1
|
Andean Prumnopitys Andina (Podocarpacae) Fruit Extracts: Characterization of Secondary Metabolites and Potential Cytoprotective Effect. Molecules 2019; 24:molecules24224028. [PMID: 31703314 PMCID: PMC6891447 DOI: 10.3390/molecules24224028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022] Open
Abstract
The fruits from the Chilean Podocarpaceae Prumnopitys andina have been consumed since pre-Hispanic times. Little is known about the composition and biological properties of this fruit. The aim of this work was to identify the secondary metabolites of the edible part of P. andina fruits and to assess their antioxidant activity by means of chemical and cell-based assays. Methanol extracts from P. andina fruits were fractionated on a XAD7 resin and the main compounds were isolated by chromatographic means. Antioxidant activity was determined by means of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing power (FRAP), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. The cytoprotective activity of the extract against oxidative and dicarbonyl stress was evaluated in human gastric epithelial cells (AGS). The total intracellular antioxidant activity (TAA) of the extract was determined in AGS cells. The inhibition of meat lipoperoxidation was evaluated under simulated gastric digestion conditions. Rutin, caffeic acid β-glucoside and 20-hydroxyecdysone were identified as major components of the fruit extract. Additional compounds were identified by high-performance liquid chromatography diode-array detector mass spectrometry (HPLC-DAD-MSn) and/or co-injection with standards. Extracts showed dose-dependent cytoprotective effects against oxidative and dicarbonyl-induced damage in AGS cells. The TAA increased with the pre-incubation of AGS cells with the extract. This is the first report on the composition and biological activity of this Andean fruit.
Collapse
|
2
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
3
|
Lee SH, Matsunaga A, Oe T. Inhibition effect of pyridoxamine on lipid hydroperoxide-derived modifications to human serum albumin. PLoS One 2018; 13:e0196050. [PMID: 29672562 PMCID: PMC5908094 DOI: 10.1371/journal.pone.0196050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/01/2018] [Indexed: 02/02/2023] Open
Abstract
Pyridoxamine (PM) is a promising drug candidate for treating various chronic conditions/diseases in which oxidative stress and carbonyl compounds are important factors affecting pathogenicity. These abilities of PM are mainly attributed to its inhibition of advanced glycation and lipoxidation end product formation, by scavenging reactive carbonyl species. PM might therefore prevent protein damage from lipid hydroperoxide-derived aldehydes such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) by trapping them. It was previously reported that PM reacts with ONE to produce pyrrolo-1,3-oxazine (PO8) through the formation of pyrido-1,3-oxazine (PO1/PO2). In this study, we found that ONE and HNE yield an identical product containing a pyrrole ring (PO7, PH2) upon reaction with PM. The structure of PO7/PH2 was shown by LC-MS and NMR analyses to be 1-(2-hydroxy-6-hydroxymethyl-3-methylpyridin-4-ylmethyl)-2-pentylpyrrole. PO1, PO7/PH2, and PO8 were the main stable PM-ONE/HNE adducts. In the incubation of human serum albumin (HSA) with ONE or HNE, Lys residues provided the most favorable modification sites for both aldehydes, and the number of HNE-modified sites was higher than that of ONE-modified sites. When HSA was allowed to react with a linoleic acid hydroperoxide in the presence of ascorbic acid, ONE modified more residues (10 Lys, 3 His, 2 Arg) than did HNE (8 His, 2 Lys), indicating the relative reactivity of aldehydes towards amino acid residues. Upon treatment with increasing concentrations of PM, the concentrations of ONE-modified HSA peptides, but not of HNE-modified peptides, were reduced significantly and dose-dependently. Concomitantly, the formation of PM-ONE adducts increased in a dose-dependent manner. The inhibition effect of PM was also confirmed in the cell system subjected to oxidative stress. Our results demonstrate that PM can inhibit lipid hydroperoxide-derived damage to proteins by trapping ONE preferentially, and the resulting PM-ONE adducts can be used as a dosimeter for ONE production to determine the levels of lipid peroxidation.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| | - Atsushi Matsunaga
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| |
Collapse
|
4
|
Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail ISB. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801269. [PMID: 25105142 PMCID: PMC4106080 DOI: 10.1155/2014/801269] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/04/2014] [Accepted: 05/24/2014] [Indexed: 01/09/2023]
Abstract
The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors.
Collapse
Affiliation(s)
- Sher Zaman Safi
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rajes Qvist
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Selva Kumar
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kalaivani Batumalaie
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ikram Shah Bin Ismail
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
|
6
|
Peng X, Ma J, Chen F, Wang M. Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct 2011; 2:289-301. [PMID: 21779567 DOI: 10.1039/c1fo10034c] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Advanced glycation end-products (AGEs) are the final products of the non-enzymatic reaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. Recently, the accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications, atherosclerosis, Alzheimer's disease and normal aging. The early recognition of AGEs can ascend to the late 1960s when a non-enzymatic glycation process was found in human body which is similar to the Maillard reaction. To some extent, AGEs can be regarded as products of the Maillard reaction. This review firstly introduces the Maillard reaction, the formation process of AGEs and harmful effects of AGEs to human health. As AGEs can cause undesirable diseases or disorders, it is necessary to investigate AGE inhibitors to offer a potential therapeutic approach for the prevention of diabetic or other pathogenic complications induced by AGEs. Typical effective AGE inhibitors with different inhibition mechanisms are also reviewed in this paper. Both synthetic compounds and natural products have been evaluated as inhibitors against the formation of AGEs. However, considering toxic or side effects of synthetic molecules present in clinical trials, natural products are more promising to be developed as potent AGE inhibitors.
Collapse
Affiliation(s)
- Xiaofang Peng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | | | | | | |
Collapse
|
7
|
Kumar A, Li K, Cai C. Anaerobic conditions to reduce oxidation of proteins and to accelerate the copper-catalyzed "Click" reaction with a water-soluble bis(triazole) ligand. Chem Commun (Camb) 2011; 47:3186-8. [PMID: 21283838 DOI: 10.1039/c0cc05376g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of protein (bovine albumin serum) by air still occurred under the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction conditions even in the presence of a Cu(I)-stabilizing tris(triazole) ligand. Anaerobic conditions not only avoided the oxidation of the protein, but also greatly accelerated the CuAAC reaction using a water-soluble bis(triazole) Cu(I) ligand.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
8
|
Abstract
Oxidized low-density lipoprotein (Ox-LDL) has been studied for over 25 years. Numerous pro- and anti-atherogenic properties have been attributed to Ox-LDL. Yet, Ox-LDL has neither been defined nor characterized, as its components and composition change depending on its source, method of preparation, storage, and use. It contains unoxidized and oxidized fatty acid derivatives both in the ester and free forms, their decomposition products, cholesterol and its oxidized products, proteins with oxidized amino acids and cross-links, and polypeptides with varying extents of covalent modification with lipid oxidation products, and many others. It seems to exist in vivo in some form not yet fully characterized. Until its pathophysiological significance, and how it is generated in vivo are determined, the nature of its true identity will be only of classical interest. In this review, its components, their biological actions and methods of preparation will be discussed.
Collapse
Affiliation(s)
- Sampath Parthasarathy
- Division of Cardiothoracic Surgery, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | |
Collapse
|
9
|
|
10
|
Abstract
Diabetic macular edema is a major cause of visual impairment. The pathogenesis of macular edema appears to be multifactorial. Laser photocoagulation is the standard of care for macular edema. However, there are cases that are not responsive to laser therapy. Several therapeutic options have been proposed for the treatment of this condition. In this review we discuss several factors and mechanisms implicated in the etiology of macular edema (vasoactive factors, biochemical pathways, anatomical abnormalities). It seems that combined pharmacologic and surgical therapy may be the best approach for the management of macular edema in diabetic patients.
Collapse
Affiliation(s)
- Neelakshi Bhagat
- The Institute of Ophthalmology and Visual Science, New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
11
|
Deng T, Xu K, Zhang L, Zheng X. Dynamic determination of Ox-LDL-induced oxidative/nitrosative stress in single macrophage by using fluorescent probes. Cell Biol Int 2008; 32:1425-32. [PMID: 18782627 DOI: 10.1016/j.cellbi.2008.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 06/04/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.
