virus reverse transcriptase/tRNA(Lys-3) complexes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38693-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Buechter DD, Schimmel P. Dissection of a class II tRNA synthetase: determinants for minihelix recognition are tightly associated with domain for amino acid activation. Biochemistry 1993; 32:5267-72. [PMID: 8494904 DOI: 10.1021/bi00070a039] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ten class II aminoacyl-tRNA synthetases are large homo- and hetero-oligomeric proteins that share three conserved sequence motifs. Within this class, Escherichia coli alanyl-tRNA synthetase is the only homotetramer and is comprised of subunits of 875 amino acids. The enzyme aminoacylates sequence-specific RNA oligonucleotides that recreate as few as four base pairs of the acceptor stem of tRNA(Ala). A monomeric 461 amino acid N-terminal fragment (461N) was previously shown to have full adenylate synthesis activity. However, fragment 461N has significant, but reduced, efficiency of charging of tRNA(Ala), when compared to native enzyme [Ho, C., Jasin, M., & Schimmel, P. (1985) Science 229, 389-393]. We show here that, in contrast, the fragment and the native enzyme aminoacylate a 12 base pair acceptor-T psi C stem minihelix and a four base pair RNA tetraloop with the same efficiency. We also show that fragment 461N makes footprint contacts both on and outside the acceptor helix of bound tRNA(Ala). With one possible exception, the contacts observed with fragment 461N are identical to those seen with the native enzyme. In spite of contacts outside the acceptor helix, fragment 461N charges the native tRNA, minihelix, and tetraloop with similar efficiency. Thus, all minihelix contacts required for activation for charging are tightly associated with the adenylate synthesis domain and, at least in the fragment, are not influenced by additional RNA-protein contacts outside the minihelix domain.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D D Buechter
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
37
|
Baron C, Heider J, Böck A. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc Natl Acad Sci U S A 1993; 90:4181-5. [PMID: 8483932 PMCID: PMC46470 DOI: 10.1073/pnas.90.9.4181] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The SELB protein from Escherichia coli is a specialized elongation factor required for the UGA-directed insertion of the amino acid selenocysteine into selenopolypeptides. Discrimination of the UGA codon requires the presence of a recognition element within the mRNA, which is located at the 3' side of the UGA codon; a hairpin structure can be formed within this mRNA region. By gel shift assays, a specific interaction between SELB and the mRNA recognition element could be demonstrated. Footprinting experiments, using nucleases or iodine as cleaving agents, showed that SELB binds to the loop region of the hairpin structure. In the presence of selenocysteinyl-tRNA, SELB formed a complex with the charged tRNA and the mRNA. The results indicate that targeted insertion of selenocysteine is accomplished by the binding of the SELB protein to this mRNA recognition element, resulting in the formation of a selenocysteinyl-tRNA.SELB complex at the mRNA in the immediate neighborhood of the UGA codon.
Collapse
Affiliation(s)
- C Baron
- Lehrstuhl für Mikrobiologie, Universität München, Germany
| | | | | |
Collapse
|
38
|
Puglisi JD, Pütz J, Florentz C, Giegé R. Influence of tRNA tertiary structure and stability on aminoacylation by yeast aspartyl-tRNA synthetase. Nucleic Acids Res 1993; 21:41-9. [PMID: 8441619 PMCID: PMC309063 DOI: 10.1093/nar/21.1.41] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mutations have been designed that disrupt the tertiary structure of yeast tRNA(Asp). The effects of these mutations on both tRNA structure and specific aspartylation by yeast aspartyl-tRNA synthetase were assayed. Mutations that disrupt tertiary interactions involving the D-stem or D-loop result in destabilization of the base-pairing in the D-stem, as monitored by nuclease digestion and chemical modification studies. These mutations also decrease the specificity constant (kcat/Km) for aspartylation by aspartyl-tRNA synthetase up to 10(3)-10(4) fold. The size of the T-loop also influences tRNA(Asp) structure and function; change of its T-loop to a tetraloop (-UUCG-) sequence results in a denatured D-stem and an almost 10(4) fold decrease of kcat/Km for aspartylation. The negative effects of these mutations on aspartylation activity are significantly alleviated by additional mutations that stabilize the D-stem. These results indicate that a critical role of tertiary structure in tRNA(Asp) for aspartylation is the maintenance of a base-paired D-stem.
Collapse
Affiliation(s)
- J D Puglisi
- UPR Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
39
|
Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:129-206. [PMID: 8341800 DOI: 10.1016/s0079-6603(08)60869-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|