Collapse
Affiliation(s)
- Tongle Deng
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, PR China
| | | | | | | |
Collapse
|
12
|
Yamagishi SI, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs 2008; 17:983-96. [DOI: 10.1517/13543784.17.7.983] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sho-ichi Yamagishi
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Kazuo Nakamura
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Takanori Matsui
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Seiji Ueda
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| | - Kei Fukami
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| | - Seiya Okuda
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| |
Collapse
|
13
|
Yamagishi SI, Nakamura K, Matsui T, Ueda S, Noda Y, Imaizumi T. Inhibitors of advanced glycation end products (AGEs): potential utility for the treatment of cardiovascular disease. Cardiovasc Ther 2008; 26:50-8. [PMID: 18466420 DOI: 10.1111/j.1527-3466.2007.00038.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accelerated atherosclerosis and microvascular complications are the leading causes of coronary heart disease, stroke, blindness, and end-stage renal failure, which could account for disabilities and high mortality rates in patients with diabetes. Recent clinical studies have substantiated the concept of "hyperglycemic memory" in the pathogenesis of cardiovascular disease (CVD) in diabetes. Indeed, the Diabetes Control and Complications Trial-Epidemiology of Diabetes Interventions and Complications (DCCT-EDIC) Research, has revealed that intensive therapy during the DCCT reduces the risk of cardiovascular events by about 50% in type 1 diabetic patients 11 years after the end of the trial. Among various biochemical pathways activated under diabetic conditions, the process of formation and accumulation of advanced glycation end products (AGEs) and their mode of action are most compatible with the theory "hyperglycemic memory." Further, there is a growing body of evidence that AGEs play an important role in CVD in diabetes. These observations suggest that the inhibition of AGEs formation may be a promising target for therapeutic intervention in diabetic vascular complications. Therefore, in this article, we review several agents with inhibitory effects on AGEs formation and their therapeutic implications in CVD in diabetes.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Tiku ML, Narla H, Jain M, Yalamanchili P. Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation. Arthritis Res Ther 2008; 9:R76. [PMID: 17686167 PMCID: PMC2206377 DOI: 10.1186/ar2274] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 07/05/2007] [Accepted: 08/08/2007] [Indexed: 02/02/2023] Open
Abstract
Osteoarthritis (OA) affects a large segment of the aging population and is a major cause of pain and disability. At present, there is no specific treatment available to prevent or retard the cartilage destruction that occurs in OA. Recently, glucosamine sulfate has received attention as a putative agent that may retard cartilage degradation in OA. The precise mechanism of action of glucosamine is not known. We investigated the effect of glucosamine in an in vitro model of cartilage collagen degradation in which collagen degradation induced by activated chondrocytes is mediated by lipid peroxidation reaction. Lipid peroxidation in chondrocytes was measured by conjugated diene formation. Protein oxidation and aldehydic adduct formation were studied by immunoblot assays. Antioxidant effect of glucosamine was also tested on malondialdehyde (thiobarbituric acid-reactive substances [TBARS]) formation on purified lipoprotein oxidation for comparison. Glucosamine sulfate and glucosamine hydrochloride in millimolar (0.1 to 50) concentrations specifically and significantly inhibited collagen degradation induced by calcium ionophore-activated chondrocytes. Glucosamine hydrochloride did not inhibit lipid peroxidation reaction in either activated chondrocytes or in copper-induced oxidation of purified lipoproteins as measured by conjugated diene formation. Glucosamine hydrochloride, in a dose-dependent manner, inhibited malondialdehyde (TBARS) formation by oxidized lipoproteins. Moreover, we show that glucosamine hydrochloride prevents lipoprotein protein oxidation and inhibits malondialdehyde adduct formation in chondrocyte cell matrix, suggesting that it inhibits advanced lipoxidation reactions. Together, the data suggest that the mechanism of decreasing collagen degradation in this in vitro model system by glucosamine may be mediated by the inhibition of advanced lipoxidation reaction, preventing the oxidation and loss of collagen matrix from labeled chondrocyte matrix. Further studies are needed to relate these in vitro findings to the retardation of cartilage degradation reported in OA trials investigating glucosamine.
Collapse
Affiliation(s)
- Moti L Tiku
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | - Haritha Narla
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | - Mohit Jain
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | - Praveen Yalamanchili
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| |
Collapse
|
15
|
Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev 2007; 27:817-68. [PMID: 17044003 DOI: 10.1002/med.20073] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein carbonylation induced by reactive carbonyl species (RCS) generated by peroxidation of polyunsaturated fatty acids plays a significant role in the etiology and/or progression of several human diseases, such as cardiovascular (e.g., atherosclerosis, long-term complications of diabetes) and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and cerebral ischemia). Most of the biological effects of intermediate RCS, mainly alpha,beta-unsaturated aldehydes, di-aldehydes, and keto-aldehydes, are due to their capacity to react with the nucleophilic sites of proteins, forming advanced lipoxidation end-products (ALEs). Because of the emerging deleterious role of RCS/protein adducts in several human diseases, different potential therapeutic strategies have been developed in the last few years. This review sheds focus on fundamental studies on lipid-derived RCS generation, their biological effects, and their reactivity with proteins, with particular emphasis to 4-hydroxy-trans-2-nonenal (HNE)-, acrolein (ACR)-, malondialdehyde (MDA)-, and glyoxal (GO)-modified proteins. It also discusses the recently developed pharmacological approaches for the management of chronic diseases in which oxidative stress and RCS formation are massively involved. Inhibition of ALE formation, based on carbonyl-sequestering agents, seems to be the most promising pharmacological tool and is reviewed in detail.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Institute of Pharmaceutical and Toxicological Chemistry, Faculty of Pharmacy, University of Milan, Viale Abruzzi 42, I-20131, Milan, Italy.
| | | | | | | | | |
Collapse
|
16
|
Lehner MD, Marx D, Boer R, Strub A, Hesslinger C, Eltze M, Ulrich WR, Schwoebel F, Schermuly RT, Barsig J. In vivo characterization of the novel imidazopyridine BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine], a potent and highly selective inhibitor of inducible nitric-oxide synthase. J Pharmacol Exp Ther 2006; 317:181-7. [PMID: 16368897 DOI: 10.1124/jpet.105.098673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excessive release of nitric oxide from inducible nitric-oxide synthase (iNOS) has been postulated to contribute to pathology in a number of inflammatory diseases. We recently identified imidazopyridine derivatives as a novel class of potent nitricoxide synthase inhibitors with high selectivity for the inducible isoform. In the present study, we tested the in vivo potency of BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo-[4,5-b]pyridine], a selected member of this inhibitor class, in three different rat models of lipopolysaccharide-induced systemic inflammation. Delayed administration of BYK191023 dose-dependently suppressed the lipopolysaccharide-induced increase in plasma nitrate/nitrite (NO(x)) levels with an ED(50) of 14.9 micromol/kg/h. In a model of systemic hypotension following high-dose lipopolysaccharide challenge, curative administration of BYK191023 at a dose that inhibited 83% of the NO(x) increase completely prevented the gradual decrease in mean arterial blood pressure observed in vehicle-treated control animals. The vasopressor effect was specific for endotoxemic animals since BYK191023 did not affect blood pressure in saline-challenged controls. In addition, in a model of lipopolysaccharide-induced vascular hyporesponsiveness, BYK191023 infusion partially restored normal blood pressure responses to norepinephrine and sodium nitroprusside via an l-arginine competitive mechanism. Taken together, BYK191023 is a member of a novel class of highly isoform-selective iNOS inhibitors with promising in vivo activity suitable for mechanistic studies on the role of selective iNOS inhibition as well as clinical development.
Collapse
Affiliation(s)
- Martin D Lehner
- Department of Pharmacology, ALTANA Pharma AG, Konstanz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wei CL, Hon WM, Lee KH, Khoo HE. Chronic administration of aminoguanidine reduces vascular nitric oxide production and attenuates liver damage in bile duct-ligated rats. Liver Int 2005; 25:647-56. [PMID: 15910502 DOI: 10.1111/j.1478-3231.2005.01063.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nitric oxide (NO) has been implicated in the pathogenesis of liver cirrhosis. This study investigated the activity of nitric oxide synthase (NOS) in cirrhosis induced by bile duct-ligation (BDL) with NOS inhibitors. METHOD Three days after operation, rats were randomized to receive aminoguanidine (AG, 25 mg/kg/day) or L-N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg/day) for 21 days. RESULTS Vascular NO production, which was increased in BDL cirrhotic rats, was reduced by 75% with AG but not L-NAME chronic administration. AG treatment attenuated liver damage, while L-NAME aggravated it. AG significantly suppressed inducible NOS (iNOS) expression in aorta of BDL rats at both mRNA and protein level, but much less efficient in reducing it in liver. In contrast, endothelial NOS (eNOS) expression was not markedly affected. Calcium-independent NOS activity, which was dramatically increased in aorta of BDL rats, was abolished by AG treatment. In liver, however, both calcium-dependent and -independent NOS activity were increased by AG treatment. CONCLUSION Chronic administration of AG could reduce systemic NO levels as well as suppress iNOS expression and activity in aorta of BDL rats. It also improved liver function, possibly because of its ability to increase hepatic NOS activity, and to correct the systemic hemodynamic disorders by decreasing vascular NO production.
Collapse
Affiliation(s)
- Chang-Li Wei
- Department of Paediatrics, Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
18
|
Menè P, Festuccia F, Pugliese F. Clinical potential of advanced glycation end-product inhibitors in diabetes mellitus. Am J Cardiovasc Drugs 2004; 3:315-20. [PMID: 14728065 DOI: 10.2165/00129784-200303050-00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Non-enzymatic accumulation of advanced glycation end-products (AGE) is to some extent a physiologic consequence of tissue aging. On the other hand, circulating AGE and tissue deposits mark the course of diabetes mellitus as well as a variety of other vascular or degenerative diseases. AGE generation is paralleled by oxidative damage and lipid peroxidation within target tissue, with features of inflammation through the involvement of monocytes/macrophages expressing receptors for glycated macromolecules. Over the past 15 years, a wealth of data concerning the pharmacology of AGE have been gathered through animal and human investigations, targeting their likely contribution to the progression of diabetic and non-diabetic vascular damage. Several agents have been shown to interfere with the formation of AGE or AGE precursors, bind to tissue receptors, or promote breakdown of deposits. The first and most studied inhibitor, aminoguanidine, has shown extensive beneficial effects in experimental models of diabetic vascular damage, recently entering phase I-III clinical investigation. Newer anti-AGE agents include pyridoxamine and the so-called 'amadorins', cross-link breakers, AGE binders and receptor antagonists.
Collapse
Affiliation(s)
- Paolo Menè
- Department of Clinical Sciences, Division of Nephrology, University of Rome La Sapienza, Rome, Italy.
| | | | | |
Collapse
|
19
|
Cummings KL, Tarleton RL. Inducible nitric oxide synthase is not essential for control of Trypanosoma cruzi infection in mice. Infect Immun 2004; 72:4081-9. [PMID: 15213153 PMCID: PMC427393 DOI: 10.1128/iai.72.7.4081-4089.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune control of many intracellular pathogens, including Trypanosoma cruzi, is reported to be dependent on the production of nitric oxide. In this study, we show that mice deficient in inducible nitric oxide synthase (iNOS or NOS2) exhibit resistance to T. cruzi infection that is comparable to that of wild-type mice. This is the case for two iNOS-deficient mouse strains, Nos2(tm1Lau) and Nos2 N5, infected with the Brazil or Tulahuen strain of T. cruzi. In all cases, blood parasitemia, tissue parasite load, and survival rates are similar between wild-type and iNOS-deficient mice. In contrast, both wild-type and Nos2(tm1Lau) mice died within 32 days postinfection when treated with the nitric oxide synthase inhibitor aminoguanidine. Increased transcription of NOS1 or NOS3 is not found in iNOS-knockout (KO) mice, indicating that the absence of nitric oxide production through iNOS is not compensated for by increased production of other NOS isoforms. However, Nos2(tm1Lau) mice exhibit enhanced expression of tumor necrosis factor alpha, interleukin-1, and macrophage inflammatory protein 1alpha compared to that of wild-type mice, and these alterations may in part compensate for the lack of iNOS. These results clearly show that iNOS is not required for control of T. cruzi infection in mice.
Collapse
Affiliation(s)
- Kara L Cummings
- Center for Tropical and Emerging Global Diseases, 623 Biological Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
20
|
Abd El-Gawad HM, El-Sawalhi MM. Nitric oxide and oxidative stress in brain and heart of normal rats treated with doxorubicin: Role of aminoguanidine. J Biochem Mol Toxicol 2004; 18:69-77. [PMID: 15122648 DOI: 10.1002/jbt.20013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Doxorubicin (DOX) is a potent antitumor antibiotic drug known to cause severe cardiac toxicity. Moreover, its adverse effects were found to be extended to the cerebral tissue. Several mechanisms for this toxicity have been ascribed. Currently, one of the most accepted mechanisms is through free radicals; however, the exact role of nitric oxide (NO) is still unclear. Accordingly, a NO-synthase inhibitor with some antioxidant property, aminoguanidine (AG), was selected to examine its potential protective effect against DOX-induced toxicity. Male Wistar albino rats (150-200 g) were allocated into a normal control group, DOX-induced toxicity group, and DOX + AG-treated group. DOX was injected i.p. at a dose of 10 mg/kg divided into four equal injections over a period of 2 weeks. AG was injected i.p. at a dose of 100 mg/kg 1 h before each DOX injection. The animals were sacrificed 24 h after the last DOX injection and the following parameters were measured: serum lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) activities, cardiac and cerebral contents of malondialdehyde (MDA), conjugated diene (CD), glutathione (GSH), NO, and cytosolic calcium, as well as superoxide dismutase (SOD) and glutathione peroxidase (GSHP(X)) activities. Cardiotoxicity was manifested by a marked increase in serum LDH and CPK in addition to the sharp increase in MDA reaching eightfolds the basal level. This was accompanied by significant increase in CD, NO, cytosolic calcium, SOD, and GSHP(X) content/activity by 69, 85, 76, 125, and 41% respectively as compared to normal control. On the other hand, GSH was significantly depressed. In brain, only significant increase in MDA and GSHP(X) and decrease in GSH were obtained but to a lesser extent than the cardiac tissue. AG treatment failed to prevent the excessive release of cardiac enzymes; however, it alleviated the adverse effects of DOX in heart. AG administration resulted in marked decrease in the elevated levels of MDA, NO, SOD, and GSHP(X), however, MDA level was still pathological. The altered parameters in brain were restored by AG. It is concluded that, AG could not provide complete protection against DOX-induced toxicity. Therefore, it is recommended that, maintenance of the endogenous antioxidant, GSH, and regulation of calcium homeostasis must be considered, rather than NO formation, to guard against DOX-induced toxicity.
Collapse
|
21
|
Chen AS, Taguchi T, Aoyama S, Sugiura M, Haruna M, Wang MW, Miwa I. Antioxidant activity of a Schiff base of pyridoxal and aminoguanidine. Free Radic Biol Med 2003; 35:1392-403. [PMID: 14642387 DOI: 10.1016/j.freeradbiomed.2003.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We recently reported that PL-AG, a Schiff base of pyridoxal and aminoguanidine, was more effective than aminoguanidine (AG), a well-known anti-diabetic-complication compound, in preventing nephropathy in diabetic mice and presented brief data indicating the antioxidant activity of the adduct. In the present study, we additionally investigated the inhibitory activity of PL-AG in comparison with that of AG against in vitro and in vivo oxidation. PL-AG was more potent than AG and reference compounds such as pyridoxal and pyridoxamine in any of the five antioxidant activities examined in vitro, i.e., hydrogen peroxide-scavenging, hydroxyl radical-scavenging, superoxide radical-scavenging, ascorbic acid-autoxidation inhibitory, and low-density lipoprotein (LDL)-oxidation inhibitory activities, the last two of which were assessed in the presence of Cu(2+). Unlike AG, PL-AG did not show the pro-oxidant activity. The inhibitory activity of PL-AG against lipid peroxidation in diabetic rats was higher than that of AG, for example, the amounts of malondialdehyde in erythrocytes (nmol/g hemoglobin; mean +/- SD) in normal, untreated diabetic, AG-treated diabetic, and PL-AG-treated diabetic rats were 3.53 +/- 0.35, 4.99 +/- 0.23, 4.65 +/- 0.45, and 4.06 +/- 0.35, respectively. A fluorescent substance different from PL-AG was found in the plasma and urine of rats treated with PL-AG. The chemical structure of this substance, i.e., oxidized PL-AG, was determined by a combination of nuclear magnetic resonance, mass, and infrared spectrometry. AG dramatically decreased the pyridoxal phosphate level in the diabetic rat liver, whereas PL-AG only moderately affected it. Our results indicate that the antioxidant activity of PL-AG is due to its chelation with transition metal ions and to scavenging of reactive oxygen species. They also suggest that PL-AG is more promising for the treatment of diabetic complications than AG.
Collapse
Affiliation(s)
- An-Shu Chen
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen AS, Taguchi T, Sakai K, Kikuchi K, Wang MW, Miwa I. Antioxidant activities of chitobiose and chitotriose. Biol Pharm Bull 2003; 26:1326-30. [PMID: 12951480 DOI: 10.1248/bpb.26.1326] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chitooligosaccharides, the oligomers made up of beta-1,4-linked D-glucosamine, are obtained by partial hydrolysis of chitosan, a deacetylation product of chitin. The antioxidant activity of various chitooligosaccharides was tested in vitro with aminoguanidine, pyridoxamine, and Trolox as reference compounds. Hydroxylation of benzoate to salicylate by H2O2 in the presence of Cu(2+) was effectively inhibited by chitobiose, chitotriose, aminoguanidine, pyridoxamine, and Trolox (their IC(50) values=18, 80, 85, 10, and 95 microM, respectively), whereas glucosamine and N-acetylchito-oligosaccharides (di-N-acetylchitobiose and tri-N-acetylchitotriose) did not show any inhibitory activity. Chitobiose and chitotriose were more potent than the 3 reference compounds in scavenging hydroxyl radicals produced by photolysis of zinc oxide: IC(50) values of the 2 oligomers were 30 and 55 microM, respectively. Such a scavenging activity of these 2 chitooligomers was also shown by the use of another system, a mixture of Fe(3+)/EDTA/ascorbate/H2O2, for producing hydroxyl radicals. Only chitobiose and Trolox, of the 10 compounds tested, had the ability to scavenge superoxide radicals generated by a non-enzymatic system using phenazine methosulfate and NADH. Taken together with our unpublished observation that chitobiose and chitotriose are appreciably absorbed from the intestine of rats, the present results suggest that these 2 chitooligosaccharides would act as effective antioxidants in vivo when orally ingested.
Collapse
Affiliation(s)
- An-Shu Chen
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Kahl KG, Zielasek J, Uttenthal LO, Rodrigo J, Toyka KV, Schmidt HHHW. Protective role of the cytokine-inducible isoform of nitric oxide synthase induction and nitrosative stress in experimental autoimmune encephalomyelitis of the DA rat. J Neurosci Res 2003; 73:198-205. [PMID: 12836162 DOI: 10.1002/jnr.10649] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenic role of nitric oxide (NO) in multiple sclerosis (MS) remains controversial. Some groups have reported a pathogenic role of NO in experimental autoimmune encephalomyelitis (EAE), an animal model of some aspects of MS, whereas we and others have found a disease-suppressive effect of NO in EAE. Because the previously used EAE models have a mainly monophasic inflammatory disease course, distinct from MS, we here studied EAE in the DA rat, which better models the demyelinating and relapsing disease course of human MS. The induction of EAE in DA rats led to 1) severe inflammatory infiltrates mainly in the lumbar spinal cord; 2) an up-regulation of the activity of the cytokine-inducible isoform of NO synthases (NOS-II); and 3) increased tissue protein tyrosine nitration, as indicated by peroxynitrite (ONOO(-)), as a marker of nitrosative stress. Sources of superoxide metabolism, i.e., NADPH oxidase, myeloperoxidase, and superoxide dismutase, remained unchanged. Early treatment of animals with aminoguanidine, a relatively selective inhibitor of NOS-II, lowered nitrotyrosine immunoreactivity but at the same time led to more severe disease and pronounced inflammatory infiltrates in the lumbar spinal cord. Our results suggest a rather protective role of NOS-II induction and nitrosative stress in EAE in DA rats and support the hypothesis of a disease-mitigating immunomodulatory role of NO in this animal model of MS.
Collapse
Affiliation(s)
- Kai G Kahl
- Department of Neurology, Julius-Maximilians-University, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Levi B, Werman MJ. Fructose and related phosphate derivatives impose DNA damage and apoptosis in L5178Y mouse lymphoma cells. J Nutr Biochem 2003; 14:49-60. [PMID: 12559477 DOI: 10.1016/s0955-2863(02)00254-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycation between reducing sugars and amino groups of long-lived macromolecules results in an array of chemical modifications that may account for several physiological complications. The consequences of the reaction are directly related to the reactivity of the sugars involved, whether aldoses or ketoses, phosphorylated or non-phosphorylated. So far, most studies have been focused on glucose, while fructose, a faster glycating agent, attracted minor attention. We have recently demonstrated that under in vitro conditions fructose and its phosphate derivatives can modify plasmid DNA faster than glucose and its phosphate metabolites. In the present study we provide further evidences suggesting that fructose and its phosphate metabolites, at the tested conditions, are cytotoxic and inflict deleterious DNA modifications to L5178Y cells in culture. Damage was verified by viable cell counts, MTT assay, colony forming ability, induction of mutation in the thymidine kinase gene, internucleosomal DNA cleavage, and single strand breaks. The intensity of the tested sugars to impose damage increased significantly in the following order: sucrose = glucose 1-phosphate < glucose < glucose 6-phosphate < fructose 1-phosphate = fructose < fructose 6-phosphate. Aminoguanidine, an inhibitor of the glycation reaction, inhibited internucleosomal DNA cleavage. Taken together, these results suggest that fructose triggers deleterious modification in cultured cells through the glycation process, and thus should deserve more attention as an agent that may induce physiological complications.
Collapse
Affiliation(s)
- Boaz Levi
- Department of Food Engineering and Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
25
|
Burcham PC, Kaminskas LM, Fontaine FR, Petersen DR, Pyke SM. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products. Toxicology 2002; 181-182:229-36. [PMID: 12505316 DOI: 10.1016/s0300-483x(02)00287-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated levels of reactive alpha,beta-unsaturated aldehydes (e.g. malondialdehyde, 4-hydroxynonenal and acrolein) in the affected tissues of various degenerative conditions suggest these substances are active propagators of the disease process. One experimental approach to attenuating damage by these intermediates employs 'aldehyde-sequestering drugs' as sacrificial nucleophiles, thereby sparing cell macromolecules and perhaps slowing disease progression. Drugs with demonstrated trapping activity toward lipid-derived aldehydes include various amine compounds such as aminoguanidine, carnosine and pyridoxamine. We have focused on identifying scavengers of acrolein, perhaps the most toxic aldehyde formed during lipid peroxidation cascades. Various phthalazine compounds (hydralazine and dihydralazine) were found to trap acrolein readily, forming hydrazone derivatives in a rapid Schiff-type reaction. These compounds strongly protect against acrolein-mediated toxicity in isolated hepatocytes.
Collapse
Affiliation(s)
- Philip C Burcham
- Molecular Toxicology Research Group, Department of Clinical and Experimental Pharmacology, Adelaide University, Adelaide, SA 5005, Australia.
| | | | | | | | | |
Collapse
|
26
|
Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N, Boyle C, Januszewski AS, Chachich M, Baynes JW, Thorpe SR, Anderson NL. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 2002; 51:2826-32. [PMID: 12196477 DOI: 10.2337/diabetes.51.9.2826] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined the ability of pyridoxamine (PM), an inhibitor of formation of advanced glycation end products (AGEs) and lipoxidation end products (ALEs), to protect against diabetes-induced retinal vascular lesions. The effects of PM were compared with the antioxidants vitamin E (VE) and R-alpha-lipoic acid (LA) in streptozotocin-induced diabetic rats. Animals were given either PM (1 g/l drinking water), VE (2,000 IU/kg diet), or LA (0.05%/kg diet). After 29 weeks of diabetes, retinas were examined for pathogenic changes, alterations in extracellular matrix (ECM) gene expression, and accumulation of the immunoreactive AGE/ALE N( epsilon )-(carboxymethyl)lysine (CML). Acellular capillaries were increased more than threefold, accompanied by significant upregulation of laminin immunoreactivity in the retinal microvasculature. Diabetes also increased mRNA expression for fibronectin (2-fold), collagen IV (1.6-fold), and laminin beta chain (2.6-fold) in untreated diabetic rats compared with nondiabetic rats. PM treatment protected against capillary drop-out and limited laminin protein upregulation and ECM mRNA expression and the increase in CML in the retinal vasculature. VE and LA failed to protect against retinal capillary closure and had inconsistent effects on diabetes-related upregulation of ECM mRNAs. These results indicate that the AGE/ALE inhibitor PM protected against a range of pathological changes in the diabetic retina and may be useful for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Alan Stitt
- Department of Ophthalmology, Institute of Clinical Science, The Royal Victoria Hospital, Queen's University of Belfast, Belfast, Northern Ireland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shakkottai VG, Sudha R, Balaram P. Gramicidin S: a peptide model for protein glycation and reversal of glycation using nucleophilic amines. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 60:112-20. [PMID: 12102724 DOI: 10.1034/j.1399-3011.2002.02901.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nonenzymatic glycation of proteins has been implicated in various diabetic complications and age-related disorders. Proteins undergo glycation at the N-terminus or at the epsilon-amino group of lysine residues. Glycation of proteins proceeds through the stages of Schiff base formation, conversion to ketoamine product and advanced glycation end products. Gramicidin S, which has two ornithine residues, was used as a model system to study the various stages of glycation of proteins using electrospray ionization mass spectrometry. The proximity of two ornithine residues in the peptide favors the glycation reaction. Formation of advanced glycation end products and diglycation on ornithine residues in gramicidin S were observed. The formation of Schiff base adduct is reversible, whereas the Amadori rearrangement to the ketoamine product is irreversible. Nucleophilic amines and hydrazines can deglycate the Schiff base adduct of glucose with peptides and proteins. Hydroxylamine, isonicotinic acid hydrazide and aminoguanidine effectively removed glucose from the Schiff base adduct of gramicidin S. Hydroxylamine is more effective in deglycating the adduct compared with isonicotinic acid hydrazide and aminoguanidine. The observation that the hydrazines are effective in deglycating the Schiff base adduct even in the presence of high concentrations of glucose, may have a possible therapeutic application in preventing complications of diabetes mellitus. Hydrazines may be used to distinguish between the Schiff base and the ketoamine products formed at the initial stages of glycation.
Collapse
Affiliation(s)
- V G Shakkottai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
28
|
Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 2001; 50:1938-42. [PMID: 11473058 DOI: 10.2337/diabetes.50.8.1938] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antioxidants were administered to diabetic rats and experimentally galactosemic rats to evaluate the ability of these agents to inhibit the development of diabetic retinopathy. Alloxan diabetic rats and nondiabetic rats that were fed 30% galactose randomly received standard diets or the diets supplemented with ascorbic acid and alpha-tocopherol (vitamins C+E diet) or a more comprehensive mixture of antioxidants (multi-antioxidant diet), including Trolox, alpha-tocopherol, N-acetyl cysteine, ascorbic acid, beta-carotene, and selenium. Diabetes or galactose feeding of at least 12 months resulted in pericyte loss, acellular capillaries, and basement membrane thickening. Compared with diabetic controls, the development of acellular capillaries was inhibited by 50% (P < 0.05) in diabetic rats that received supplemental vitamins C+E, and the number of pericyte ghosts tended to be reduced. The vitamins C+E supplement had no beneficial effect in galactosemic rats, but these rats consumed only approximately half as much of the antioxidants as the diabetic rats. The multi-antioxidant diet significantly inhibited ( approximately 55-65%) formation of both pericyte ghosts and acellular capillaries in diabetic rats and galactosemic rats (P < 0.05 vs. controls), without affecting the severity of hyperglycemia. Parameters of retinal oxidative stress, protein kinase C activity, and nitric oxides remained elevated for at least 1 year of hyperglycemia, and these abnormalities were normalized by multi-antioxidant therapy. Thus, long-term administration of antioxidants can inhibit the development of the early stages of diabetic retinopathy, and the mechanism by which this action occurs warrants further investigation. Supplementation with antioxidants can offer an achievable and inexpensive adjunct therapy to help inhibit the development of retinopathy in diabetes.
Collapse
Affiliation(s)
- R A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
29
|
Rahbar S, Natarajan R, Yerneni K, Scott S, Gonzales N, Nadler JL. Evidence that pioglitazone, metformin and pentoxifylline are inhibitors of glycation. Clin Chim Acta 2000; 301:65-77. [PMID: 11020463 DOI: 10.1016/s0009-8981(00)00327-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Enhanced formation and accumulation of advanced glycation end products (AGEs) have been proposed to play a major role in the pathogenesis of diabetic complications, and atherosclerosis, leading to the development of a range of diabetic complications including nephropathy, retinopathy and neuropathy. Several potential drug candidates as AGE inhibitors have been reported recently. Aminoguanidine is the first drug extensively studied. However, there are no currently available medications known to block AGE formation. We have previously reported a number of novel and structurally diverse compounds as potent inhibitors of glycation and AGE formation. We have now studied several of the existing drugs, which are in therapeutic practice for lowering blood sugar or the treatment of peripheral vascular disease in diabetic patients, for possible inhibitory effects on glycation. We show that that three compounds; pioglitazone, metformin and pentoxifylline are also inhibitors of glycation.
Collapse
Affiliation(s)
- S Rahbar
- Department of Diabetes, Endocrinology and Metabolism, The Leslie and Susan Gonda (Goldschmied) Diabetes and Genetic Research Building, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Miyata T, Ueda Y, Asahi K, Izuhara Y, Inagi R, Saito A, VAN Ypersele DE Strihou C, Kurokawa K. Mechanism of the inhibitory effect of OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-yla cetanilide] on advanced glycation end product and advanced lipoxidation end product formation. J Am Soc Nephrol 2000; 11:1719-1725. [PMID: 10966497 DOI: 10.1681/asn.v1191719] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The accumulation in uremic plasma of reactive carbonyl compounds (RCO) derived from both carbohydrates and lipids ("carbonyl stress") contributes to uremic toxicity by accelerating the advanced glycation and lipoxidation of proteins. It was previously demonstrated that OPB-9195 [(+/-)-2-isopropylidenehydrazono-4-oxo- thiazolidin-5-ylacetanilide] inhibited the in vitro formation of advanced glycation end products (AGE) in uremic plasma. This study was designed to elucidate the mechanism of action of OPB-9195 by further delineating the AGE and advanced lipoxidation end product (ALE) precursors targeted by this drug. The inhibitory effects of OPB-9195 on the formation of two AGE (N:epsilon-carboxymethyllysine and pentosidine) on bovine serum albumin incubated with various AGE precursors were examined. Inhibition of N:epsilon-carboxymethyllysine and pentosidine formation with OPB-9195 was more efficient than with aminoguanidine. OPB-9195 also proved effective in blocking the carbonyl amine chemical processes involved in the formation of two ALE (malondialdehyde-lysine and 4-hydroxynonenal-protein adduct). The efficiency of OPB-9195 was similar to that of aminoguanidine. When glucose-based peritoneal dialysis fluid was incubated in the presence of OPB-9195, a similar inhibition of AGE formation was observed. The direct effect of OPB-9195 on major glucose-derived RCO in peritoneal dialysis fluids was then evaluated. The effects of OPB-9195 could be accounted for by its ability to trap RCO. The concentrations of three major glucose-derived RCO (glyoxal, methylglyoxal, and 3-deoxy-glucosone) were significantly lower in the presence of OPB-9195 than in its absence. Aminoguanidine had a similar effect. In conclusion, OPB-9195 inhibits both AGE and ALE formation, probably through its ability to trap RCO. OPB-9195 might prove to be a useful tool to inhibit some of the effects of RCO-related uremic toxicity.
Collapse
Affiliation(s)
- Toshio Miyata
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yasuhiko Ueda
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Koichi Asahi
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuko Izuhara
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Reiko Inagi
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akira Saito
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | - Kiyoshi Kurokawa
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
31
|
Wu GF, Pewe L, Perlman S. Coronavirus-induced demyelination occurs in the absence of inducible nitric oxide synthase. J Virol 2000; 74:7683-6. [PMID: 10906226 PMCID: PMC112293 DOI: 10.1128/jvi.74.16.7683-7686.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Demyelination induced by mouse hepatitis virus (MHV), strain JHM, is in large part immune mediated, but little is known about the mechanisms involved in this process. Previous results suggest that inducible nitric oxide synthase (NOS2) contributes transiently to MHV-induced demyelination. Herein, we show that equivalent amounts of demyelination were evident at day 12 after MHV infection in mice genetically deficient in NOS2 (NOS2(-/-)) and in C57BL/6 mice. Furthermore, using an established adoptive transfer model and pharmacological inhibitors of NOS2 function, we could demonstrate no effect on MHV-induced demyelination. These results indicate that NOS2 function is not required for demyelination in mice infected with MHV.
Collapse
Affiliation(s)
- G F Wu
- Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
32
|
Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem 2000; 275:21177-84. [PMID: 10801874 DOI: 10.1074/jbc.m003263200] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Maillard or browning reactions lead to formation of advanced glycation end products (AGEs) on protein and contribute to the increase in chemical modification of proteins during aging and in diabetes. AGE inhibitors such as aminoguanidine and pyridoxamine (PM) have proven effective in animal model and clinical studies as inhibitors of AGE formation and development of diabetic complications. We report here that PM also inhibits the chemical modification of proteins during lipid peroxidation (lipoxidation) reactions in vitro, and we show that it traps reactive intermediates formed during lipid peroxidation. In reactions of arachidonate with the model protein RNase, PM prevented modification of lysine residues and formation of the advanced lipoxidation end products (ALEs) N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, malondialdehyde-lysine, and 4-hydroxynonenal-lysine. PM also inhibited lysine modification and formation of ALEs during copper-catalyzed oxidation of low density lipoprotein. Hexanoic acid amide and nonanedioic acid monoamide derivatives of PM were identified as major products formed during oxidation of linoleic acid in the presence of PM. We propose a mechanism for formation of these products from the 9- and 13-oxo-decadienoic acid intermediates formed during peroxidation of linoleic acid. PM, as a potent inhibitor of both AGE and ALE formation, may prove useful for limiting the increased chemical modification of tissue proteins and associated pathology in aging and chronic diseases, including both diabetes and atherosclerosis.
Collapse
Affiliation(s)
- J M Onorato
- Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
33
|
Sobal G, Menzel J. The role of antioxidants in the long-term glycation of low density lipoprotein and its Cu2+-catalyzed oxidation. Free Radic Res 2000; 32:439-49. [PMID: 10766412 DOI: 10.1080/10715760000300441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study we investigated the influence of antioxidants such as EDTA, alpha-tocopherol, troglitazone and acetylsalicylic acid on the long-term-glycation of LDL and its copper ion-catalyzed oxidation. We observed that (a) all antioxidants inhibited AGE-formation, while Amadori product formation was only diminished by extreme concentrations of acetylsalicylic acid, (b) glycated LDL was more susceptible to copper-catalyzed oxidation than unglycated LDL, and (c) the oxidation of native LDL was more dramatically inhibited by the antioxidants than that of glycated LDL. The observed differences may be a consequence of the significantly higher endogenous content in hydroperoxides of glycated LDL as compared to native LDL. Therapeutic implications of these findings regarding vitamin E, which is supposed to slow atherogenesis and the development of microvascular complications in diabetes, are obvious: Vitamin E-monotherapy, while blocking oxidative and AGE-modification of LDL, is unable to inhibit its AP-formation. As a consequence, tocopherol is susceptible to increased consumption by AP-associated radical production in hyperglycemic patients, which could be checked in part by the tocopherol-protecting agent troglitazone and/or by acetylsalicylic acid.
Collapse
Affiliation(s)
- G Sobal
- Department of Nuclear Medicine, University of Vienna, Austria
| | | |
Collapse
|
34
|
Lisfi D, Bonnefont-Rousselot D, Fernet M, Jore D, Delattre J, Gardès-Albert M. Protection of endogenous vitamin E and beta-carotene by aminoguanidine upon oxidation of human low-density lipoproteins by *OH/O(2)*-. Radiat Res 2000; 153:497-507. [PMID: 10790269 DOI: 10.1667/0033-7587(2000)153[0497:poevea]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study was designed to evaluate the antioxidant effect of aminoguanidine toward human low-density lipoproteins (LDLs) initiated by oxygenated free radicals (*OH/O(2)*-) generated by gamma radiolysis. Initial radiolytic yields related to the markers of lipid peroxidation [i.e. decrease in endogenous alpha-tocopherol and beta-carotene, formation of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes] were determined in 3 g liter(-1) LDLs (expressed as total LDL concentration) in the absence and presence of 10 different concentrations of aminoguanidine (from 0.04 to 5 mmol liter(-1)). Fluorescence and relative electrophoretic mobility of oxidized LDLs were also studied as markers that indirectly reflect the attack of the protein moiety of LDLs (namely apolipoprotein B). Our data clearly showed the inhibitory effect of aminoguanidine on lipid peroxidation induced in LDLs by *OH/O(2)*- in a concentration-dependent manner. This effect probably resulted from a scavenging activity of aminoguanidine toward *OH. In contrast, aminoguanidine did not appear to react significantly with O(2)*-, which resulted in a poor residual lipid peroxidation. Our data led us to determine an optimum [aminoguanidine]/[LDL] ratio ranging from 250 to 500 to obtain the best in vitro protection of LDLs under our experimental conditions. It is also of great interest that aminoguanidine was able to protect endogenous alpha-tocopherol and beta-carotene of LDLs upon *OH/O(2)*(-)-induced oxidation.
Collapse
Affiliation(s)
- D Lisfi
- Laboratoire de Chimie-Physique, URA 400 CNRS, 45, rue des Saints-Peres, 75270 Paris Cedex 06, France
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
It is well known that aminoguanidine (AG) can diminish advanced glycosylation of proteins, which might be beneficial in preventing chronic diabetic complications. Recent reports suggested an inter-relationship between glycosylation of protein and free radical damage. In the present study, we examined the free radical scavenging properties of AG. Electron paramagnetic resonance using the spin-trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was performed to determine the superoxide and hydroxyl radical scavenging abilities of AG. These experiments revealed that AG was an effective hydroxyl radical scavenger even though it expressed a direct inhibitory effect on the xanthine oxidase activity at high concentrations (AG > or = 5 mM). In the second part of the study, allophycocyanin was used as an indicator of free radical mediated protein damage. In the assay, 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) was used as a peroxyl radical generator, and the loss of allophycocyanin fluorescence was monitored. The antioxidant effect of AG was expressed in oxygen-radical absorbing capacity (ORAC), where one ORAC unit equals the net protection produced by 1 microM Trolox (a water soluble analogue of vitamin E) as a control standard. AG exhibited a significant dose-dependent effect against free radical damage. These radical scavenging properties of AG may contribute to protective effects during glycation and explain the prevention of diabetic complications.
Collapse
|
37
|
Rahbar S, Kumar Yernini K, Scott S, Gonzales N, Lalezari I. Novel inhibitors of advanced glycation endproducts. Biochem Biophys Res Commun 1999; 262:651-6. [PMID: 10471380 DOI: 10.1006/bbrc.1999.1275] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Enhanced formation and accumulation of advanced glycation endproducts (AGE's) have been proposed to play a major role in the pathogenesis of diabetic complications, aging, atherosclerosis, and Alzheimer disease leading to progressive and irreversible intermolecular protein crosslinkings. This process is accelerated in diabetes and has been postulated to contribute to the development of a range of diabetic complications including nephropathy, retinopathy and neuropathy. Several potential drug candidates as AGE inhibitors have been reported recently. Aminoguanidine is the first drug extensively studied both in vitro and in vivo. We have developed a new class of compounds as potent inhibitors of glycation and AGE formation. The novel inhibitors reported here are aryl (and heterocyclic) ureido, and aryl (and heterocyclic) carboxamido phenoxy isobutyric acids and related molecules, which were found by in vitro assay methods to be potent inhibitors of multiple stage of glycation and AGE formation.
Collapse
Affiliation(s)
- S Rahbar
- Endocrinology & Metabolism, City of Hope National Medical Center, Duarte, California, 91010-0269, USA.
| | | | | | | | | |
Collapse
|
38
|
Iskit AB, Sungur A, Gedikoglu G, Guc MO. The effects of bosentan, aminoguanidine and L-canavanine on mesenteric blood flow, spleen and liver in endotoxaemic mice. Eur J Pharmacol 1999; 379:73-80. [PMID: 10499374 DOI: 10.1016/s0014-2999(99)00432-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The modulatory effects of a non-selective endothelin receptor antagonist, bosentan, were investigated together with those of relatively selective inducible nitric oxide synthase inhibitors, aminoguanidine and L-canavanine, on mesenteric blood flow decrease, liver and spleen injury elicited by endotoxaemia. Swiss albino mice (20-40 g) were administered intraperitoneally bosentan (3, 10 or 30 mg kg(-1)), aminoguanidine (15 mg kg(-1)) or L-canavanine (20 or 100 mg kg(-1)) 10 min before they received saline or Escherichia coli endotoxin (10 mg kg(-1)). After 4 h, the mice were anaesthetized, mesenteric blood flow values were measured, spleen and liver weight/body weight ratios were determined and the organs were examined histopathologically. Endotoxin decreased mesenteric blood flow (ml min(-1), saline: 3.0 +/- 0.2; endotoxin: 2.2 +/- 0.2: n = 10, P < 0.05), increased the weight of liver (g per kg body weight, saline: 47.5 +/- 2.0; endotoxin: 60.8 +/- 1.9: n = 10, P < 0.05) and spleen (g per kg body weight, saline: 3.9 +/- 0.5; endotoxin: 8.6 +/- 0.9; n = 10, P < 0.01) while it inflicted significant histopathological injury to both organs. Bosentan was ineffective at 3 mg kg(-1) but at 10 and 30 mg kg(-1) doses, it abolished all the deleterious effects of endotoxin without exception. Aminoguanidine blocked most of the effects of endotoxin except those on spleen. In contrast, L-canavanine blocked only the endotoxin-induced increase in liver weight but itself increased spleen weight and failed to block any other effects of endotoxin. Thus, it can be speculated that the beneficial effects of aminoguanidine are produced largely by mechanisms other than selective inducible nitric oxide synthase inhibition since L-canavanine was not fully effective. The beneficial effects of endothelin inhibition by using bosentan in endotoxaemia can be further exploited for the understanding and the therapy of sepsis-related syndromes.
Collapse
Affiliation(s)
- A B Iskit
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
39
|
Menè P, Pascale C, Teti A, Bernardini S, Cinotti GA, Pugliese F. Effects of advanced glycation end products on cytosolic Ca2+ signaling of cultured human mesangial cells. J Am Soc Nephrol 1999; 10:1478-86. [PMID: 10405203 DOI: 10.1681/asn.v1071478] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advanced glycation end product (AGE) accumulation in a high glucose (HG) environment is thought to mediate some of the vascular complications of diabetes. Transmembrane signaling of contractile cells is generally inhibited by HG, with implications for systemic and target organ hemodynamics. In the kidney, glomerular mesangial cells grown in HG media are hyporesponsive to the effects of vasoconstrictor agents, possibly explaining the hyperfiltration and increased capillary pressure that eventually lead to diabetic glomerulopathy. To verify whether AGE binding to specific mesangial receptors could mediate these effects of HG, cultured human mesangial cells (HMC) were exposed to in vitro glycated bovine serum albumin (BSA) for 60 min at 37 degrees C before measurement of cytosolic Ca2+ ([Ca2+]i) by microfluorometric techniques in monolayers or single cells. AGE-BSA (2 mg/ml) reduced Ca2+ release from intracellular stores by 1 microM angiotensin II from peak [Ca2+]i levels of 843+/-117 to 390+/-50 nM in monolayers and from 689+/-68 to 291+/-36 nM in individual cells (P < 0.05). Nonglycated BSA and BSA exposed to 250 mM glucose-6-phosphate for 30 d in the presence of 250 mM aminoguanidine (AMGD), an inhibitor of nonenzymatic glycation, had no effect on the angiotensin II-induced [Ca2+]i spike (peak 766+/-104 and 647+/-87 nM, monolayers/ single cells, respectively, P = NS). AGE also inhibited store-operated Ca2+ influx through plasma membrane channels, assessed by addition of 1 to 10 mM extracellular Ca2+ to cells previously held in Ca2(+)-free media (control 339+/- 46/593 +/- 51, +AGE-BSA 236 +/- 25/390 +/- 56, +AMGD 483+/-55/ 374+/-64 nM [Ca2+]i, monolayers/single cells at 10 mM Ca2+, respectively; +AGE-BSA, P < 0.05 versus control). Contrary to HG, AGE-BSA did not translocate protein kinase C isoforms alpha, zeta, and delta to the plasma membrane. Culture of HMC in HG supplemented with 1 mM AMGD prevented downregulation of [Ca2+]i signaling. These data suggest that glycated macromolecules or matrix components may inhibit transmembrane Ca2+ signaling of glomerular cells through binding to a specific AGE receptor, thus mediating some of the known functional effects of HG on the kidney.
Collapse
Affiliation(s)
- P Menè
- Division of Nephrology, University La Sapienza of Rome, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Yoneto T, Yoshimoto T, Wang CR, Takahama Y, Tsuji M, Waki S, Nariuchi H. Gamma interferon production is critical for protective immunity to infection with blood-stage Plasmodium berghei XAT but neither NO production nor NK cell activation is critical. Infect Immun 1999; 67:2349-56. [PMID: 10225894 PMCID: PMC115977 DOI: 10.1128/iai.67.5.2349-2356.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the roles of gamma interferon (IFN-gamma), nitric oxide (NO), and natural killer (NK) cells in the host resistance to infection with the blood-stage malarial parasite Plasmodium berghei XAT, an irradiation-induced attenuated variant of the lethal strain P. berghei NK65. Although the infection with P. berghei XAT enhanced NK cell lytic activity of splenocytes, depletion of NK1.1(+) cells caused by the treatment of mice with anti-NK1.1 antibody affected neither parasitemia nor IFN-gamma production by their splenocytes. The P. berghei XAT infection induced a large amount of NO production by splenocytes during the first peak of parasitemia, while P. berghei NK65 infection induced a small amount. Unexpectedly, however, mice deficient in inducible nitric oxide synthase (iNOS-/-) cleared P. berghei XAT after two peaks of parasitemia were observed, as occurred for wild-type control mice. Although the infected iNOS-/- mouse splenocytes did not produce a detectable level of NO, they produced an amount of IFN-gamma comparable to that produced by wild-type control mouse splenocytes, and treatment of these mice with neutralizing anti-IFN-gamma antibody led to the progression of parasitemia and fatal outcome. CD4(-/-) mice infected with P. berghei XAT could not clear the parasite, and all these mice died with apparently reduced IFN-gamma production. Furthermore, treatment with carrageenan increased the susceptibility of mice to P. berghei XAT infection. These results suggest that neither NO production nor NK cell activation is critical for the resistance to P. berghei XAT infection and that IFN-gamma plays an important role in the elimination of malarial parasites, possibly by the enhancement of phagocytic activity of macrophages.
Collapse
Affiliation(s)
- T Yoneto
- Department of Allergology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Degenhardt TP, Fu MX, Voss E, Reiff K, Neidlein R, Strein K, Thorpe SR, Baynes JW, Reiter R. Aminoguanidine inhibits albuminuria, but not the formation of advanced glycation end-products in skin collagen of diabetic rats. Diabetes Res Clin Pract 1999; 43:81-9. [PMID: 10221660 DOI: 10.1016/s0168-8227(98)00121-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoguanidine, an inhibitor of advanced glycation reactions in vitro, inhibits the development of diabetic complications in animal models of diabetes, suggesting that it acts by inhibition of advanced glycation reactions in vivo. However, effects of aminoguanidine on the formation of specific advanced glycation end-products (AGEs) in vivo have not been rigorously examined. Therefore, we studied the effects of aminoguanidine on the formation of pentosidine and N(epsilon)-(carboxymethyl)lysine (CML), measured by analytical chemical methods, in collagen of streptozotocin-diabetic Lewis rats at doses which ameliorated urinary albumin excretion, an index of diabetic nephropathy. At 12 weeks, diabetic animals had fivefold higher blood glucose, threefold higher glycated hemoglobin and fivefold higher collagen glycation, compared to metabolically healthy controls; pentosidine and CML in skin collagen were increased by approximately 30 and 150%, respectively. Administration of aminoguanidine, 50 mg/kg by daily intraperitoneal injection, significantly inhibited the development of albuminuria (approximately 60%, P < 0.01) in diabetic rats, without an effect on blood glucose or glycation of hemoglobin or collagen. Surprisingly, aminoguanidine failed to inhibit the increase in pentosidine and CML in diabetic rat skin collagen. Similar results were obtained in an independent experiment in which aminoguanidine was administered in drinking water at a dose of 0.5 g/l. We conclude that the therapeutic benefits of aminoguanidine on albuminuria may not be the result of inhibition of AGE formation.
Collapse
Affiliation(s)
- T P Degenhardt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nawroth PP, Bierhaus A, Vogel GE, Hofmann MA, Zumbach M, Wahl P, Ziegler R. [Non-enzymatic glycation and oxidative stress in chronic illnesses and diabetes mellitus]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94:29-38. [PMID: 10081287 DOI: 10.1007/bf03044692] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
UNLABELLED New approaches in biochemistry and molecular biology have increased the knowledge on the pathophysiology of chronic diseases as late diabetic complications, Alzheimer's disease, arteriosclerosis and vascular disease by defining the concept of "AGE-formation and oxidative stress." Nonenzymatic glycation, in which reducing sugars are covalently bound to free aminogroups of macromolecules, results in the formation of Advanced Glycation End products (AGEs) which accumulate during aging and at accelerated rate during the course of diabetes. Glycation accompanying oxidation processes support AGE-formation. AGE-formation changes the physicochemical properties of proteins, lipids and nucleic acids. In addition, binding of AGEs to specific surface receptors induces cellular signalling and cell activation. Interaction of AGEs with one of the receptors, RAGE, generates intracellular oxidative stress, which results in activation of the transcription factor NF-kappa B and subsequent gene expression, which might be relevant in late diabetic complications. CONCLUSION Knowledge of the basis molecular mechanisms allows to understand the interplay of different inducers such as redicals, cytokines, AGE-proteins and amyloid-beta-peptids and to define oxidative stress as a "common endpoint" of cell dysfunction. With respect to therapeutic options it is now possible not only to optimize blood glycemic control, but also to design drugs such as AGE-inhibitors and AGE-"cross-link" breakers. In addition patients with chronic disease associated with increased oxidative stress ay benefit from an antioxidant rich (and AGE protein poor?) nutrition.
Collapse
Affiliation(s)
- P P Nawroth
- Abteilung Innere Medizin I, Endokrinologie und Stoffwechsel, Universität Heidelberg.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kedziora-Kornatowska KZ, Luciak M, Blaszczyk J, Pawlak W. Effect of aminoguanidine on erythrocyte lipid peroxidation and activities of antioxidant enzymes in experimental diabetes. Clin Chem Lab Med 1998; 36:771-5. [PMID: 9853804 DOI: 10.1515/cclm.1998.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of aminoguanidine (AG) on the malondialdehyde (MDA) concentration and activities of superoxide dismutase (SOD), catalase and glutathione peroxidase (GSH-Px) in erythrocytes of rats with streptozotocin-induced diabetes was studied. Induction of diabetes resulted in an increase of MDA concentration and decreases of SOD and catalase activities after 6 and 12 weeks. GSH-Px activity increased after 6 weeks and returned to control values after 12 weeks. AG administration did not affect body weight, blood glucose level and HbA1c content in diabetic rats but led to a decrease of MDA concentration and SOD and catalase activities after 12 weeks of treatment, with no significant effect after 6 weeks. AG attenuated the GSH-Px increase after 6 weeks but augmented the activity of this enzyme after 12 weeks. These results confirm the presence of oxidative stress in streptozotocin-induced experimental diabetes and point to the beneficial antioxidant effect of AG.
Collapse
|
44
|
Liu Z, Wildhirt SM, Weismüller S, Schulze C, Conrad N, Reichart B. Nitric oxide and endothelin in the development of cardiac allograft vasculopathy. Potential targets for therapeutic interventions. Atherosclerosis 1998; 140:1-14. [PMID: 9733210 DOI: 10.1016/s0021-9150(98)00106-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Extensive research has been carried out in recent years to discover the potential risk factors contributing to cardiac allograft atherogenesis. Injury to endothelial cells has been regarded as an important early mechanism in the development of transplant atherosclerosis; it leads to the manifestation of epicardial and microvascular endothelial dysfunction and development of intimal hyperplasia. Moreover, continuous minor endothelial cell damage contributes to endothelial dysfunction which reflects one of the first measurable steps in the cascade of atherogenesis without macroscopic evidence of vascular lesions. The discovery of two important vasoactive substances nitric oxide (NO) and endothelin (ET) has brought new insights but also new unsolved questions regarding the mechanisms leading to atherosclerosis. To date it is known that both substances play a major role in both prevention and development of atherosclerosis. NO appears to be protective in low concentrations by inhibiting leukocyte and platelet activation/adherence and smooth muscle cell proliferation. Impaired endothelial NO production, as one cause of endothelial dysfunction may occur in early stages of atherosclerosis before macroscopic lesions are evident. In addition, increased endothelin release also results in endothelial dysfunction by inducing vasoconstriction; it promotes vascular lesion formation due to endothelial- and vascular smooth muscle cell proliferation. Direct and indirect manipulation of both the NO and ET signal transduction systems may provide novel preventive and therapeutic approaches for limiting transplant atherogenesis and to treat native atherosclerosis. This review summarizes important experimental and clinical evidence which points to nitric oxide and endothelin as potential therapeutic targets in the process of cardiac allograft vasculopathy.
Collapse
Affiliation(s)
- Z Liu
- Department of Cardiac Surgery, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Zhang J, Ren S, Sun D, Shen GX. Influence of glycation on LDL-induced generation of fibrinolytic regulators in vascular endothelial cells. Arterioscler Thromb Vasc Biol 1998; 18:1140-8. [PMID: 9672075 DOI: 10.1161/01.atv.18.7.1140] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperglycemia and dyslipidemia are two biochemical markers of diabetes mellitus. Increased incidence of cardiovascular disease and impaired fibrinolytic activity have been found in diabetic subjects. Previous studies have demonstrated that low density lipoproteins (LDLs) stimulate the production of plasminogen activator inhibitor-1 (PAI-1) and reduce the generation of tissue plasminogen activator (tPA) in vascular endothelial cells (ECs). The present study investigated the effect of glycated LDL on the production of PAI-1 and tPA in cultured human umbilical vein ECs (HUVECs). Glycation increased the abundance of glucitollysine and conjugated dienes in LDL and amplified the overproduction of PAI-1 and the reduction in tPA generation from HUVECs induced by LDL. The steady-state levels of PAI-1 mRNA in glycated LDL-treated ECs were significantly higher than those in native LDL-treated cells. Actinomycin D blocked the increase in PAI-1 generation induced by glycated LDL. Glycated LDL did not significantly reduce the levels of tPA mRNA but attenuated de novo synthesis of tPA in ECs. Treatment with 25 mmol/L aminoguanidine, an antioxidant and inhibitor of the formation of advanced glycation end products, during glycation normalized glycated LDL-induced generation of PAI-1 and tPA in ECs. The results of the present study indicate that glycation enhances the production of PAI-1 and attenuates tPA synthesis in ECs induced by LDL, which may contribute to the increased incidence of cardiovascular complications in diabetes. Formation of advanced glycation end products or peroxidation may be involved in glycated LDL-induced alterations in the generation of fibrinolytic regulators from ECs.
Collapse
Affiliation(s)
- J Zhang
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
46
|
Yu PH. Deamination of methylamine and angiopathy; toxicity of formaldehyde, oxidative stress and relevance to protein glycoxidation in diabetes. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 52:201-16. [PMID: 9564620 DOI: 10.1007/978-3-7091-6499-0_19] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) is located in the vascular smooth muscles, retina, kidney and the cartilage tissues, and it circulates in the blood. The enzyme activity has been found to be significantly increased in blood and tissues in diabetic patients and animals. Methylamine and aminoacetone are endogenous substrates for SSAO. The deaminated products are formaldehyde and methylglyoxal respectively, as well as H2O2 and ammonia, which are all potentially cytotoxic. Formaldehyde and methylglyoxal are cytotoxic towards endothelial cells. Excessive SSAO-mediated deamination may directly initiate endothelial injury and plaque formation, increase oxidative stress, which can potentiate oxidative glycation, and/or LDL oxidation and damage vascular systems. Formaldehyde is also capable of exacerbating advanced glycation, and thus increase the complexity of protein cross-linking. Uncontrolled SSAO-mediated deamination may be involved in the acceleration of the clinical complications in diabetes.
Collapse
Affiliation(s)
- P H Yu
- Neuropsychiatry Research Unit, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
47
|
Millican SA, Schultz D, Bagga M, Coussons PJ, Müller K, Hunt JV. Glucose-modified low density lipoprotein enhances human monocyte chemotaxis. Free Radic Res 1998; 28:533-42. [PMID: 9702533 DOI: 10.3109/10715769809066890] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In diabetes mellitus the progression of atherosclerosis is accelerated. The interaction of glucose with atherogenic lipoproteins may be relevant to the mechanisms responsible for this vascular damage. The aim of this study was to examine the effect of glucose-modified low density lipoprotein (LDL) on human monocyte chemotaxis and to investigate the roles of oxidation and glycation in the generation of chemotactic LDL. Cu(II)-mediated LDL oxidation was potentiated by glucose in a dose-dependent manner and increased its chemotactic activity. Incubation with glucose alone, under conditions where very little oxidation was observed, also increased the chemotactic property of LDL. Neither diethylenetriamine pentaacetic acid (DETAPAC) nor aminoguanidine, which both inhibited LDL oxidation, completely inhibited the chemotactic activity of glycated oxidised LDL. The results suggest that both oxidation and glycation contribute to increased chemotactic activity.
Collapse
Affiliation(s)
- S A Millican
- University of Cambridge, Department of Pathology, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
48
|
Gold DP, Schroder K, Powell HC, Kelly CJ. Nitric oxide and the immunomodulation of experimental allergic encephalomyelitis. Eur J Immunol 1997; 27:2863-9. [PMID: 9394811 DOI: 10.1002/eji.1830271118] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies examining the effect of nitric oxide synthase (NOS) inhibition on the course of experimental allergic encephalomyelitis (EAE) have yielded conflicting results. This may relate to the use of nonspecific inhibitors and to differences between active and adoptive EAE. We examined the effect of treatment with L-N-(1-iminoethyl)lysine (L-NIL), a selective inhibitor of the cytokine-inducible isoform of NOS, on the clinical course of active and adoptive EAE in Lewis rats. We find that while L-NIL treatment of recipients is protective in adoptive EAE, treatment of active EAE with L-NIL leads to a marked accentuation of disease expression. In L-NIL-treated animals treated with myelin basic protein/complete Freund's adjuvant (MBP/CFA), disease onset is accelerated and clinical symptoms are more severe. Accentuation of integrated disease scores is seen even if L-NIL treatment is started 5 days following immunization. The histological findings in involved spinal cords from L-NIL-treated animals with active EAE are similar to those from untreated animals with similar clinical scores. L-NIL treatment of MBP/CFA-immunized animals does not prevent recovery from clinical symptoms, nor does it allow for reinduction of disease in animals previously immunized with MBP/CFA. Treatment of F344 rats, a strain which is relatively nonsusceptible for EAE, with L-NIL results in consistent evidence of EAE following immunization with MBP/CFA. These findings, together with our previous work on interstitial nephritis, support a role for endogenously generated NO in immunoregulation of T cell responses following immunization with antigen in CFA, and suggest that inducibility of NOS expression may be an important susceptibility factor for autoimmunity.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/physiology
- Administration, Oral
- Adoptive Transfer
- Animals
- Concanavalin A/pharmacology
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Freund's Adjuvant/immunology
- Immunity, Innate/drug effects
- Interferon-gamma/biosynthesis
- Interferon-gamma/drug effects
- Lymphocyte Activation/drug effects
- Lymphocyte Transfusion
- Lysine/administration & dosage
- Lysine/analogs & derivatives
- Myelin Basic Protein/immunology
- Nitric Oxide/biosynthesis
- Nitric Oxide/immunology
- Nitric Oxide/physiology
- Nitric Oxide Synthase/antagonists & inhibitors
- Rats
- Rats, Inbred F344
- Rats, Inbred Lew
- Species Specificity
- Spleen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- D P Gold
- Sidney Kimmel Cancer Center, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
49
|
Yu PH, Zuo DM. Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: implications for advanced glycation and diabetic complications. Diabetologia 1997; 40:1243-50. [PMID: 9389414 DOI: 10.1007/s001250050816] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aminoguanidine, a nucleophilic hydrazine, has been shown to be capable of blocking the formation of advanced glycation end products. It reduces the development of atherosclerotic plaques and prevents experimental diabetic nephropathy. We have found that aminoguanidine is also quite potent at inhibiting semicarbazide-sensitive amine oxidase (SSAO) both in vitro and in vivo. The inhibition is irreversible. This enzyme catalyses the deamination of methylamine and aminoacetone, which leads to the production of cytotoxic formaldehyde and methylglyoxal, respectively. Serum SSAO activity was reported to be increased in diabetic patients and positively correlated with the amount of plasma glycated haemoglobin. Increased SSAO has also been demonstrated in diabetic animal models. Urinary excretion of methylamine is substantially increased in the rats following acute or chronic treatment with aminoguanidine. Urinary methylamine levels were substantially increased in streptozotocin (STZ)-induced diabetic rats following administration of aminoguanidine. The non-hydrazine SSAO inhibitor (E)-2-(4-fluorophenethyl)-3-fluoroallylamine hydrochloride (MDL-72974A) has been shown to reduce urinary excretion of lactate dehydrogenase (an indicator of nephropathy) in STZ-induced diabetic rats. Formaldehyde not only induces protein crosslinking, but also enhances the advanced glycation of proteins in vitro. The results support the hypothesis that increased SSAO-mediated deamination may be involved in structural modification of proteins and contribute to advanced glycation in diabetes. The clinical implications for the use of aminoguanidine to prevent glycoxidation have been discussed.
Collapse
Affiliation(s)
- P H Yu
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
50
|
Millican SA, Bagga M, Eddy R, Mitchinson MJ, Hunt JV. Effect of glucose-mediated LDL oxidation on the P388D1 macrophage-like cell line. Atherosclerosis 1997; 129:17-25. [PMID: 9069512 DOI: 10.1016/s0021-9150(96)06004-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxidised human low density lipoprotein (LDL) is thought to play a role in the development of atherosclerosis. Recent reports suggest that glucose-derived oxidants are capable of oxidising LDL. In this report, the effect of glucose-mediated oxidation of LDL upon the macrophage like cell line, P388D(1), was examined. Glucose-mediated oxidation of LDL was assessed by changes in the electrophoretic mobility of LDL and by analysis of lipid content using gas chromatography. The presence of Cu(II) (0.5 microM) was essential for the oxidation of LDL. The oxidation was potentiated by glucose in a dose- and time-dependent manner. At the concentration of LDL used (1 mg/ml), high concentrations of glucose (up to 500 mM) were required to oxidise LDL. The electrophoretic mobility of LDL correlated with the degree of lipid oxidation; both correlated with an inhibitory effect of oxidised LDL upon P388D(1) DNA synthesis. Diethylenetriaminepentaacetic acid (DETAPAC), a transition metal chelator, and aminoguanidine (AMG), an anti-glycation agent, inhibited the oxidation of LDL and attenuated the effects on DNA synthesis. Thus, glucose can mediate transition metal-dependent oxidation of LDL to a level that can affect P388D(1) cells, a mechanism which might have relevance to accelerated atherosclerosis in diabetic patients.
Collapse
Affiliation(s)
- S A Millican
- University of Cambridge, Department of Pathology, UK
| | | | | | | | | |
Collapse
|